The hybrid Lagrangian bias model: small-scale galaxy clustering and galaxy-galaxy lensing with the baccoemu emulators

Matteo Zennaro University of Oxford

Paris, Nov 21st 2024

Lagrangian Bias Expansion Model

Galaxy samples generated with SHAMe (S. Contreras, R. E. Angulo and MZ, 2020b)

Lagrangian Bias Expansion Model

Change galaxy formation / selection:

very different galaxy samples

Assume galaxy density is a function of the matter field

At 2nd order the ONLY terms that don't break symmetries are

$$\delta_{ ext{g}}(oldsymbol{q}) = F(\delta,\delta^2,s^2,
abla^2\delta)$$

$$egin{aligned} &\delta_{\mathrm{g}}(oldsymbol{x}) = \int \mathrm{d}^{3}oldsymbol{q} [1+b_{1}^{\mathrm{L}}\delta(oldsymbol{q})+b_{2}^{\mathrm{L}}\delta^{2}(oldsymbol{q}) \ &+b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q})+b_{
abla^{2}\delta}^{\mathrm{L}}
abla^{2}\delta(oldsymbol{q})]\delta_{\mathrm{D}}(oldsymbol{x}-oldsymbol{q}-oldsymbol{\Psi}) \end{aligned}$$

$$P_{
m gg}(k) = \sum_{i,j} b_i b_j P_{ij}(k) + rac{A_{
m sn}}{ar{n}}$$

5 free parameters $b_1^{L}, b_2^{L}, b_{s^2}^{L}, b_{\nabla^2\delta}^{L}, A_{sn}$

Modi & White (2020), MZ et al (2021); Pellejero-Ibañez et al (2022); Kokron et al (2021), Maion, Angulo, MZ (2022)

$$egin{aligned} &\delta_{\mathrm{g}}(oldsymbol{x}) = \int \mathrm{d}^{3}oldsymbol{q} [1+b_{1}^{\mathrm{L}}\delta(oldsymbol{q})+b_{2}^{\mathrm{L}}\delta^{2}(oldsymbol{q}) \ + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q})+b_{
abla^{2}\delta}^{\mathrm{L}}
abla^{2}\delta(oldsymbol{q})]\delta_{\mathrm{D}}(oldsymbol{x}-oldsymbol{q}+oldsymbol{\Psi}) \end{aligned}$$

 $\overline{P_{
m gg}(k)} = \sum_{i,j} b_i b_j P_{ij}(k) + rac{A_{
m sn}}{ar{n}}$

5 free parameters $b_1^{L}, b_2^{L}, b_{s^2}^{L}, b_{\nabla^2\delta}^{L}, A_{sn}$

Modi & White (2020), MZ et al (2021); Pellejero-Ibañez et al (2022); Kokron et al (2021), Maion, Angulo, MZ (2022)

$$egin{aligned} &\delta_{\mathrm{g}}(oldsymbol{x}) = \int \mathrm{d}^{3}oldsymbol{q} [1+b_{1}^{\mathrm{L}}\delta(oldsymbol{q})+b_{2}^{\mathrm{L}}\delta^{2}(oldsymbol{q})] \ + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q}) + b_{
abla^{2}\delta}^{\mathrm{L}}
abla^{2}\delta(oldsymbol{q})] \delta_{\mathrm{D}}(oldsymbol{x}-oldsymbol{q}+oldsymbol{\Psi}) \ + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q}) + b_{
abla^{2}\delta}^{\mathrm{L}}\delta(oldsymbol{q})] \delta_{\mathrm{D}}(oldsymbol{x}-oldsymbol{q}+oldsymbol{\Psi}) \ + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q}) + b_{n}^{\mathrm{L}}\delta(oldsymbol{q})] \delta_{\mathrm{D}}(oldsymbol{x}-oldsymbol{q}+oldsymbol{\Psi}) \ + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q}) + b_{n}^{\mathrm{L}}\delta(oldsymbol{q})] \delta_{\mathrm{D}}(oldsymbol{x}-oldsymbol{q}+oldsymbol{q}) \ + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q}) + b_{s^{2}}^{\mathrm{L}}s^{2}(oldsymbol{q}) + b_{n}^{\mathrm{L}}\delta(oldsymbol{q}) \ + b_{n}^{\mathrm{L}}s^{2}(oldsymbol{q}) \ + b_{n}^{\mathrm{L}}s^{2}(oldsymbo$$

 $-\frac{A_{\rm sn}}{\bar{n}}$

5 free parameters $b_1^{
m L}, b_2^{
m L}, b_{s^2}^{
m L}, b_{
abla^2\delta}^{
m L}, A_{
m sn}$

 $P_{
m gg}(k) = \sum_{i,j} b_i b_j P_{ij}(k) +$

Modi & White (2020), MZ et al (2021); Pellejero-Ibañez et al (2022); Kokron et al (2021), Maion, Angulo, MZ (2022)

We rely on emulators

5 sims: Narya Nenya Vilya The One Barahir

(order 2 million core hours per paired sim)

sim details (81x10⁹ part.s, 3 Gpc³/h³, …) 4000 combinations of cosmological parameters and redshifts

(order 10 core hours per paired scaling)

> cosmology rescaling

measure 15 bacco hybrid model templates

(< 1 core hours per measurement)

lagrangian fields advected

train Neural Network

(1 eval in ~ 40 ms)

architecture, accuracy

MZ et al (2023)

Performance

8000 samples between haloes and SHAMe galaxies with different cosmologies, redshifts, number densities, SHAMe properties

Fits always accurate up to k = 0.7 h/Mpc

MZ et al (2022)

Performance

8000 samples between haloes and SHAMe galaxies with different cosmologies, redshifts, number densities, SHAMe properties

Fits always accurate up to k = 0.7 h/Mpc

Marcos Pellejero-Ibáñez

model in **redshift space** (**emulator** available)

MZ et al (2022)

Galaxy bias priors

8000 samples between haloes and SHAMe galaxies with different cosmologies, redshifts, number densities, SHAMe properties

Fits always accurate up to k = 0.7 h/Mpc

Coevolution relations for these bias parameters:

 $b_{s^2}(b_1)$ $b_2(b_1)$

 $b_{
abla^2\delta}(b_1)$

MZ et al (2022), conf. from data Pellejero-Ibáñez et al (2024)

The effect of baryons - matter: S_{mm} = P_{mm,hydro} / P_{mm,dmo}

The effect of baryons - gm cross spectrum

The effect of baryons - gm cross spectrum

$$R = S_{gm} / \sqrt{S_{mm}}$$

Hybrid model valid up to $k \sim 1 h/Mpc$

1% accuracy on these scales

MZ et al, in prep

The effect of baryons

Ignore baryons in Pgm:

- still good fits
- bias parameters different from fiducial ones

Include baryons (fixed to best fits):

- recover fiducial bias params

Include baryons (free):

- recover fiducial bias params
- larger contours (more free params)

MZ et al, in prep

The effect of baryons - free cosmology

For all baryon models, including baryons in the P_{gm} model, **unbiased** cosmological parameters

MZ et al, in prep

Conclusions

Hybrid Lagrangian bias model:

- percent-level accuracy for galaxy clustering up to k=0.7 h/Mpc
- fast emulator to predict P_{gg} and P_{gm} for LCDM + neutrinos + $w_0 w_a$ priors on galaxy bias parameters
- very promising for 3x2points analysis

- Effect of baryons on P_{gm}:
 can be captured by galaxy bias, but inconsistently
 - matter power spectrum suppression is a good approximation (1% accurate) on interesting scales (k < 1 h/Mpc)
 - unbiased cosmological parameters

baccoemu: a full suite of emulators

Nonlinear matter power spectrum

Baryon Correction Model (BCM)

Nonlinear templates for hybrid Lagrangian bias expansion in real space

Nonlinear templates for hybrid Lagrangian **bias** expansion in **redshift space**

Galaxy clustering from SHAMe models

Linear matter power spectrum (tot matter)

Linear matter power spectrum (cdm+b)

Linear matter power spectrum with **smeared BAO** (cdm+b) in real and redshift space

Linear matter power spectrum **dewiggled** (cdm+b)

2LPT templates for hybrid Lagrangian **bias** expansion is real and redshift space

As -> $\sigma_{8,cold'} \sigma_{8,tot'} \sigma_{12,cold'} \sigma_{12,tot}$

https://bacco.dipc.org/emulator.html

- $k_{\text{max}} = 0.40 \text{Mpc}^{-1}, N_{\text{dof}} = 308, \chi^2 = 4.31$ - $k_{\text{max}} = 0.30 \text{Mpc}^{-1}, N_{\text{dof}} = 228, \chi^2 = 1.95$ - $k_{\text{max}} = 0.15 \text{Mpc}^{-1}, N_{\text{dof}} = 108, \chi^2 = 0.22$

Work in progress:

2x2point (and **3x2point** when combined with matter power spectrum + baryons emulator)

Reanalysis of current **weak lensing surveys** with nonlinear bias to small scales

One random realization

• original simulation with outputs at different redshifts

time

- original simulation with outputs at different redshifts
- target cosmology at a given redshift

- original simulation with outputs at different redshifts
- target cosmology at a given redshift
- match the linear variance of the two cosmologies and get
 - a time transformation (this selects an output of the original simulation)

time

- original simulation with outputs at different redshifts
- target cosmology at a given redshift
- match the linear variance of the two cosmologies and get
 - a time transformation (this selects an output of the original simulation)
 - a space transformation (this shrinks or expands the box)
- then apply **other corrections** to make the rescaling more accurate (bulk flow velocities, virialised object velocities, match large scales...)

Matching the linear variance

• Minimize (any cost function will do)

$$\delta_{\rm rms}^2(s, z_*) \equiv \frac{1}{\ln(R_2/R_1)} \int_{R_1}^{R_2} \frac{{\rm d}R}{R} \left[1 - \frac{\sigma(\underline{s}^{-1}R, \underline{z}_*)}{\sigma'(R, z_{\rm t})} \right]^2$$

• which $\sigma(R, z)$? cdm+baryons

$$\sigma^{2}(R,z) = \int_{0}^{\infty} \frac{k^{2} \mathrm{d}k}{2\pi^{2}} W^{2}(kR) D_{\mathrm{cold}}^{2}(k,z) P_{0}(k)$$

Matching the predicted cold matter P(k)

Only σ₈ matching leaves spurious structure in the P(k) shape

• Large-scale correction essential

Large-scale correction

- Matching $\sigma(R, z)$ reproduces well the clustering on **mildly-nonlinear** to **nonlinear** scales
- Spurious contribution of long wavelength modes: **subtract** and **add** back with a displacement field

$$oldsymbol{x}' = oldsymbol{x} - oldsymbol{\Psi}_{ ext{original}} + oldsymbol{\Psi}_{ ext{target}}
onumber \ oldsymbol{\Psi} = ext{i} ext{FT} \left[-i rac{oldsymbol{k}}{k^2} \delta(oldsymbol{k})
ight]$$

• Same for velocities, using the large-scale limit of the scale dependent growth rate f(k)

$$oldsymbol{v}' = oldsymbol{v} - (aHfoldsymbol{\Psi})_{ ext{original}} + (aHfoldsymbol{\Psi})_{ ext{target}}$$

Concentration correction

- Ludlow et al (2016) using $\boldsymbol{\Omega}_{cold}$ instead of $\boldsymbol{\Omega}_{m}$
- At a fixed time and halo mass, higher neutrino mass means less concentrated halo

Concentration correction

... yeah but, is Ludlow+16 a good description of the c-M relation with neutrinos? Lopez-Cano et al (2023)

- Ludlow et al (2016) using $\boldsymbol{\Omega}_{cold}$ instead of $\boldsymbol{\Omega}_{m}$
- At a fixed time and halo mass, higher neutrino mass means less concentrated halo

Concentration correction

- Compute **halo-by-halo** displacement field
- Displacement computed from difference of **theoretical NFW** profiles
- Applied to actual in-halo particles
 - No profile is 'forced'
 - Keep triaxiality of halo

Velocities of virialised particles in haloes

Correct particles inside haloes to guarantee they are virilised even with the new halo mass and radius

$$oldsymbol{v}_{
m in-halo}' = \sqrt{rac{a\Omega_{
m cold}'}{a'\Omega_{
m cold}}}rac{h'}{h}soldsymbol{v}_{
m in-halo}$$

primed = target cosmology non-primed = original cosmology