

Advancements in the Hubble Constant Estimation via Gamma-Ray Attenuation

Alberto Domínguez

IPARCOS / Universidad Complutense de Madrid

Astroparticle Symposium @ Institut Pascal, Paris November 2024

Advancements in the Hubble Constant Estimation via Gamma-Ray Attenuation

Alberto Domínguez

IPARCOS / Universidad Complutense de Madrid

See "Why is the sky dark at night? The 200-year history of a question that transformed our understanding of the Universe", The Conversation, June 2023

Astroparticle Symposium @ Institut Pascal, Paris November 2024

Ad Hubble via Ga

he nation Jation

Olber's Paradox

the sky dark at night? The tory of a question that transformed our understanding of the Universe", The Conversation, June 2023

Astroparticle Symposium @ Institut Pascal, Paris November 2024

Electromagnetic Spectrum

Electromagnetic Spectrum

Galaxy Evolution and Cosmology

Cosmic Diffuse Extragalactic Backgrounds

Cosmic Diffuse Extragalactic Backgrounds

Cosmic Diffuse Extragalactic Backgrounds

EBL Measurements (II): Galaxy Counts

EBL Measurements (II): Galaxy Counts

EBL Measurements (III): Models

Theoretical (e.g. Gilmore+ 12; Inoue+ 13)

Observational

Direct galaxy observations (e.g. Franceschini+ 08, Domínguez+ 11, Helgason+ 12, Stecker+ 16, Franceschini+ 17, Saldana-Lopez+ 21) Indirect galaxy observations (e.g. Kneiske+ 02, Kneiske & Dole 10, Finke+ 10, Andrews+ 18, Finke+ 22)

EBL Measurements (III): Models

EBL Measurements (III): Models

Strong divergence

EBL Measurements (III): Saldana-Lopez+ 21

SFR[M_{\odot} yr⁻¹] = 1.07 × 10⁻¹⁰ (3.3 × L(2800) + L(TIR))/L_{\odot},

EBL Measurements (III): Saldana-Lopez+ 21

EBL Measurements (III): Finke+ 22

EBL Measurements (IV): Fermi-LAT

Launch June 11, 2008

- **1. Tracking system:**
 - converts an incident gamma ray to an electron-positron pair
 - reconstructs the gamma-ray direction from the tracks of the pair
- 2. Calorimeter:
 - measures the photon energy
- **3. Anti-coincidence detector:**
 - limits the cosmic-ray background

EBL Measurements (IV): Fermi-LAT

EGRET All-Sky Map Above 100 MeV

Fermi-LAT All-Sky Map Above 1 GeV

2000

EBL Measurements (IV): Fermi-LAT

$$\left|\frac{dN}{dE}\right|_{obs} = \frac{dN}{dE}\Big|_{int} \exp\left[-\tau(E,z)\right]$$

Extragalactic Background Light (Local)

Extragalactic Background Light (Local)

Extragalactic Background Light (Evolution)

EBL models and gamma-ray attenuation data agree within 1sigma in the UV/optical and within 2sigma in the near IR

Optical Depths

Measuring H₀ with Gamma-ray Attenuation

Results on measuring Cosmology with Gamma rays

Comparison on H₀ Measurements

Take Home Messages

 After decades of research, different methodologies such us galaxy counts, EBL models, gamma-ray attenuation data and direct detection techniques are finally converging, at least in the optical, in the estimate of how much light there is in the Universe.

 H0 from gamma-ray attenuation seems to be aligned (although still at low significance) with the methodologies that results in lower values, aka cosmological methodologies.

3) Really compelling synergies between high-energy astrophysics and traditional astronomy.

Cosmology Dependence on the Optical Depth

