

Synthèse de nano-oxydes par implantation ionique

dans un alliage FeCr :

Comprendre la précipitation dans les aciers renforcés par dispersion d'oxydes (ODS)

Stéphanie JUBLOT-LECLERC, Aurélie GENTILS

Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

Aciers ODS (Oxide Dispersion Strengthened)

Nanoprécipités riches en (Y, Ti, O)

Matrice Fe, Cr + éléments mineurs

Propriétés des aciers ODS

- Résistance au fluage à haute température
- Résistance au gonflement sous irradiation

→ Matériau envisagé pour les réacteurs de GEN IV (gaine de combustible) et les réacteurs de fusion (1ère barrière)

Aciers ODS = aciers ferritiques-martensitiques renforcés par dispersion de <u>nano-oxides d'Y-Ti</u> V Pièges pour les défauts d'irradiation, frein au mouvement des dislocations ...

Fabrication conventionnelle des aciers ODS

Synthèse par faisceaux d'ions (IBS)

de l'ion, son énergie (profondeur), T, concentration ...

Possibilité de caractériser la microstructure à différentes étapes

Possibilité de décorréler l'influence des différents paramètres

Comprendre les premiers stades de formation des nano-oxides (Y, Ti) dans du FeCr ?

Journées et Inauguration de la plateforme MOSAIC - 25-26 septembre 2024

K.J. Reeson, NIM B 19/20 (1987) 269

Matrice : Alliage FeCr de haute pureté (Ecole des Mines de Saint-Etienne)

Approx. **9.8wt%Cr,** impuretés C, N, O, S, ≤ 0.001 wt%

Lames minces prélevées par FIB (Focused Ion Beam) en coupe transverse pour observation en MET (David Troadec, IEMN, Lille)

Synthèse et premières caractérisations à IJCLab Plateforme MOSAIC - Hall expérimental JANNuS-Orsay

Membre de EMIR&A Réseau national d'accélérateurs pour l'irradiation et l'analyse des molécules et matériaux

Microstructure à fine échelle

NC STATE

UNIVERSITY

Aix*Marseille

• CEA/SRMA JEOL 2010F FEG : HRTEM

cea

C2N PANAÌ⊻I

- NCSU Talos F200X et 300 kV FEI Titan : ChemiSTEM-EDX
- IM2NP, Marseille : Sonde Atomique Tomographique
- Plateforme PANAM, C2N, Palaiseau: Titan THEMIS 200 XFEG corrigé sonde (résolution spatiale < 0,1 nm) : STEM-HAADF et ChemiSTEM-EDX

S. Jublot-Leclerc et al., Materials 2022, 15, 4857

Zone implantée

Nano-précipités en forme de bâtonnets

3 à 8 nm de \varnothing Jusqu'à 70 nm de long

Implantations triples Ti \rightarrow Y \rightarrow O et Y \rightarrow Ti \rightarrow O : influence de l'ordre séquentiel ?

S. Jublot-Leclerc et al., Materials 2022, 15, 4857

Ti \rightarrow Y \rightarrow O Après recuit à 800°C

STEM-EDX

Zone implantée
Nano-précipités en forme de bâtonnets
3 à 8 nm de Ø
Jusqu'à 70 nm de long

Analyse élémentaire Enrichissement en O et Cr Déplétion en Fe Déplétion en Y et Ti

Implantations triples Ti \rightarrow Y \rightarrow O et Y \rightarrow Ti \rightarrow O : influence de l'ordre séquentiel ?

i

Implantations triples Ti \rightarrow Y \rightarrow O et Y \rightarrow Ti \rightarrow O : influence de l'ordre séquentiel ?

Caractéristiques des précipités obtenus et comparaison aux ODS

$Y \rightarrow Ti \rightarrow O$ Après recuit à 1100°C

S. Jublot-Leclerc et al., Materials 2022, 15, 4857

Analyse cristallographique par STEM-HAADF Analyse de la FFT (SingleCrystal) Calibration précise des distances sur la matrice

Deux structures possibles pour les précipités

- structure cubique Y₂O₃
- structure cubique Y₂Ti₂O₇ (pyrochlore)

Distances correspondent parfaitement à Y_2O_3 Seulement 5% d'écart avec le pyrochlore !

J. Ribis, JNM 2017, 484

Précipités Y₂O₃ enrichis en Ti et entourés d'une coquille riche en Cr

Similaire aux aciers ODS conventionnels Mais occurrence fréquente de Y₂Ti₂O₇ et Y₂TiO₅

Caractéristiques des précipités obtenus et comparaison aux ODS

S. Jublot-Leclerc et al., Materials 2022, 15, 4857

$Y \rightarrow Ti \rightarrow O$ Après recuit à 1100°C

En surface de l'échantillon implanté :

- Oxyde de type spinelle FeCr₂O₄
- Larges poches riches en Y, Ti et O

Caractéristiques des précipités obtenus et comparaison aux ODS

S. Jublot-Leclerc et al., Materials 2022, 15, 4857

$Y \rightarrow Ti \rightarrow O$ Après recuit à 1100°C

L'ordre de la séquence d'implantations détermine la nature de l'oxyde qui précipite sous recuit thermique

Pourquoi Y \rightarrow Ti \rightarrow O et Ti \rightarrow Y \rightarrow O induisent différents précipités ?

Effet comparé de l'implantation de Ti et de l'irradiation (lacunes)

Implantations Y -> O : Origine de la coquille de Cr

ODS ferritic steel developed by CEA/SRMA J. Ribis, JNM 2017, 484

Implantations Y \rightarrow O : Origine de la coquille de Cr

ODS

Implantations Y \rightarrow O : Origine de la coquille de Cr

Conclusions

- Nano-oxides métalliques formés avec succès dans FeCr par Synthèse par Faisceaux d'Ions, i. e., implantation ionique puis recuit thermique
- <u>Reproduction des caractéristiques typiques des aciers ODS</u> sous certaines conditions
 - Nature et taille des précipités
 - Coquille de Cr, a priori formée par expulsion du Cr du précipité vers la matrice

\rightarrow Idéal pour comprendre la précipitation dans les matériaux ODS

@PANAM, C2N

- → Des processus déterminants dans la nucléation opèrent déjà pendant
 l'implantation ionique à température ambiante
- → La précipitation sous recuit thermique est guidée par des aspects cinétiques complexes liés aux interactions entre éléments implantés, solutés, et défauts dans la matrice

MERCI DE VOTRE ATTENTION

REMERCIEMENTS

- o staff de la plateforme MOSAIC à IJCLab pour l'assistance technique
- O JOËI RIBIS, CEA/SRMA, HRTEM
- o Ludovic Largeau, C2N, plateforme PANAM, STEM-EDX et STEM-HAADF

- o Marion Descoins et Dominique Mangelinck, IM2NP, Université Aix-Marseille, Sonde Atomique Tomographique
- **Djamel Kaoumi, Ryan Schoell, North Carolina State University, USA, STEM-EDX**
- o Vladimir Borodin, MEPhi Moscou, Russie, Modélisation
- Martin Owusu-Mensah Gauche PhD student (2016-2019)
- Manoj Rajbhar Droite
 Post-doc IN2P3 (2024-2025)
 Suite du projet: Y, Zr, O

<section-header><section-header><image><image><image><image><image><image>

This work has been carried out within the EUROfusion Consortium and French Research Federation for Fusion Studies and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission