# Constraining baryonic feedback with kinetic Sunyaev-Zeldovich



Lurdes Ondaro Mallea

with Raul Angulo and Giovanni Aricò Donostia International Physics Center (DIPC) **Di** 

Astroparticle workshop, Paris-Saclay 21/11/2024



## **Modeling gas for cosmology** *FLAMINGO simulations*

- Galaxy formation can not be solved from first principles
- Subgrid prescriptions calibrated to low redshift observables

FLAMINGO Schaye et al. 2023

- Variations of subgrid parameters to reproduce deviations from the observed relations
- Cosmological boxes (L=1000Mpc)



Kugel et al. 2023

#### **kinetic Sunyaev-Zeldovich effect** *FLAMINGO simulations*

kSZ seems to suggest stronger feedback than X-rays. What is going on ??



Schaye et al. 2023

McCarthy et al. 2024

see also Hadzhiyska et al. 2024 Bigwood et al. 2024

## **Constraining baryonic feedback with kinetic Sunyaev-Zeldovich** *Outline*

- Take insights from hydrodynamical simulations on how astrophysical processes shape the gas field
- Model stacked-kSZ signal (inspired but not relying on hydrodynamic simulations)
- Bayesian analysis of stacked-kSZ data

Ondaro-Mallea et al. (in prep 2024 a,b)

Statistics : power spectrum



Statistics : pairwise velocities. Large scale gas bias



## **Density and velocity fields of cosmic gas** *Gas vs dark matter*

- Dark matter:
  - Collisionless
  - Self-similar growth of structure
- Gas:
  - Collisional
  - Feedback (halo mass dependent way)

Feedback impacts group-scale halo outskirts (density+velocity) [most relevant for weak lensing]

#### Dark matter





10<sup>2</sup>

100

 $\rho/(200\rho_b)$ 

-0.6 - 0.4 - 0.2

0.0 0.2

v/v<sub>200</sub>



10<sup>0</sup>

 $\rho/(200\rho_b)$ 

 $10^{-2}$ 

 $10^{-}$ 

10

10<sup>2</sup>

-0.6 - 0.4

-0.2

0.0

 $V/V_{200}$ 

Gas at increasing feedback strength

**Calibrated to X-ray gas fractions in clusters** *Kugel et al. 2023*  Preferred (and not strong enough) to match kSZ gas fractions in groups McCarthy et al. 2024



## **Density and velocity fields of cosmic gas** *Gas at increasing feedback strength*

How strong is feedback in the universe? Does the feedback implementation matter?

**Calibrated to X-ray gas fractions in clusters** *Kugel et al. 2023*  **Preferred (and not strong enough) to match kSZ gas fractions in groups** *McCarthy et al. 2024* 



## Gas at the halo outskirts:

kinetic Sunyaev-Zeldovich effect





Interactions with the intervening **gas** (SZ)

-

## Gas at the halo outskirts:

kinetic Sunyaev-Zeldovich effect





is much longer than that of densities

Velocity-weighted stacked estimator

in observations, you need to reconstruct it from your galaxy catalogues

 $T_{\rm kSZ}(r_p) \propto \langle \mathcal{T}_{\rm kSZ}(r_h; r_p) v_h \rangle_h^* \propto T_{\rm bulk}(r_p) + T_{\rm corr}(r_p)$ 

Measures ~ enclosed gas mass profile

## **Velocity-weighted stacked kSZ signal** *What are the modeling requirements?*



*Measures* ~ *enclosed* gas mass profile

A model of stacked kSZ requires:

- Baryonic effects on the density field
- The decorrelation of velocities (given by gravity-only simulations)
- (*not*) baryonic effects on the velocity field

*Baryonification* (on simulations)

observations arrive here (Hadshyiska et al. 2024, Schaan et al. 2021)

## **Velocity-weighted stacked kSZ signal** *Baryon correction model for kSZ*

BCM: Modify outputs of gravity-only simulations to mimic the effects of baryons.

- Gas, stars, dark matter
- Parametrize the profile of each component with some free parameters

Apply it to your N-body simulation & build an emulator

Schneider&Teissyer 2015, Aricò et al. 2019





## Velocity-weighted stacked kSZ signal

Baryon correction model for kSZ



three mass bins kSZ at 20% simultaneously fitting in all flamingo



## Velocity-weighted stacked kSZ signal

Baryon correction model for kSZ+ weak lensing



three mass bins kSZ at 20% + power spectrum suppression at 1% simultaneously fitting in all flamingo



Preliminary

## Velocity-weighted stacked kSZ signal

Predictions: gas fractions (kSZ only)



We recover the gas fractions as a function of mass of all flamingo simulations



#### Velocity-weighted stacked kSZ signal

Predictions: gas fractions (kSZ + weak lensing)



We recover the gas fractions as a function of mass of all flamingo simulations

#### Conclusions

- Gas dark matter relation, need to model in a flexible and physically motivated way
- Insights from hydrodynamic simulations on the momentum field of gas:
  - Suppressed gas densities & velocities on small scales *feedback*
  - Suppressed gas densities on large scales (there is no gas velocity bias) stellar formation
- Feedback is most effective at group scales and can be probed with (stacked) kSZ observations, at the same time informing feedback implementation in hydrodynamic simulations.
- We have a model that describes kSZ + WL simultaneously... stay tuned for data analysis!

## **Backup slides**

Statistics : power spectrum. Large scale gas bias



Statistics : pairwise velocities



## **Density and velocity fields of cosmic gas** *Halo profiles*



Halo profiles





-0.6-0.4

 $\rho/(200\rho_b)$ 

-0.2

v/v<sub>200</sub>

0.2

0.4

10<sup>1</sup> 10<sup>2</sup> 10 -0.6 -0.4-0.2 0.4 0.0 0.2  $\rho/(200\rho_b)$ v/v200





## Velocity-weighted stacked kSZ signal

*Baryon correction model for kSZ* 

