

### New measurements of the TeV optical depth for cosmological gamma-ray propagation

September 14th, 2024, Institut Pascal, Astroparticle Symposium 2024 Joshua R. Baxter\* Institute for Cosmic Ray Research (ICRR), University of Tokyo \* joshua28@icrr.u-tokyo.ac.jp, joshuaicrr@gmail.com











On behalf of A. Dominguez<sup>1</sup>, M. Ajello<sup>2</sup>, J. Finke<sup>3</sup>, A. Desai<sup>4</sup>, A. Banerjee<sup>2</sup> 1 Universidad Complutense de Madrid, 2 Clemson University, 3 Naval Research Lab, Washington, 4 NASA Goddard Space Flight Center (GSFC)













# Introduction to Gamma-ray Telescopes

# **Opacity of the Universe**



- Unlike radio waves or visible light, gamma rays are almost entirely "absorbed" through interactions with the atmosphere and do not reach the Earth's surface
- While the atmosphere can be a nuisance in this regard, without it, life as we know it wouldn't have been able to develop on the planet's surface—so we should be grateful for its protection (!)
- If we want to observe gamma rays, we'll have to send a satellite into space











## Gamma-ray Observation from Space: Fermi satellite



- Gamma-ray observation satellite, Fermi satelite
- equipped with two gamma-ray detectors: a large-area telescope (LAT) and a gamma-ray **burst monitor (GBM)**
- detects gamma rays by pair-conversion in the calorimeter
- Energy range: 20 MeV- 300 GeV





### Don't give up on observing gamma rays from the ground just yet! Let's take a look at what happens when very high-energy (VHE) gamma rays enter the atmosphere







### VHE gamma rays interact with the atmosphere and produce an electron-positron pair







### The electron and positron emit gamma rays through bremsstrahlung radiation



![](_page_6_Figure_3.jpeg)

![](_page_6_Picture_4.jpeg)

![](_page_7_Figure_2.jpeg)

- Ionization takes over at the Critical energy= 560 MeV/Z
- Z of air ~ 7 (Mainly Nitrogen)
- So, Critical energy in air is about 560/7=80 MeV
- 1 TeV / 80MeV = 12500 products
- The charged particles produce <u>Cherenkov radiation</u>

The electron and positron emit gamma rays through bremsstrahlung radiation

![](_page_7_Picture_9.jpeg)

![](_page_7_Picture_10.jpeg)

![](_page_8_Figure_2.jpeg)

- The charged particles in the shower are moving faster than the speed of light in air or water (=c/n)
- A moving charge causes atoms to become polarised
- When the particle is moving quickly, the polarization is not symmetrical along the axis of motion, resulting in a pulse of radiation

When VHE gamma rays enter the atmosphere, they trigger an <u>air shower phenomenon</u>

![](_page_8_Picture_7.jpeg)

# Imaging Atmospheric Cherenkov Telescope

- A practical rule of thumb: a 1 TeV air shower typically generates around 100 photons per square meter.
- Suppose we detect pulses in the range of a few hundred millivolts Each photo-electron contributes about 5 mV, so around 100 photoelectrons are involved
- Given that the photomultiplier tube (PMT) has a photon-to-photoelectron conversion efficiency of approximately 20%, this would imply the detection of 100/0.2 = 500 photons
- If we assume the mirrors have an effective area of about  $0.25 \times 0.25$  $\times \pi = 0.2 \text{ m}^2$ , this suggests the shower contains 500/0.2 = 2500 photons per square meter
- From this, we can estimate the energy of the shower to be around 2500/100 = 25 TeV

![](_page_9_Picture_7.jpeg)

The first detection of Cherenkov light from extended air showers was performed by Galbraith and Jelley in 1952

![](_page_9_Picture_9.jpeg)

![](_page_9_Picture_10.jpeg)

## Imaging Atmospheric Cherenkov Telescope

### By observing Cherenkov light, we can indirectly detect cosmic gamma rays

- Gamma rays interact with the atmosphere
  → Cherenkov radiation
- IACT reflects Cherenkov light through a mirror and captures the image with a focal plane camera
- The energy and direction of arrival of the gamma rays are reconstructed from the image information.
- We call our telescope: IACT

![](_page_10_Figure_6.jpeg)

![](_page_11_Picture_0.jpeg)

# Gamma rays and EBL

# Gamma rays and Extragalactic Background Light

We are able to measure the EBL by observing gammarays. How does it work??

![](_page_12_Figure_2.jpeg)

$$\tau_{\gamma\gamma}(E,z_0) = \int_0^{z_0} \Gamma_{\gamma\gamma}^{-1}(E(1+z),z)$$

![](_page_12_Picture_7.jpeg)

# Gamma-rays and Extragalactic Background Light

![](_page_13_Picture_1.jpeg)

- Gamma rays interact with the EBL, resulting in an "attenuation effect" on gamma-ray propagation.
  - Observed attenuated gamma-ray spectrum of blazars retains signatures (or information) of the EBL
  - to as the "gamma-ray horizon"
- something that indeed occurs regularly with IACTs, even if it might seem unusual to those more accustomed to Fermi plots.

![](_page_13_Figure_6.jpeg)

### The information about its propagation is encapsulated in the optical depth. The redshift dependence at which the optical depth $\tau = 1$ is traditionally referred

A minor note: For Fermi, the energy range sensitive to EBL absorption (around O(10 GeV)) falls within a regime where statistical significance is hard to achieve due to limited effective area, placing these measurements at the fringes of Fermi's overall sensitivity. As a result, sources detectable beyond the gamma-ray horizon are exceedingly rare. In contrast, for Imaging Atmospheric Cherenkov Telescopes (IACTs), many more sources are detectable at energies exceeding the gamma-ray horizon, meaning that the term "horizon" does not carry the same observational significance. I once showed a plot at a conference comparing detection energies of an IACT-observed source with the gamma-ray horizon, and a theorist commented, "You're going beyond the horizon!"—

![](_page_13_Picture_11.jpeg)

![](_page_13_Figure_12.jpeg)

![](_page_13_Figure_13.jpeg)

# **EBL** measurements with gamma-ray Observation

When it comes to measuring the EBL through gamma-ray observations, here are the key advantages and disadvantages of this method:

### Pros

✓ No Need to Subtract Intense Backgrounds: Unlike direct observations, gamma-ray measurements do not require subtraction of intense background signals such as Zodiacal Light or Galactic Diffuse emission

✓ Inherent Information on Redshift Evolution: Since blazars are distributed across a wide range of redshifts, the gamma-ray data intrinsically contains information on the evolution of the EBL along the z-direction. However, it's important to note that this information is integrated along the line of sight.

✓ Independence from Direct Observations: This method provides a measurement that is largely independent of direct EBL observations, offering a complementary approach to understanding EBL properties and evolution.

✓ **True "Measurement" Rather Than Bounds**: With modern instruments, gamma-ray observations now allow actual measurements of the EBL, rather than setting upper or lower limits

✓ **Broad Wavelength Coverage with Fermi + IACT**: The combination of Fermi and IACTs enables EBL measurements across a broad wavelength range, from the near-infrared to (roughly spanning from nm to nm).

## **Cons / Difficulties**

### ✓ Modeling the Intrinsic Spectrum:

Since there is no direct way to determine the intrinsic spectrum of blazars, various assumptions often need to be introduced in this part of the analysis: Typically, several empirically validated analytical functions are prepared and tested to establish an intrinsic model

✓ By assuming a healthy electron distribution and Synchrotron Self-Compton (SSC) processes, for instance, it is possible to produce a log-parabola shape at high-energy ranges.

Potential Modifications from External Factors:

The propagation assumptions can be modified by the presence of Axion-like Particles, the Intergalactic Magnetic Field, or Cosmic Voids, all of which could influence the measured results.

✓ **Dependence on EBL Models**: Most methods used in this context are dependent on specific EBL models. However, *Lucas+24* have achieved a breakthrough by applying Bayesian techniques to mitigate this dependence, allowing for more robust EBL measurement free from strict reliance on any particular model—an impressive accomplishment

✓ Challenges from Blazar Variability: Accounting for the variability of blazars is challenging. While a Bayesian algorithm can theoretically segment data based on light curve (LC) characteristics, in practice, this remains a complex issue.

![](_page_14_Picture_18.jpeg)

![](_page_14_Figure_19.jpeg)

![](_page_14_Picture_20.jpeg)

## **Overview: EBL measurements with gammarays**

### **Fermi-LAT**

![](_page_15_Figure_2.jpeg)

GeV

- $\checkmark$  Using around O(100) blazars (FSRQs) and BL Lacs) detected by Fermi, measurements have been made for optical depth, EBL, and star formation rates
- ✓ Each of the current leading IACTs— MAGIC, HESS, and VERITAS—has placed constraints on the EBL using spectra from around O(10) TeV blazars

### **Compilation-based Analysis**

![](_page_15_Figure_8.jpeg)

![](_page_15_Figure_9.jpeg)

![](_page_15_Figure_10.jpeg)

✓ Desai+19 ✓ Biteau&Williams+15  $\checkmark$  Lucas+24

### GeV ~ TeV

## GeV + TeV (+ IGL)

 $\checkmark$  A type of work that involves constructing catalogs from published DL4-level IACT data and using these to measure the EBL. This approach benefits from the strength of large blazar sample statistics

![](_page_15_Figure_16.jpeg)

![](_page_15_Picture_17.jpeg)

![](_page_15_Picture_18.jpeg)

![](_page_15_Picture_19.jpeg)

![](_page_15_Picture_20.jpeg)

## **EBL measurements by Fermi-LAT in 2018**

![](_page_16_Figure_2.jpeg)

- 739 blazars and one gamma-ray burst: spanning from z = 0.03 to z = 3.1
- Reconstructed the evolution of the EBL and determine the star-formation history of the Universe over 90% of cosmic time
  - Star-formation history consistent with independent measurements from galaxy surveys, peaking at redshift z ~ 2

17

### Abdollahi +18

### **EBL measurements by MAGIC collaboration in 2019**

- Combined with Fermi-LAT spectra
  - model-depandent and wavelength-resolved analysis (not purely model-independent)
- 16 blazars (44 spectra in total 0.03 < z < 0.94)</li>
  - 450 hours of observation in total
- Going to be updated by Roger Grau

![](_page_17_Figure_6.jpeg)

![](_page_17_Figure_7.jpeg)

![](_page_17_Picture_8.jpeg)

### EBL measurements by Desai et al. in 2019

![](_page_18_Figure_1.jpeg)

- 38 blazars taken for the dataset
- the first homogeneous measurement of the EBL spectral intensity covering the ultraviolet to infrared wavelengths (~ 0.1- 100µm)
- final EBL measurement.

2 redshift bins for the TeV Optical depth, with GeV optical depth data also incorporated to obtain the

![](_page_18_Figure_7.jpeg)

![](_page_18_Picture_8.jpeg)

New measurements of the TeV optical depth

### **Dataset: STeVECat**

- the Spectral TeV Extragalactic Catalog, which gathers products of IACT observations from 1992 to 2021
- combines observations from 173 journal publications, compared to 72 in the previous reference compilation of extragalactic gamma-ray spectra
- The previous study that used the largest VHE sample was BW15, with 90 spectra from sources with known redshift.
- STeVECat collects 403 spectra from sources with known redshift in total

![](_page_20_Figure_5.jpeg)

58

![](_page_20_Picture_14.jpeg)

![](_page_20_Picture_15.jpeg)

## **Dataset: STeVECat**

![](_page_21_Figure_1.jpeg)

### How to measure the EBL

• Simple approach of doing this is to introduce one single scaling factor  $\alpha$  against optical depth  $\tau(E, z)$ 

$$\left(\frac{d\phi}{dE}\right)_{\text{observed}} = e^{-\alpha\tau(E,z)} \times \left(\frac{d\phi}{dE}\right)_{\text{intrinsic}}$$

Perform the standard fitting through a Maximum Likelihood Method and perform a likelihood ratio test between the hypothesis for which  $\alpha = 1$  and the other hypothesis, for which  $\alpha$  is free (0.2 ~ 2.5),

5. Plot the  $\chi^2_{red}$  distribution and  $\alpha_{best}$  is obtained with  $(+\Delta \alpha_+, -\Delta \alpha_-)$  uncertainty

![](_page_22_Figure_6.jpeg)

![](_page_22_Picture_8.jpeg)

![](_page_22_Picture_9.jpeg)

![](_page_22_Picture_10.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_4.jpeg)

- EBL measurement using profile maximum likelihood method has been performed using STeVECat
- All results are compatible with stateof-the-art EBL models!

![](_page_24_Figure_3.jpeg)

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

| EBL measurement using<br>matable 2.3: EBL de                                       | g profile<br>nsity constraints (be                                           |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| EBL Model                                                                          | Best-fit $\alpha$ (68% C.I.)                                                 |
| Dominguez et al. (2011) els                                                        | $0.91^{+0.05}_{-0.05}$                                                       |
| Finke et al. (2022)                                                                | $1.04\substack{+0.05 \\ -0.05}$                                              |
| Franceschini et al. (2017)                                                         | Finke et al. (202) $96^{+0.05}_{-0.05}$<br>Incue et al. (2012)               |
| Saldana-Lopez et al. (2022)                                                        | Saldana-Lopez et al. $(2022)$<br>Franceschini $0.99 \substack{+0.05\\-0.05}$ |
| Gilmore-fixed et al. (2012)                                                        | $1.03\substack{+0.06 \\ -0.08}$                                              |
| Inoue et al. $(2013)$                                                              | $1.05\substack{+0.12 \\ -0.04}$                                              |
| Kneiske & Dole (2010)                                                              | $1.12\substack{+0.06 \\ -0.05}$                                              |
| 10 <sup>-3</sup> 10 <sup>-2</sup> 10 <sup>-1</sup> 10 <sup>0</sup><br>Energy [TeV] | 10 <sup>1</sup> 10 <sup>2</sup>                                              |

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_3.jpeg)

### Including systematics

- The following two sources of systematic errors were considered:
  - $\checkmark$  Introducing a ±15% variation in the energy scale and evaluating its impact on the EBL scale factor.
  - ✓ Excluding the power-law model from the model selection and assessing its impact on the EBL scale factor

![](_page_26_Figure_4.jpeg)

![](_page_26_Figure_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

### **Results: New EBL measurements using STeVECat**

![](_page_27_Figure_1.jpeg)

|   |   | _   |
|---|---|-----|
|   |   | ٦   |
|   |   |     |
|   |   | -   |
|   |   |     |
|   |   | _   |
|   |   | ٦   |
|   |   |     |
|   |   | ۰   |
|   |   |     |
|   | _ |     |
|   |   | ٦   |
|   |   |     |
|   |   | -   |
|   |   |     |
|   |   | _   |
|   |   | ٦   |
|   |   |     |
|   |   | ٦   |
|   |   |     |
|   |   | _   |
|   |   | _   |
|   |   | - 1 |
|   |   |     |
|   | • | 4   |
|   | - |     |
| • | - |     |
| • | • | -   |
| • | - |     |
| • | • |     |
| • | • | -   |
| • | • | -   |
| • | - | -   |
| • | - | -   |
| • | - | -   |
| • | - | -   |
| - | - |     |
| - | - | -   |
| • | - |     |
| - | - |     |
| - | - |     |
| - | - |     |

![](_page_27_Picture_3.jpeg)

![](_page_27_Picture_4.jpeg)

### **TeV Optical Depth Measurements**

- For each energy and redshift bin, a stacked TS vs scaling factor profile is derived
- In a given energy and redshift bin, the optical depth is determined as the average of the four individual optical depth measurements, each derived using a different EBL model.
  - The uncertainty is set to cover the full range of uncertainties from all four optical depth measurements.
- Redshift bins are chosen such that they contain the same signal strength

![](_page_28_Figure_5.jpeg)

![](_page_28_Figure_6.jpeg)

### **TeV Optical Depth Measurements**

- allowing us to double the resolution in optical depth measurements
- sources within that bin

![](_page_29_Figure_4.jpeg)

# We refined the redshift binning to achieve similar TS values across each bin against Desai et al. 2019,

The representative redshift for each bin was determined by calculating the TS-weighted average of

![](_page_29_Picture_7.jpeg)

![](_page_29_Figure_11.jpeg)

![](_page_29_Picture_19.jpeg)

# **Prospects and Conclusion**

![](_page_31_Picture_0.jpeg)

- On the Fermi-LAT side, work is currently underway in collaboration with Clemson University to update optical depth measurements using the 4FGL catalog and several of the latest EBL models
  - In Abdollahi et al. (2018), approximately 750 blazars were analyzed, but we now plan to use around 1,500 blazars
- Both sides—this work on the TeV range and Fermi's GeV optical depth—are working toward reconstructing the EBL based on the updated optical depth measurements, so stay tuned for the publication.
  - Naturally, this could also lead to new constraints on the Hubble constant, though EBL model dependence remains an issue
- While the STeVECat is a comprehensive and excellent catalog, to achieve a truly accurate estimate of systematic errors (which significantly impact EBL measurements), it is essential to reconstruct the EBL starting from the data level (DL3), including the IRF
  - Given the current dataset, the next logical step is a comprehensive EBL study, collecting data at the DL3 level from HESS, VERITAS, MAGIC
- Since around 2020, the CTAO's Prototype Large-Sized Telescope (LST-1) has started observations, and it recently detected VHE gamma rays from the blazar OP 313, the most distant (z = 0.997) blazar observed so far in the VHE range
- This result suggests that the LST is already beginning to expand the observable universe in the VHE range Btw, as a realistic projection, with 4 LSTs, **up to what redshift** might we expect to observe?

### Outlook

![](_page_31_Figure_11.jpeg)

![](_page_31_Picture_12.jpeg)

## **OP 313: The New Kid on the VHE Cosmic Block!**

- First scientific discovery of the LST-1: <u>ATel #16381</u>
- Schneider et al., 2010 - Furthest FSRQ (z = 0.997) ever detected in VHE by IACTs

![](_page_32_Figure_4.jpeg)

![](_page_32_Figure_5.jpeg)

Thanks to the low energy threshold of LST-1, we detected the first VHE emission from OP 313 during its flare state in December 2023

![](_page_32_Picture_7.jpeg)

LST-1 is pushing the limit of the observable VHE universe!

# **Astronomer's Telegram**

### First detection of VHE gamma-ray emission from FSRQ OP 313 with LST-1

ATel #16381; Juan Cortina (CIEMAT) for the CTAO LST collaboration

on 15 Dec 2023; 14:31 UT Credential Certification: Juan Cortina (Juan.Cortina@ciemat.es)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, AGN, Blazar,

Quasar

![](_page_32_Picture_15.jpeg)

![](_page_32_Picture_16.jpeg)

### How far we can see with 4LSTs?

- Flare sample taken from the CTA Cosmology KSP paper: <u>"Sensitivity of the Cherenkov Telescope</u> Array" for Probing Cosmology and fundamental physics with gamma-ray propagation" (Table 4-5)
- EBL (Saldana-Lopez 2021) absorption based on its redshift
  - Altitude, Nighttime, Moon constraint considered
  - Exposure: 10 hours for each source

![](_page_33_Figure_5.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

### How far we can see with 4LSTs?

- With four LSTs, the detectable range in energy regions strongly affected by EBL absorption (where  $\tau > 1$ ) is expected to reach up to approximately  $z \sim 1.8$ .
- For samples at z > 2.0, placing stringent constraints on the EBL remains challenging, meaning this range continues to be primarily within Fermi-LAT's domain

![](_page_34_Picture_3.jpeg)

![](_page_34_Figure_4.jpeg)

![](_page_35_Picture_0.jpeg)

- By leveraging the STeVECat catalog, we achieved optical depth measurements with twice the redshift resolution of previous studies, providing finer insights into EBL absorption effects across redshift
- Efforts are underway on the Fermi side to update previous measurements, and we are now combining all available data to achieve the highest precision EBL measurements to date
- The LST-1 on the CTA has already expanded VHE observations to unprecedented redshifts (z) = 0.997, OP 313).
  - With additional LSTs, we anticipate extending this range to around  $z \sim 2$ , while continued work at GeV and TeV scales will provide new insights into both EBL and cosmological parameters, including the Hubble constant measurements

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_35_Picture_9.jpeg)