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Introduction



Scientific goal

• Derive (and solve) a set of equations describing a spacetime

containing one black hole in equilibrium.

• The starting point in GR but can be applied to alternative theories

(hopefully).

• Especially useful for rotation black holes.

• Details in Grandclément and Nicoules (2022).
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A simple example as appetizer

Schwarzschild spacetime in quasi-isotropic coordinates :

ds2 = −N2dt2 +Ψ4fijdx
idxj .

Inner BC
N = 0 and ∂rΨ+Ψ/2a = 0. (a is the radius of the hole).

Outer BC
N = 1 and Ψ = 1.

Bulk equations

∆Ψ = 0 and ∆N = − 2

Ψ
∂rΨ∂rN .

Solutions

Ψ = 1 +
a

r
and N =

(
1− a

r

)
(
1 +

a

r

) .
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3+1 formalism



Foliation of spacetime

The 3+1 formalism is the most widely used way to write Einstein

equations for NR. It makes explicit the split between space and time (see

for instance Gourgoulhon (2012)).

Spacetime is foliated by a family of spatial hypersurfaces Σt

• Coordinate system of Σt : (x1, x2, x3).

• Coordinate system of spacetime : (t, x1, x2, x3).

Greek indices 4D (0, 1, 2, 3) and Latin 3D (1, 2, 3).
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Unit normal

The unit normal can be written as nµ =

(
1

N
,−Bi

N

)
.

• N , the lapse, defines the choice of time coordinate.

• Bi, the shift, defines the choice of spatial coordinates.
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Projections

• Projection on the normal of a vector V⃗ is given by nµV
µ.

• Projection operator on the hypersurfaces γν
µ = gνµ + nµn

ν .

• Projection on the slices of a vector V⃗ is given by γν
µV

µ.

• Projection the 4D metric gµν is

γν
αγ

µ
βgµν = γαβ = gαβ + nαnβ

• The induced metric γij is the first fundamental form.

The 4D line-element reads

ds2 = −
(
N2 −BiBi

)
dt2 + 2Bidtdx

i + γijdx
idxj
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3+1 quantities for Schwarzschild

Ingoing Eddigton-Finklestein coordinates :

ds2 = −
(
1− 2M

r

)
dt2 +

4M

r
drdt+

(
1 +

2M

r

)
dr2 + r2dΩ

• γrr = 1 +
2M

r
.

• γθθ = r2 ; γφφ = r2 sin2 θ.

• Br =
2M

r
=⇒ Br =

2M

r + 2M
.

• −N2 +BiB
i = −

(
1− 2M

r

)
=⇒ N =

1√
1 +

2M

r

.
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Extrinsic curvature Kij

• Describes the part of the geometry not accounted for by the induced

metric.

• It describes the variation of normal projected on the hypersurface.

Kij = −γµ
i γ

ν
j ∇µnν

• In the 3+1 framework, it is given by(
∂t − LB⃗

)
γij = −2NKij

• It is known as the second fundamental form.
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Link between 4D and 3D quantities

In order to derive the 3+1 version of Einstein’s equations, one needs to

relate the 4D quantities to the 3D ones.

• 4D quantities : gµν , n
α, 4Rα

βµν , ∇α...

• 3D quantities : γij , Kij , Di, N , Bi ...

Some examples

• Gauss relation :

γµ
αγ

ν
βγ

γ
ργ

σ
δ

4Rρ
σµν = Rγ

δαβ +Kγ
αKδβ −Kγ

βKαδ.

• Codazzi relation :

γγ
ρn

σγµ
αγ

ν
β

4Rρ
σµν = DβK

γ
α −DαK

γ
β .
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Projection of Einstein’s equations

The 3+1 equations are obtained by projecting Gµν = 8πTµν on nα and

on the hypersurfaces.

• projections onto nµnν , the Hamiltonian constraint:

R+K2 −KijK
ij = 16πE.

• projection onto nµγν
i , the momentum constraint:

DjK
j
i −DiK = 8πPi.

• projection onto γν
i γ

µ
j , the evolution equation:(

∂
∂t − LB⃗

)
Kij =

−DiDjN +N
(
Rij +KKij − 2KikK

k
j + 4π [(S − E) γij − 2Sij ]

)
.

• E, Pi and Sij are the various projections of Tµν .
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Constraint equations

• The constraints are 4 equations, that do not contain ∂t.

• Such equations are absent in Newtonian dynamics but not for

Maxwell.

Type Einstein Maxwell

Hamiltonian R+K2 −KijK
ij = 0 ∇ · E⃗ = 0

Constraints

Momentum : DjK
ij −DiK = 0 ∇ · B⃗ = 0

∂γij
∂t

− LB⃗γij = −2NKij
∂E⃗

∂t
=

1

ε0µ0

(
∇⃗ × B⃗

)
Evolution

∂Kij

∂t
− LB⃗Kij = −DiDjN+

∂B⃗

∂t
= −∇⃗ × E⃗

N
(
Rij − 2KikK

k
j +KKij

)
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A two steps problem

Evolution problem

• Given initial value of γij (t = 0) and Kij (t = 0) use the evolution

equations to determine the fields at later times.

• Similar to writing Newton’s equation as ∂tx = v; ∂tv = f/m.

• Must ensure stability and accuracy.

• Must choose the lapse and shift in a clever way.

Initial data

• γij (t = 0) and Kij (t = 0) are not arbitrary but subject to the

constraint equations.

• It is a set of four elliptic coupled equations.

• Needs to make the link between a given physical situation and the

mathematical objects γij and Kij
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Our case

Simplification

• Stationarity =⇒ ∂t = 0.

• Solve the ten 3+1 equations, for the quantities N , Bi and γij .

• A set of ten partial differential, non-linear, coupled equations.
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Coordinate choice



Gauge conditions: maximal slicing

• Einstein equations are not all independent, need to enforce gauge

conditions (i.e. choice of coordinates).

• No explicit gauge choice (like quasi-isotropic).

• Differential gauges are more general.

• Choice of time : maximal slicing K = 0.

• Well tested in time-evolution codes, has some singularity avoidance

properties.
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Gauge conditions: spatial harmonic gauge

• Spatial harmonic gauge V i = γkl
(
Γi
kl − Γ̄i

kl

)
= 0.

• Γ̄ are the Christoffel’s symbols of a reference metric (flat one for

instance).

• Rij = −1

2
γklD̄kD̄lγij +D(iV j) + first order

• If V i = 0 then the Ricci tensor is close to a flat Laplacian (good for

stability and convergence).

• The spatial harmonic gauge is the 3D equivalent of the Lorenz

gauge used in the linearization of Einstein’s equations.
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Enforcing the gauges

In the 3+1 equations

• Remove all the occurrences of K and V i in the equations.

• It gives a well-posed system of equations.

• Check, a posteriori, that K = 0 and V i = 0 (very important test !).
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Resulting system of equations

The modified 3+1 system

H : R−DkV
k −KijK

ij = 16πE

Mi : DjKij = 8πPi

Eij : LB⃗Kij −DiDjN +N

(
Rij −

1

2
(DiVj +DjVi)− 2KikK

k
j

)
= 4πN

(
2Sij −

(
γklSkl − E

)
γij

)
.

with

Kij =
1

2N
(DiBj +DjBi) .

V i = γkl
(
Γi
kl − Γ̄i

kl

)
.
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Horizons



Event horizon

Boundary between two regions:

• Outside : where photons can reach infinity.

• Inside : where photons cannot !

Properties

• Smooth null hypersurface.

• Weak cosmic censorship : any singularity is hidden inside an event

horizon.

r
=

∞

r
=
∞

H
or
iz
on

A
ntihorizon Universe

Singularity (r = 0)

Black Hole

T
im

e

Space

Li
gh
tLight
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A non-local notion

• Need to know all the trajectories of photons, hence the whole

spacetime.

• Does not necessarily track strong gravity.

• At a given point of spacetime, it is not possible to know if one is

inside an event horizon : eventhorizonmeters cannot exist !

• The notion will not lead to boundary conditions, as needed by our

program.
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Expansion

• Consider a spatial 2-surface with an induced metric q.

• Consider a vector field ℓ normal to the surface.

• Consider a small displacement of the surface along ℓ.

• The expansion describes the variation of the surface area.

Credit E. Gourgoulhon

θ(ℓ) = lim
ϵ→0

1

ϵ

δAϵ − δA

δA
= Lℓ ln

√
q = qµν∇µℓν
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Expansion along null vectors.

• Consider a closed spatial 2-surface.

• Two null normals : an ingoing one k and an outgoing one ℓ.

• In flat spacetime :

θ(k) < 0 and θ(ℓ) > 0.

Credit E. Gourgoulhon

21



Apparent horizon (1/2)

Definition

• A outer trapped surface is such that: θ(k) < 0 and θ(ℓ) < 0.

• A marginally outer trapped surface (MOTS) is such that:

θ(k) < 0 and θ(ℓ) = 0.

• Essentially, an apparent horizon is the outermost MOTS (there is no

trapped surface outside the apparent horizon).

• At the heart of Penrose (1965) (Nobel prize 2020).
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Apparent horizon (2/2)

Some properties

• Apparent horizon traces strong gravitational fields.

• Their presence is linked to the existence of singularities (weak energy

condition).

• When an apparent horizon exist it is inside an event horizon (cosmic

censorship).

• Discussed in Hawking and Ellis (1973).

• The condition θ(ℓ) = 0 is local.

• One could build an apparenthorizonmeter !

• The condition θ(ℓ) = 0 leads to a boundary condition, as needed for

our program.
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Apparent and event horizons

From Hawking and Ellis (1973)

For stationary situations, the two notions coincides !
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3+1 expression for the expansion

• Assume that the apparent horizon is a sphere.

• In orthonormal spherical tensorial basis : si = (1, 0, 0) is normal to

the sphere but not normalized.

• The unit spatial normal is : s̃i =
si

(sksk)
1/2

.

• The outgoing null normal is then ℓµ = nµ + s̃µ.

• From the 3+1 expressions (especially of the extrinsic curvature

tensor), one can show that θ(ℓ) = N
(
Dis̃

i +Kij s̃
is̃j −K

)
.

This gives us a inner boundary condition on the sphere :

Dis̃
i +Kij s̃

is̃j = 0.

See Gourgoulhon and Jaramillo (2006)
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Additional conditions

Coordinates stationary wrt to the horizon

• Ensures that the horizon stays at constant spatial location.

• Equivalent to the condition Bis̃i = N on the horizon.

Tangential part

• Demand that the shear of the null outgoing rays vanishes

(equilibrium).

• The tangential part of the shift must be a conformal Killing vector

of the sphere.

• One can choose : Bi
∥ = −Ω (∂φ)

i

• Ω encodes the rotation state of the black hole.

All that leads to a boundary condition on the shift : Bi = Ns̃i − Ω (∂φ)
i

See Cook and Pfeiffer (2004) and Vasset et al. (2009)
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Freedom on the coordinates



Differential gauges

• The gauges are differential, in the sense that they involve (first)

derivatives of the fields :

K ≡ DkB
k

N
= 0 and V i ≡ γkl

(
Γi
kl − Γ̄i

kl

)
= 0.

• It follows that the coordinates are defined up to some boundary

conditions.

• This differs, from instance, from the QI isotropic gauge where

components of the metric are set to zero directly.
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Example on the time-coordinate

• Start from a spherically symmetric solution with K ̸= 0 : N,Bi, γij .

• Consider the variable change : dt = dt′ + α (r) dr.

• The new 3+1 quantities can be obtained as a function of the old

ones, for instance

γ′
rr = γrr + 2Brα−

(
N2BiB

i
)
α2.

• The new quantities depend on α but not on its derivative.

• So, K ′ = 0 is an equation that involves the first derivative of α.

• It requires a single boundary condition on the horizon.

• This boundary condition on α can be used to specify the value of N

on the horizon.

Additional boundary condition on the horizon N = N0 (θ, φ).
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Choice of spatial coordinates

• Consider a change of spatial coordinates x′i = xi + ξi
(
xj
)
.

• The condition V i = 0 leads to a second order equation on ξ⃗.

• It must be solved using two boundary conditions.

• At infinity, one requires that ξ⃗ = 0 (to recover the usual asymptotic

behaviors).

• The boundary conditions on the horizon seem that it can be used to

freely specify three quantities.

• However the location of the horizon is fixed =⇒ one must have

ξr = 0.

• This implies that one can choose freely two components of γ on the

horizon.

Two additional boundary conditions on the horizon γrθ = f (θ, φ) and

γrφ = g (θ, φ).
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Singular behavior of the

equations



Degenerate equations

Example in 1D

• Consider the equation a (r) f ′′ + b (r) f ′ + c (r) f = s (r).

• a (r) = 0 at the inner boundary.

• One can not impose any boundary condition on f at the inner

boundary.

• The equation is its own boundary condition :

b (r) f ′ + c (r) f = s (r).
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The vanishing factor

• On the horizon, given that s̃i =
si

(sksk)
1/2

with si = (1, 0, 0), one

can show that s̃r =
√
γrr.

• The boundary condition on the shift is Bi = Ns̃i − Ω (∂φ)
i so that

Br = N
√
γrr.

• From all that, it follows that grr =

(
γrr − BrBr

N2

)
vanished on the

horizon.

The term grr is in front of many second order radial derivative terms...
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Application to the 3+1 system

• One looks at the terms involving ∂2
r for all the unknown fields, in all

the equations.

• Some terms are multiplied by
(
N2 −BiB

i
)
which vanishes on the

horizon.

Example, the component Err of the evolution equation contains the

following second order radial derivative terms :

Err = − ∂2
rN +

1

N
Brγrr∂

2
rB

r +
1

N
Brγrθ∂

2
rB

θ

+
1

N
Brγrφ∂

2
rB

φ −N/2grr∂2
r γrr + ...
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Order of degeneracy

Matrix description

• Each line corresponds to one equation (H,M i, Eij).

• Each column corresponds to one unknown (N,Bi, γij).

• Each term in the factor of ∂2
r , for the given equation and given

unknown.

• One can show that the null eigenvalue has a multiplicity 3.

• The three degenerate equations correspond to the angular

components of the evolution equation.

Three additional boundary conditions Eθθ = 0, Eθφ = 0 and Eφφ = 0.
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Additional and final complication



Boundary conditions so far...

• Bi = Ns̃i − Ω (∂φ)
i (horizon at fixed location, with no shear).

• Dis̃
i +Kij s̃

is̃j = 0 (definition of an apparent horizon).

• N = N0 (θ, φ) (time coordinate freedom).

• γrθ = f (θ, φ) and γrφ = g (θ, φ) (spatial gauge freedom).

• Eθθ = 0, Eθφ = 0 and Eφφ = 0 (degenerate equations).

The right number of conditions, in some cases lead to correct solutions.

But convergence is not very good, which may indicate some additional

difficulties...
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Situation without rotation

• Convergence is much better by replacing θ(ℓ) = 0 by γrr = γ0.

• One can check that indeed, the solutions fulfill θ(ℓ) = 0.

• They correspond to Schwarzschild solutions with different masses.
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Convergence of the expansion
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Analytic proof

• In spherical symmetry one has :

N (r), Bi = (w (r) , 0, 0) and γij = A (r) dr2 +B (r) dΩ2.

• θ ∝ rBw ∂ A
∂r + 2 rAB ∂ w

∂r + 2
(
rN ∂ B

∂r + 2BN
)√

A

• K ∝ rBw ∂ A
∂r + 2 rAw ∂ B

∂r + 2 rAB ∂ w
∂r + 4ABw

• Inject K in θ =⇒ θ ∝
(
N
√
A−Aw

) (
2r ∂ B

∂r + 4B
)

• On the horizon (BC for the shift), one has w =
N√
A

• so K = 0 =⇒ θ = 0.

• and K = 0 is ensured by the bulk equations.
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What about rotation ?

• Enforcing γrr = γ0 is too strong.

• It leads to solutions for which θ(ℓ) ̸= 0.

• But one needs to have continuity with the spherically symmetric

case.

• Proposal : enforce the value of γrr only for the l = m = 0 harmonic.

38



Final set of boundary conditions

• Bi = Ns̃i − Ω (∂φ)
i (horizon at fixed location, with no shear).

• N = N0 (θ, φ) (time coordinate freedom).

• γrθ = f (θ, φ) and γrφ = g (θ, φ) (spatial gauge freedom).

• Eθθ = 0, Eθφ = 0 and Eφφ = 0 (degenerate equations).

• γrr = γ0 for l = m = 0 and θ(ℓ) = 0 otherwise.

Suggested values N0 = 1/2, f = g = 0 and γ0 = 8.
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Asserting the validity of a solution

Direct error indicators

• Gauge quantities : K = 0 and V i = 0.

• Spherical part of θ(ℓ) = 0.

On global quantities

• Equality of the ADM and Komar masses :

MADM =
1

16π

∫
r=∞

f ikf jl
(
D̄jγkl − D̄kγjl

)
dS

MKomar =
1

4π

∫
r=∞

(
s̃iDiN −Kij s̃

is̃j
)
dS.

• Equality of the angular momentum and spin :

J =
1

8π

∫
r=∞

Kij (∂φ)
i
s̃jdS.

S =
1

8π

∫
r=rH

√
(q)Kij (∂φ)

i
s̃jdS.
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The Kadath tool



KADATH library

KADATH is a library that implements spectral methods in the

context of theoretical physics.

• It is written in C++, making extensive use of object oriented

programming.

• Versions are maintained via git.

• Website : www.kadath.obspm.fr

• The library is described in Grandclement (2010).

• Designed to be very modular in terms of geometry and type of

equations.

• LateX-like user-interface.

• More general than its predecessor LORENE.
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Concept in 1D

Given a set of orthogonal functions Φi on an interval Λ, spectral theory

gives a recipe to approximate f by

f ≈ INf =

N∑
i=0

aiΦi

Properties

• the Φi are called the basis functions.

• the ai are the coefficients : it is the quantity stored on the computer.

• Multi-dimensional generalization is done by direct product of basis.

• The computation of the ai comes from the Gauss quadratures.
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Coefficient and configuration spaces

There exist N + 1 point xi in Λ such that

f (xi) = INf (xi)

Two equivalent descriptions

• Formulas relate the coefficients ai and the values f (xi).

• Complete duality between the two descriptions.

• One works in the coefficient space when the ai are used (for

instance for the computation of f ′).

• One works in the configuration space when the f (xi) are employed

(for the computation of exp (f))
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Spectral convergence

• If f is C∞, then INf converges to f faster than any power of N .

• For functions less regular (i.e. not C∞) the error decrease as a

power-law.
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Example of interpolant for N = 4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

blue curve f (x) = cos3 (πx/2) + (x+ 1)
3
/8 ; orange : I4f .
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Example of interpolant for N = 8

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

blue curve f (x) = cos3 (πx/2) + (x+ 1)
3
/8 ; orange : I8f .
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Spectral convergence
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Multi-domain setting

Numerical coordinates

• Space is divided into several numerical domains.

• In each domain there is a link between the physical coordinates X

and the numerical ones X⋆.

• Spectral expansion is performed with respect to X⋆.

• Non-periodic coordinates are expanded wrt to polynomials.

• Periodic coordinates (i.e. angles) are described by trigonometrical

functions.
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Weighted residual method

Consider a field equation R = 0 (ex. ∆f − S = 0). The discretization

demands that

(R, ξi) = 0 ∀i ≤ N

Properties

• (, ) is the same scalar product as the one used for the spectral

approximation.

• the ξi are called the test functions.

• For the τ -method, the ξi are the basis functions.

• Amounts to cancel the coefficients of R.

• Some equations are relaxed and must be replaced by appropriate

boundary and matching conditions.
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The discrete system

Original system

• Unknowns : tensorial fields.

• Equations : partial derivative equations.

Discretized system

• Unknowns : coefficients u⃗.

• Equations : algebraic system F⃗ (u⃗) = 0.

Properties

• For a linear system F⃗ (u⃗) = 0 ⇐⇒ Ai
ju

j = Si

• In general F⃗ (u⃗) is even not known analytically.

• u⃗ is sought numerically.
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Newton-Raphson iteration

Given a set of field equations with boundary and matching equations,

KADATH translates it into a set of algebraic equations F⃗ (u⃗) = 0, where u⃗

are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

• Initial guess u⃗0.

• Iteration :

• Compute s⃗i = F⃗ (u⃗i)

• If s⃗i if small enough =⇒ solution.

• Otherwise, one computes the Jacobian : Ji =
∂F⃗

∂u⃗
(u⃗i)

• One solves : Jix⃗i = s⃗i.

• u⃗i+1 = u⃗i − x⃗i.

Convergence is very fast for good initial guesses.
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Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of

equations.

Automatic differentiation

• Each quantity x is supplemented by its infinitesimal variation δx.

• The dual number is defined as ⟨x, δx⟩.
• All the arithmetic is redefined on dual numbers. For instance

⟨x, δx⟩ × ⟨y, δy⟩ = ⟨x× y, x× δy + δx× y⟩.
• Consider a set of unknown u⃗, and a its variations δu⃗. When F⃗ is

applied to ⟨u⃗, δu⃗⟩, one then gets :
〈
F⃗ (u⃗) , δF⃗ (u⃗)

〉
.

• One can show that

δF⃗ (u⃗) = J (u⃗)× δu⃗

The full Jacobian is generated column by column, by taking all the

possible values for δu⃗, at the price of a computation roughly twice as

long.
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Numerical resources

Consider Nu unknown fields, in Nd domains, with d dimensions. If the

resolution is N in each dimension, the Jacobian is an m×m matrix with:

m ≈ Nd ×Nu ×Nd

For Nd = 5, Nu = 5, N = 20 and d = 3, one reaches m = 200 000

Solution

• The matrix is distributed on several processors.

• Easy because the Jacobian is computed column by column.

• The library SCALAPACK is used to invert the distributed matrix.

• d = 1 problems : sequential.

• d = 2 problems : 100 processors (mesocenters).

• d = 3 problems : 1000 processors (national supercomputers).
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Try it...

Kadath website (https://kadath.obspm.fr) has some tutorials... Have

fun...
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Some applications



Kerr solution

Direct application of the equations, in the vacuum case

Plots of N , Br and γrφ for a/M ≈ 0.99.
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Gauge quantities

56



Error on the expansion
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MADM = MKomar
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Some global quantities
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Adding a scalar field

BH with complex scalar hairs

S =

∫
R

16π
− 1

2

[
∇µΦ∇µΦ̄ + V

(
|Φ|2

)]√
−gd4x

• Ansatz for the field :

Φ = (RΦ (r, θ) + iIΦ (r, θ)) exp [i (ωt− kφ)] = 0.

• Given the form of the action, the metric is stationnary and

axi-symmetric.

• The field must obey the KG equation : ∇µ∇µΦ =
dV

d |Φ|2
Φ, which

contains both a real and imaginary part.

• Using QI isotropic coordinates, Iϕ = 0 but it is not the case in

general.

Given its expression, the KG equation is also degenerate on the horizon,

the second radial derivative term being grr∂2
rΦ.
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Gauge quantities

Convergence is only observed if the KG equation is correctly solved.
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Mass contributions
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Conclusion

Formalism

• Based on 3+1 formalism.

• Maximal slicing and spatial harmonic gauge.

• Inner boundary is an apparent horizon in equilibrium.

Applications

• Kerr black hole.

• Black holes with scalar hair : matter, minimally coupled.

• cubic Galileon : exotic matter.

• MTZ black hole : AADS spacetime, change topology of the horizon,

no rotation.
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Possible extensions

• Rotating horizon with non-usual topology.

• Non-minimally coupled theories.

• Influence of exotic matter, violating the energy conditions.

• Applications to binary systems.
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