

U.S. Department of Energy Office of Science

New DESI Y1 results

Astroparticle Symposium Institut Pascal - 22/11/2024

Eric Armengaud - CEA Saclay

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

DESI 2024 I: Data Release 1 of the Dark Energy Spectroscopic Instrument

DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics

arxiv:2411.12020

DESI 2024

April 4, 2024

Nov. 19, 2024

https://www.youtube.com/watch?v=-2mIU-YzEbw

arxiv:2411.12021

DESI 2024 VI: osmological Constraints om the Measurements of yon Acoustic Oscillations

alyses

- DESI 2024 Cosmology Results from the Power Spectrum's Full...

The DESI instrument

10 spectrographs

DESI main survey

Five target classes

~40 million redshifts

in 5 years

 $\begin{array}{ll} \textbf{3 million QSOs} \\ \textbf{Ly-} \alpha & z > 2.1 \\ \textbf{Tracers } 0.9 < z < 2.1 \end{array}$

16 million ELGs 0.6 < z < 1.6

8 million LRGs 0.4 < z < 1.0

13.5 millionBGSBrightest galaxies0.0 < z < 0.4

14 000 deg² footprint

Matching fibers to targets from imaging

www.legacysurvey.org

- + Legacy Surveys DR9 images
- + Older Legacy Surveys
- + OunWISE W1/W2 NEO7
- + More surveys
- Overlays
- + Boundaries
- + Imaging catalogs
- + Spectroscopy
- **DESI** Footprint
- **DESI** Fibers
- **DESI EDR tiles**
- **V**DESI EDR spectra
- DESI Dark-time Targets (DR9/Main)
- DESI Bright-time Targets (DR9/Main)
- DESI Dark-time Secondary Targets (DR9/Ma
- DESI Bright-time Secondary Targets (DR9/N
- DESI Dark-time Targets (DR9/SV3)
- DESI Bright-time Targets (DR9/SV3)
- DESI Dark-time Secondary Targets (DR9/SV
- DESI Bright-time Secondary Targets (DR9/S
- DESI Dark-time Targets (DR9/SV1)
- DESI Bright-time Targets (DR9/SV1)
- DESI Dark-time Secondary Targets (DR9/SV
- DESI Bright-time Secondary Targets (DR9/S
- + Bright Objects

... and getting spectra

DESI Y1 sample

a tile ~ a sky pointing, with associated set of targets

number of overlapping dark time tiles

U.S. Department of Energy Office of Science

DESIY1 sample

# of good z	z range	Area [deg ²]	C_{assign}	z succ. %
300,043	0.1 < z < 0.4	7473	63.6%	98.9%
2,138,627	0.4 < z < 1.1	5740	69.3%	99.1%
$2,\!432,\!072$	0.8 < z < 1.6	5924	35.2%	72.7%
1,223,391	0.8 < z < 3.5	7249	87.4%	66.8%
856, 831	0.8 < z < 2.1	7249	87.4%	66.8%

From BAO to "Full shape"

U.S. Department of Energy Office of Science

(a) Compress correlations to BAO's α_{I} , α_{\perp} (+ reconstruction: BAO results)

- (b) Compress power spectra, using ShapeFit scheme
- (c) Directly fit power spectra ("Full modelling") Baseline Nov papers
 - in (b) and (c) combine with $\alpha_{\mathbb{I}}$, α_{\perp} from reconstructed BAO

April papers

U.S. Department of Energy Office of Science

Combined DESI Y1 BAO-only result

U.S. Department of Energy Office of Science

Combined DESI Y1 BAO-only result

- U.S. Department of Energy Office of Science
 - Resonant absorption of QSO's light by neutral • hydrogen HI in the intergalactic medium

 $\lambda_{\rm abs} = 1215.17 \,\text{\AA} \times (1 + z_{\rm HI})$

- tracer of mild density fluctuations in the • cosmic web, at z > 2
- **DESI Y1** sample: •
 - 420,000 Lya QSO (60/deg², x2 wrt 20 years of SDSS)
 - low SNR •
 - contaminations: atmospheric skylines, metals, quasar's continuum etc.

Herrera-Alcantar et al., arxiv:2401.00303

Lyman- α spatial correlations

Modelling the measured Lya correlations

U.S. Department of Energy Office of Science

Modelling the measured Lya correlations

U.S. Department of Energy Office of Science _

Correlation function = Fourier[**power spectrum**]

 $P(k,\mu) \sim b^2 (1+\beta\mu^2)^2 P_{\rm lin}(k,\mu) F_{\rm NL}(k,\mu)$ linear bias + RSD includes BAO

non-linear corrections (from hydrodynamical simulations)

Modelling the measured Lya correlations

Contaminants included in the model

- impact of QSO continuum ullet
- high-column density and metal • absorbers:

$$r_{\parallel} = \frac{c \,\lambda_{\rm obs}}{H(z)} \left| \frac{1}{\lambda_{\rm Lya}} - \frac{1}{\lambda_{\rm metal}} \right|$$

Correlated noise from sky subtraction • [Guy et al. arxiv:2404.03003]

.....

physical model fit + broadband polynomial

Measured correlation function

+ Correlation between Lya forest and quasar's positions

Lyman- α BAO : pre-unblinding validation

U.S. Department of Energy Office of Science

- Validation with mocks (synthetic data): recover unbiased BAO parameters, good understanding of statistical uncertainties
- Data splits on the blinded data set:
 - LyaxLya vs LyaxQSO
 - Lya region A vs region B
 - North vs South
 - high/low SNR in QSO spectra
 - large/weak CIV equivalent width in QSO spectra

Variations in the analysis

Lyman- α BAO : pre-unblinding validation

U.S. Department of Energy Office of Science

- Validation with mocks (synthetic data): recover • unbiased BAO parameters, good understanding of statistical uncertainties
- **Data splits** on the blinded data set: •
 - LyaxLya vs LyaxQSO
 - Lya region A vs region B •
 - North vs South •
 - high/low SNR in QSO spectra •
 - large/weak CIV equivalent width in QSO spectra •

Variations in the analysis •

Cuceu et al., arxiv:2404.03004

Lyman- α BAO : pre-unblinding validation

U.S. Department of Energy Office of Science

Variations in the analysis

$$\alpha_{\parallel} = \frac{D_H(z_{\text{eff}})/r_d}{[D_H(z_{\text{eff}})/r_d]_{\text{fid}}} = 0.989 \pm 0.020$$
$$\alpha_{\perp} = \frac{D_M(z_{\text{eff}})/r_d}{[D_M(z_{\text{eff}})/r_d]_{\text{fid}}} = 1.013 \pm 0.024$$

1.1% precision measurement of the isotropic BAO scale at z=2.33

DESI Collaboration, arxiv:2404.03001

Lyman- α forest: unblinded BAO result

- "Full-shape": AP and linear growth measurements at z~2.4
- 1D flux power spectrum
- Small scale 3D power spectrum (M-L. • Abdul Karim, arxiv:2310.09116)
- Cross-correlation with CMB lensing
- and others... eg. protocluster searches, cross with 21cm...

Much more Lyman-alpha with DESI

NEW result: galaxy power spectrum measurements

U.S. Department of Energy Office of Science

Full-shape analysis

Blind catalogs:

- change overall z-to-distance (same as BAO)
- change RSD using reconstruction
- Additional blinding of weights for f_{NL} (Chaussidon in prep.)

Power spectrum estimator:

- only monopole and quadrupole
- 0.02 < k < 0.2 h/Mpc
- window functions from randoms
- theta-cut (M. Pinon, arxiv:2406.04804)
- mock-based covariance + systematics included at the data vector level

Modelling: Effective field theory

- 3 biases, 2+2 counter-terms/stochastic-terms
- Stochastic terms to include small-scale galaxy physics
- Implementation: velocileptors (Eulerian version)

MCMC fits

- Some "projection effects", no result shown when eg the MAP is outside the bayesian contours

Full-shape analysis

Cosmological parameters (FM)	Priors
$\omega_{ m cdm}$	$\mathcal{U}[0.01,\!0.99]$
$\omega_{ m b}$	$\mathcal{N}[0.02218, 0.00055^2]$
h	$\mathcal{U}[0.2,1]$
$\ln(10^{10}A_s)$	${\cal U}[1.61, 3.91]$
n_s	$\mathcal{N}[0.9649, 0.042^2]$
Non-cosmological parameters	Priors
$(1+b_1)\sigma_8$	$\mathcal{U}[0,3]$
$b_2\sigma_8^2$	$\mathcal{N}[0,5^2]$
$b_s\sigma_8^2$	$\mathcal{N}[0,5^2]$
α_0	$\mathcal{N}[0, 12.5^2]$
$lpha_2$	$\mathcal{N}[0, 12.5^2]$
SN_0	$\mathcal{N}[0,2^2] imes 1/ar{n}_g$
SN_2	$\mathcal{N}[0, 5^2] \times f_{\mathrm{sat}} \sigma_{1\mathrm{eff}}^2 / \bar{n}$
	$\begin{array}{c} \text{Cosmological parameters (FM)} \\ & \omega_{\text{cdm}} \\ & \omega_{\text{b}} \\ & h \\ & \ln(10^{10}A_s) \\ \hline n_s \\ n$

Full-shape analysis: systematics budget

U.S. Department of Energy Office of Science

Systematic	Methodology	Contribution	
		(units of σ DR1)	
Theoretical	Comparison between 4 EFT models	not detected for DR1	
	$k_{ m max} = 0.20 \ h { m Mpc}^{-1}$	(< 0.1)	
Observational			
a. Imaging	Imaging weights per tracer, mode removal	$\sim 0.2 \; (\mathrm{ELG}, \mathrm{QSO})$	
	and polynomial correction (ELG, QSO)	< 0.1 (BGS, LRG)	
b. Spectroscopic	Tested with mocks and	< 0.2 (ELG)	
	repeated observations	< 0.1 (BGS, LRG, QSO)	
c. Fiber	θ -cut method tested on mocks	~ 0.2	
assignment	with and without fibre-assignment		
HOD+PWE	Varying HOD in Abacus-1 cubic	HOD: ~ 0.3 (Table 2 of [101])	
	and DR1-like mocks	PWE: ~ 0.2	
Fiducial	Varying catalogue cosmology	< 0.2 (FM, SF)	
cosmology	Varying catalogue and template cosmology		
Covariances	Based on comparisons between analytic and	< 0.2	
	mock covariances, rescaling factor		
Total	All contributions above 0.2σ of DR1	~ 0.46 (FM, SF)	
	error are added in quadrature		

DESI Y1 BAO consistent with:

- SDSS BAO (eBOSS 2020) •
- CMB (primary: Planck 2018; lensing: Planck ٠ PR4 + ACT DR6)

DESI and CMB are consistent at 1.9 σ -level

Cosmology result: BAO-only in ACDM

DESI Y1 BAO consistent with:

- SDSS BAO (eBOSS 2020) •
- CMB (primary: Planck 2018; lensing: Planck • PR4 + ACT DR6)

DESI and CMB are consistent at 1.9 σ -level

Cosmology result: BAO-only in ACDM

U.S. Department of Energy Office of Science

Consistent results between all tracers

DESI Y1 Full-shape + BAO fit in ACDM

3	1

U.S. Department of Energy Office of Science

DESI Y1 Full-shape + BAO fit in ACDM

Dark energy with constant EoS: compatible with w=-1

The previous conclusion changes when considering a timevarying equation of state:

 $w(z) = w_0 + \frac{z}{1+z}w_a$ (CPL parametrization)

- DESI BAO alone has poor constraining power •
- **DESI + CMB** \rightarrow 2.6 σ •

Dark energy: DESI BAO + external

Dark energy with constant EoS: compatible with w=-1

The previous conclusion changes when considering a timevarying equation of state:

 $w(z) = w_0 + \frac{z}{1+z}w_a$ (CPL parametrization)

- DESI BAO alone has poor constraining power •
- $DESI + CMB \implies 2.6 \sigma$ •
- **DESI + CMB +** <u>supernovae</u> \implies from 2.5 σ to • 3.9 σ , depending on the considered SN sample

$$w_0 > -1$$
, $w_a < 0$ favored

Dark energy: DESI BAO + external

 w_0

Dark energy with constant EoS: compatible with w=-1

The previous conclusion changes when considering a timevarying equation of state:

 $w(z) = w_0 + \frac{z}{1+z}w_a$ (CPL parametrization)

- DESI BAO alone has poor constraining power •
- $DESI + CMB \implies 2.6 \sigma$ •
- **DESI + CMB +** <u>supernovae</u> \implies from 2.5 σ to • **3.9** σ , depending on the considered SN sample

$$w_0 > -1$$
, $w_a < 0$ favored

Dark energy: DESI BAO + external

U.S. Department of Energy Office of Science

error bars slightly reduced significances almost unchanged

Dark energy: adding DESI Full-shape

CMB measurements are sensitive to Σm_{ν} But internal degeneracies limiting its precision BAO helps break degeneracies (through H_0 / Ω_m) 95% CI limits:

> $\sum m_{\nu} < 0.21 \,\mathrm{eV}$ CMB alone, ACDM

The sum of neutrino masses: CMB + DESI BAO

CMB measurements are sensitive to Σm_{ν} But internal degeneracies limiting its precision BAO helps break degeneracies (through H₀ / Ω_m) 95% CI limits:

$$\sum m_{\nu} < 0.21 \,\mathrm{eV}$$

CMB alone, ACDM

 $m_{\nu} < 72 \,\mathrm{meV}$

CMB + DESI BAO, **ACDM**

(as in DESI 2024 VI paper: Planck 2018, ACT likelihood v1.1)

driven by the "1.9 σ consistency" between DESI and CMB within Λ CDM

The sum of neutrino masses: CMB + DESI BAO

Neutrino mass information from Full-shape

U.S. Department of Energy Office of Science

INSTRUMENT

wrt DESI 2024 VI paper:

DESI Full-shape + ACT likelihood v1.2 + (LoLLiPoP+HiLLiPoP)

Updated bounds on neutrino mass (CMB + DESI BAO + Full shape)

		0.65
Growth of structure		0.6
measurement:		0.55
(relative intensity of quadrupole)		0.5
	(R	0.45
using ShapeFit compression	fσ ₈ (;	0.4
scheme		0.35
		0.3
		0.25
		0.2

"New DESI Results Weigh In On Gravity "

Model of modified gravity connected to late-time cosmic acceleration:

$$k^{2}\Psi = -4\pi G a^{2}\mu(a,k)\Sigma_{i}\rho_{i}\Delta_{i}$$
$$k^{2}(\Phi + \Psi) = -8\pi G a^{2}\Sigma(a,k)\Sigma_{i}\rho_{i}\Delta_{i}$$

$$\mu(a) = 1 + \mu_0 rac{\Omega_{ ext{DE}}(a)}{\Omega_\Lambda}, \qquad \Sigma(a) = 1 + \Sigma_0 rac{\Omega_{ ext{DE}}(a)}{\Omega_\Lambda}$$

 $\mu_0 = 0.11^{+0.44}_{-0.54}$ (DESI (FS+BAO)+BBN+ n_{s10})

"New DESI Results Weigh In On Gravity "

- Adding Full-shape information to BAO: •
 - sensitivity to growth of structures •
 - favors σ_8 , S₈ consistent with Planck •
 - neutrino mass from structure growth •
 - modified gravity μ_0 parameter consistent with GR •
- ٠

https://data.desi.lbl.gov/doc/papers/

What's next?

- •
- data release next year ("DESI 2024 I") •
- Year-3 data collection completed last Spring, BAO analysis ongoing

No major change / confirm earlier DESI BAO findings (dynamical dark energy, sum of neutrino masses)

Many additional results on Y1 data: f_{NL}, Lyman-alpha small-scale power spectra, cross-correlations...

