Gamma-ray measurement of the cosmic optical and infrared backgrounds

Lucas Gréaux, J. Biteau, M. Nievas-Rosillo AstroParticle Symposium – 13.11.24

RUHR UNIVERSITÄT BOCHUM

RUB 。

[°] The panchromatic EBL: ~2023

Specific intensity:

$$\nu I_{\nu} = rac{c}{4\pi} \epsilon^2 \, rac{\partial n}{\partial \epsilon}$$

Dominated by the cosmic optical background (COB) and the cosmic infrared background (CIB)

Extragalactic Background Light, EBL

The extragalactic spectrum of the Universe

Specific intensity:

$$u I_{
u} = rac{c}{4\pi} \epsilon^2 rac{\partial n}{\partial \epsilon}$$

Dominated by the cosmic optical background (COB) and the cosmic infrared background (CIB)

Extragalactic Background Light, EBL

° Contribution from stars in galaxies

Light from stars:

- ⇒ Escaping the host, optical contribution
 - ⇒ Absorbed by dust, reemitted in infrared

Contribution from accretion on supermassive black holes

Active galactic nucleus, AGN

Compact region at galaxy center **outshining the host**

Thermal emission from accretion disk, X-rays from non-thermal processes

[°] Contribution from relativistic jets

Some AGNs harbor relativistic jets

Typical jet spectrum show two components, synchrotron component at low energies, inverse Compton component in γ -rays

EBL measurements from galaxy counts

Main EBL component: IGL, integrated galactic light

Measured from deep field galaxy counts

X Only resolved galaxies

➡ Potential diffuse, non-IGL components?

- Intra-halo light (5-30% of EBL)
- Sources of **reionization** $(0.1 - 0.8 \text{ nW m}^{-2} \text{ sr}^{-1})$
- Low surface brightness galaxies
- Exotic processes

 $\nu I_{\nu}^{\rm EBL} = \nu I_{\nu}^{\rm IGL} \times (1 + f_{\rm diff})$

Ο

$^{\circ}$ The problem of foregrounds

Direct measurements: EBL from remaining light after **subtraction of foregrounds**

Zodiacal light:

Sunlight scattered on Solar System dust

X Outshines the EBL by more than an order of magnitude

EBL measurement from New Horizons

New Horizons probe: Direct EBL measurement from beyond Pluto's orbit

- Agreement with IGL (galaxy counts)
- X Only at 600nm (400-900nm)

Outline of the presentation

Principles of γ -ray astronomy and γ -ray cosmology

The γ -ray sky and its interaction with the EBL

C A new EBL measurements from γ -ray cosmology From an era of discovery to an era of precision

Perspectives for the Cherenkov Telescope Array Observatory

What could future results look like?

Outline of the presentation

$lacksymbol{0}lacksymbol{1}$ Principles of γ -ray astronomy and γ -ray cosmology

The γ -ray sky and its interaction with the EBL

O2 A new EBL measurements from γ -ray cosmology From an era of discovery to an era of precision

Perspectives for the Cherenkov Telescope Array Observatory What could future results look like?

Gamma-ray propagation

Tev y-rays

EBL photons

 γ -rays can pair-create by interacting with EBL (Breit-Wheeler process) $\gamma + \gamma_{\rm EBL} \rightarrow e^+ + e^-$

Pair creation **threshold:** $E_{\gamma}^{\prime}\epsilon^{\prime}\geq rac{2m_{e}^{2}c^{4}}{u}$

Gamma-ray propagation

Tev y-rays

EBL photons

Potential to probe IGMF, plasma in voids, exotic physics (ALP, LIV)

 γ -rays can pair-create by interacting with EBL (Breit-Wheeler process) $\gamma + \gamma_{\rm EBL} \rightarrow e^+ + e^-$

Pair creation **threshold:** $E_{\gamma}'\epsilon' \geq rac{2m_e^2c^4}{\mu}$

Lucas Gréaux

Gamma-ray cosmology

Optical depth τ , with **EBL transparency** $e^{-\tau}$

seen by γ -rays $\propto 1/H_0$ EBL density $\tau(E_{\gamma}, z_0) = \int_0^{z_0} dz \frac{\partial L}{\partial z}(z) \int_0^{\infty} d\varepsilon \frac{\partial n}{\partial \varepsilon}(\varepsilon, z)$ $\int_{-1}^1 d\mu \frac{1-\mu}{2} \sigma_{\gamma\gamma}(E_{\gamma}(1+z), \varepsilon, \mu)$ $\overline{\gamma\gamma}$ cross-section

TeV
$$\gamma$$
-ray suppression: $\Phi_{\rm obs} = \Phi_{\rm int} \times e^{-\tau}$ observed emitted

Ο

Simplified emissions from relativistic jets

Synchrotron radiation

- ⇒ Ultrarelativistic **electrons** ($\gamma \ge 10^3$) in **magnetic field**
- ⇒ Peaking in UV / X-rays, **E**_{sp}
- ⇒ **Power-law** spectrum at 1st order

Inverse Compton (leptonic scenario)

- ➡ Ultrarelativistic electrons upscattering synchrotron photon, Synchrotron self-Compton
- \Rightarrow Peaking in γ -rays, E_{cp}
- ⇒ **Power-law** spectrum at 1st order

Observed extragalactic sources of γ -rays

Blazars: AGNs with **jets** aligned with the **line of sight**

- ➡ Relativistic beaming, boosted bolometric luminosity, very bright objects
- ⇒ **Highly variable** (down to minute)

High energy (HE): 0.1 - 300 GeV

- ⇒ Satellite (*Fermi*-LAT)
- \Rightarrow Regular, full sky observations

Very-high energy (VHE): 0.1 - 300 TeV

- \Rightarrow Ground based telescopes
- ➡ Pointed observations

Ο

Gamma-ray astronomy at VHE

Ο

The current generation of IACTs

Frequentist modelling of intrinsic spectra

Expected spectral shape

Power law, with or without **curvature**, with or without exponential **cutoff**

Frequentist framework

- With fixed EBL parameters, find best set of spectral shapes
- With given spectral shapes, find best EBL parameters
- 3. Repeat until convergence
- × Arbitrary model selection criterion for the spectral shapes (e.g. $\geq 2\sigma$)
- X Uncertainties on spectral shape are not propagated on EBL uncertainties

EBL measurements from gamma-ray cosmology

γ -ray cosmology:

Reconstruct EBL using the **absorption imprint** on TeV spectra

$$\Phi_{\rm obs} = \Phi_{\rm int} \times e^{-\tau}$$

EBL measurements from gamma-ray cosmology

γ -ray cosmology:

Reconstruct EBL using the **absorption imprint** on TeV spectra

✓ Agreement with IGL

EBL measurements from gamma-ray cosmology

γ -ray cosmology:

Reconstruct EBL using the **absorption imprint** on TeV spectra

- ✓ Agreement with **IGL**
- X Lacking precision

Non-IGL contributions to the EBL not sufficiently constrained

Outline of the presentation

Principles of γ -ray astronomy and γ -ray cosmology The γ -ray sky and its interaction with the EBL

C A new EBL measurements from γ -ray cosmology From an era of discovery to an era of precision

Perspectives for the Cherenkov Telescope Array Observatory What could future results look like?

STeVECat, the Spectral TeV Extragalactic Catalog

Most comprehensive catalog to date of archival spectra published by current IACTs

⇒ 403 spectra from 78 sources

Lucas Gréaux, a,* Jonathan Biteau, a Tarek Hassan, b Olivier Hervet, c Mireia Nievas Rosillo d,e and David A. Williams c

Lucas Gréaux

Collecting data for STeVECat

List of **extragalactic spectra** from **articles appearing in TeVCat**

Extracted corresponding spectra from:

- ⇒ Existing catalogs: GammaCat, VTSCat
- ➡ Public repositories of IACTs
- ➡ Data from journal articles
- ⇒ Emails with corresponding authors
- ⇒ **Digitization** of the figures

Literature completeness checked with analysis of articles' number of authors

TeV appraisal of EBL models at z < 1

Empirical models: Galaxy-counts, redshift distributions, luminosity functions

Phenomenological models: History of star formation, stellar evolution

A priori models:

N-bodies / hydrodynamical simulations of universe evolution

Best match with direct & IGL:

- ⇒ Saldana-Lopez+ '21
- ➡ Gilmore+'12
- ➡ Andrews+ '18

Ο

Impact on reconstructed TeV spectra

Comparison between the EBL models

Work with **linear combination** between the models of interest:

 $\Rightarrow \quad \begin{array}{l} \text{Weight parameter } \mu: \\ \tau_{\mu} = (1-\mu) \star \tau_1 + \mu \star \tau_2 \end{array}$

Gilmore+ '12 favored at more than 3σ by gamma-ray observations wrt Andrews+ '18 & Saldana-Lopez+ '21

⇒ **Paper in preparation** (see Antonio's talk)

Comparison between the EBL models

[°] 1st improvement - Updated data sample

TeV data from STeVECat:

- At least **4 points**
- Sources with known redshift > 0.01
- \Rightarrow 268 spectra (86 for B&W'15), z < 1
- GeV data from Fermi-LAT
 - \circ $% \ensuremath{\mathsf{Contemporaneous}}$ to TeV
 - Analysis assuming **curvature**
 - **Used as priors** for spectral index and curvature
- ⇒ 64 spectra with GeV counterpart

Shortcomings of the frequentist analysis

Expected spectral shape

Chosen between **power law**, with/without **curvature**, with/without exp. **cutoff**

- X Arbitrary model selection criterion
- X Uncertainties on spectral shape are not propagated on EBL uncertainties

Lucas Gréaux

Ο

[°] 2nd improvement - The Bayesian Framework as an answer

Expected spectral shape

All spectra modeled with log parabola with exponential cutoff (ELP)

Bayesian framework

$$\frac{\mathbf{Pr}(a|\mathcal{D})}{\mathbf{Posterior}} = \frac{\frac{\mathbf{Pr}(\mathcal{D}|a)\mathbf{Pr}(a)|_{\mathsf{Prior}}}{\int \mathrm{d}a \, \mathbf{Pr}(\mathcal{D}|a)\mathbf{Pr}(a)}$$

Compute the **full probability distribution** and **marginalize** over spectral parameters Parameters: a EBL, 0 spectral

$$egin{aligned} \phi_{ ext{ELP}}(E, \Theta) &= \phi_0igg(rac{E}{E_0}igg)^{-lpha-eta\logigg(rac{E}{E_0}igg)}e^{-\lambda E} \ \phi_{ ext{m}}(E, z, \Theta, a) &= \phi_{ ext{ELP}}(E, \Theta) imes e^{- au_{ ext{m}}(E, z, a)} \end{aligned}$$

Marginalization: $\mathbf{Pr}(\boldsymbol{a}|\mathcal{D}) = \int \mathrm{d}\Theta \, \mathbf{Pr}(\boldsymbol{a}, \Theta|\mathcal{D})$

- Removed arbitrary selection criterion
- ✓ Inclusion of nuisance parameters: energy-scale bias, ε

Ο

2nd improvement - Implementing the framework

Sample the posterior distribution using Markov chains Monte Carlo using uninformative priors

X Heavy computation time, $O(n^3)$

Reworked the problem to analytically and numerically **decrease complexity**

✓ Computation time in O(n)

```
Reduction by factor \sim70 000 (n = 268 spectra)
```


[°] Spectrum and evolution decoupling

Assume **decoupling** between **EBL spectrum** and **EBL evolution**

$$\mathrm{d} \epsilon rac{\partial n}{\partial \epsilon}(\epsilon,z) = \mathrm{d} \epsilon_0 rac{\partial n}{\partial \epsilon_0}(\epsilon_0,0) imes evol(z)
onumber \ evol(z) = (1+z)^{3-f_{\mathrm{evol}}}$$

Optical depth computed as convolution of specific intensity and EBL kernel

$$au(E,z) = rac{3\pi\sigma_T}{H_0} imes rac{E}{m_e^2 c^4} imes
u I_
u \otimes K_z \left(\ln rac{E}{m_e c^2}
ight)$$

Impact on the EBL transparency

[°] 3rd improvement - Model independent EBL parametrization

Parametric EBL model:

$$u I_
u(l,z,oldsymbol{a}) = \sum_{i=1}^8 oldsymbol{a}_i \
u I_
u^i imes (1+z)^{4-f_{ ext{evol}}}$$

- Sum of 8 Gaussians: fixed widths & positions, free amplitudes a_i
- ➡ Redshift evolution with free nuisance parameter f_{evol}

First fully model-independent γ -ray reconstruction of the EBL

A new Bayesian measurement of the EBL

γ-ray cosmo measurement obtained from

- ➡ Improved TeV data sample, STeVECat
- ➡ Updated analysis paradigm, Bayesian
- ➡ Model independent parameterization

➡ Gréaux+ '24

Reliability of the reconstruction

Reliability cross-checks:

- Parameterized EBL
 redshift evolution
- Nuisance parameter on energy scale
- Variation of the reconstruction method
- Assumption on GeV-TeV spectral correlation
- Bias from highest energy flux point
- / Negligible impact

A new Bayesian measurement of the EBL

 γ -ray cosmo measurement

- ⇒ Between 1 and 50µm: ±1.3 nW m⁻² sr⁻¹
- Agreement with B&W'15
- ✓ Reduced uncertainties
- Syst. uncertainties underestimated by previous analyses
 - / Agreement with NH
- ✓ Indistinguishable from
 galaxy counts

[°] The cosmological optical convergence

Residual intensity wrt galaxy counts

> Over whole range: 0.7 ± 0.5 nW m⁻² sr⁻¹

$$\nu I_{\nu}^{\rm EBL} = \nu I_{\nu}^{\rm IGL} \times (1 + f_{\rm diff})$$

➡ Exclusion of diffuse components
f_{diff} ≤ 20% at 95% C.L.

Constraints on diffuse contributions

- ✓ Intra-halo light, 5-30% of IGL
- × Reionization contribution, ~ 0.1-1 nW m⁻² sr⁻¹ at 1.1 μ m

Outline of the presentation

Principles of γ -ray astronomy and γ -ray cosmology The γ -ray sky and its interaction with the EBL

O2 A new EBL measurements from γ -ray cosmology From an era of discovery to an era of precision

03 Perspectives for the Cherenkov Telescope Array Observatory

What could future results look like?

CTAO, the future generation of instruments

One collaboration observing

of 13 and 51 telescopes

both hemispheres with arrays

CTAO – South Atacama Desert Chile

Credit: CTAO, rendering

[°] Simulating STeVECat seen by CTAO

Sensitivity increased by factor ~10

➡ What could CTAO have seen instead of H.E.S.S., MAGIC, VERITAS?

Simulate **STeVECat** observations with **CTAO's instrument response functions** (prod5 IRFs, α -configuration)

- ⇒ 228 spectra (current IACTs)
- ⇒ ~ 3000 h of simulated livetime
- ✓ Compatible with currently planned CTAO observation program

Redshift evolution of the reconstruction

EBL model: $\tau(E, z, a) = a \times \tau_{ref}(E, z)$ Published work by **CTAO Consortium X** Dominated by systematics

Using the Bayesian framework:

- a = 0.99 ± 0.02 with bias
 0.2% ± 0.7% (10 realisations)
- ✓ Same errors as CTAO Consortium below z < 0.4, ~5%</p>

Improvements:

- ⇒ Systematics can be included (here, energy scale)
- ➡ Fast and scalable, working with spectra instead of event lists

Expectations on EBL seen by CTAO

[°] Expectations on EBL seen by CTAO

Residual intensity with respect to **IGL** / **reference EBL**

Overall bias on the reconstruction: -0.27 ± 0.12 nW m⁻² sr⁻¹

- ✓ Compatible with SL21 (injected EBL model)
- ✓ Validation of the bias on archival data

[°] Hubble constant measurement

 $\frac{\mathbf{\gamma} - \mathbf{ray \ data}}{\tau(E_{\gamma}, z_0)} = \int_0^{z_0} dz \frac{\partial L}{\partial z}(z) \int_0^{\infty} d\varepsilon \frac{\partial n}{\partial \varepsilon}(\varepsilon, z)$ $\int_{-1}^1 d\mu \frac{1 - \mu}{2} \sigma_{\gamma\gamma}(E_{\gamma}(1 + z), \varepsilon, \mu)$

Use the $\gamma\text{-ray}$ & IGL to measure $H_{_{0}}$ independently from CMB, cosmic distance ladder, and GWs

$$H_0 = 67 \pm 7 \text{ km s}^{-1} \text{ Mpc}^{-1} \times (1 + f_{diff})$$

[°] Hubble constant measurement

 $\frac{\mathbf{\gamma} - \mathbf{ray \ data}}{\tau(E_{\gamma}, z_0)} = \int_0^{z_0} dz \frac{\partial L}{\partial z}(z) \int_0^{\infty} d\varepsilon \frac{\partial n}{\partial \varepsilon}(\varepsilon, z)$ $\int_{-1}^1 d\mu \frac{1 - \mu}{2} \sigma_{\gamma\gamma}(E_{\gamma}(1 + z), \varepsilon, \mu)$

Use the $\gamma\text{-ray}$ & IGL to measure $H_{_{0}}$ independently from CMB, cosmic distance ladder, and GWs

Expected **IGL precision of ~1%** from Euclid, JWST, LSST

➡ CTAO measurement of H₀: precision of ~3%?

Conclusion

Ο

 γ -ray cosmology: study the EBL through its interaction with γ -ray

- New EBL measurement: Gréaux+ '24
- ⇒ **Bayesian** framework
 - Marginalize over spectral/nuisance parameters
- \Rightarrow New data corpus, **STeVECat**
 - > Sample size ~tripled wrt previous
- ⇒ Independent from IGL, direct meas., and reference models
 - > Only use γ -ray observations
- Reduced uncertainties with respect to previous γ-ray studies

- EBL from γ-rays indistinguishable
 from IGL: cosmological optical
 convergence
- ➡ Constraint on diffuse components:
 f_{diff} ≤ 20% at 95% C.L.
- $\Rightarrow H_0 = 67 \pm 7 \text{ km s}^{-1} \text{ Mpc}^{-1} \times (1 + f_{\text{diff}})$

IGL precision of ~1% expected for LSST, Euclid, JWST

Reionization contribution expected at $\sim 0.1-0.8$ nW m⁻² sr⁻¹ ($\sim 0.1-0.8\%$ of EBL)

- **A** Next generation of γ instruments, CTAO, with exceptional sensitivity
- ★ Exciting results expected from γ-ray cosmology!