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Summary Introduction Formalisms of General Relativity Classification of modified gravity theories Modified gravity

Introduction

Formalisms of General Relativity
Gravity = Geometry
Equivalent formalisms of GR

Classification of modified gravity theories
Theoretical criterions

Modified gravity
Additional fields with second order field equations
Higher-order theories
Degenerate theories



Summary Introduction Formalisms of General Relativity Classification of modified gravity theories Modified gravity

Introduction : Singularities & Quantum gravity
• Several deep issues of the high energy description of gravitational systems :

• Hawking-Penrose theorems : Under realistic physical conditions, the solutions of General Relativity
generically suffer from geodesic incompleteness and curvature divergences ;
E.g. black holes and cosmological models :

ds2 = −
(

1− 2M
t

)
dr2 + dt2

1− 2M
t

+ t2
(
dθ2 + sin2 θdφ2) ; t→ 0

ds2 = −dt2 + a2
0 t

4
3(w+1)

(
dx2 + dy2 + dz2) ; t→ 0

(1)

• Information loss : What happens to the information trapped inside black holes ? What is the final
stage of Hawking evaporation ? Possible stable black hole remnants accounting for part of dark matter ;

• Quantum gravity (QG) (or Emergent gravity, or modifications of quantum theory ?) : Gravity is
perturbatively non-renormalizable, i.e. not possible to quantize like all the other fundamental fields

� Path integral : Asymptotic Safety & Causal Dynamical Triangulations ; ... ?
� Hamiltonian : Wheeler-DeWitt equation ; Loop Quantum Gravity ;
� Higher dimensions : String theory ; Supergravity ; ... ?
� Higher order gravities : Stelle gravity ; Conformal gravity ; Non-local gravity ; Horava-Lifshitz ;
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Introduction : Modified gravity and infrared issues

• Whatever the high energy completion of GR is, it should have an expansion in terms of high energy
corrections as an effective field theory ;

• To distinguish between those corrections, make use of known principles :
• Second order field equations ; no ghosts & unitarity ;
• Stability ;
• Renormalizable/quantum gravity inspired corrections ;
• Symmetry principles ; etc . . .

• Other issues at large scales :
• Dark energy (Λ ?)
• Dark matter (primordial black holes, right-handed neutrino ?)
• Hubble tension
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Formalisms of General Relativity : ”Gravity = Geometry of spacetime”
• What action should be modified ? General Relativity is a peculiar theory which can be expressed in terms of

completely different fields ;
• Assuming that gravity is described in terms of the geometry of space-time means that it depends on a metric

field (or a frame) and an affine connection ;
• Theorem : The most general affine connection decomposes as (cf Unicity of Levi-Civita connection) :

Γ̄σµν = Γσµν +Kσ
µν + Lσµν = Γσµν + δΓσµν (2)

where

Γσµν = 1
2g

σρ
(
∂(µgν)ρ − ∂ρgµν

)
Levi-Civita connection

Kσ
µν = 1

2
(
Tσµν + T(µ

σ
ν)
)

Contorsion

Lσµν = 1
2
(
Qσµν −Q(µ

σ
ν)
)

Disformation

(3)

in terms of the fundamental geometric quantities (and metric field) :
Tσµν = Γ̄σ [µν] Torsion
Qσµν = ∇̄σgµν Non-metricity

(4)
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• These quantities give rise to the (post-Riemannian) curvature

R̄γσµν = ∂[µΓ̄γν]σ + Γ̄γ [µ|ρΓ̄ρ|ν]σ = Rγσµν (g) +∇[µδΓγν]σ + δΓγ[µ|ρδΓ
ρ
|ν]σ (5)

• Geometrical interpretations :
� Riemann Curvature R : Given three vectors U, V,W : parallel transport W along closed parallelogram
{U, V }, then

δWµ = RµνρσW
νUρV σ (6)

� Torsion (% Lie Derivative) : Given two vectors U, V : the parallelogram made of parallel transports (%
flows) closes only up to a translation ;

T (U, V ) = ∇̄UV − ∇̄V U − [U, V ] (7)

� Non-metricity : parallel transport changes length :

Uµ∇̄µ (V νVν) = −V µV νUσQσµν 6= 0 (8)
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Formalisms of General Relativity
• Further motivations : If gravity is emergent (cf no sense to quantize Navier-Stokes), similar to elastic media

with microstructure. E.g. In continuum theory of lattice defects (see Hehl (94)) :
� Non-metricity emerges from density of point defects ;
� Torsion emerges from density of line defects ;

• In order to know which theory to modify, need to make a choice between the following equivalent formalisms :
• Metric formalism (historical) : Gravity = Riemann Curvature ;

I [gµν ] =
∫
d4x
√
−g (R− 2Λ) , (9)

• Palatini formalism (metric-compatible) ;

I
[
gµν , Γ̄σµν

]
=
∫
d4x
√
−g

(
gσνδµγ R̄

γ
σµν − 2Λ

)
, (10)

� Enjoy an additional local symmetry % GR, projective invariance :

Γ̄σµν → Γ̄σµν +Aµδ
σ
ν , R̄µν → R̄µν + Fµν (A) (11)

� Necessary (in first order formalism) in Loop Quantum Gravity (Immirzi parameter γ−1εµνρσR̄µνρσ) ;
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• Teleparallel equivalents of GR (‖ transport does not depend on path) :

IGR
[
gµν , Γ̄σµν

]
=
∫
d4x
√
−g
(
R̄+ δΓ

)
=
∫
d4x
√
−g (R+∇µ (δΓµνν − δΓννµ)) (12)

where

δΓ = δΓµνσδΓσµν − δΓσσνδΓνµµ , δΓσµν = Kσ
µν + Lσµν = 1

2
(
Tσµν + T(µ

σ
ν) +Qσµν −Q(µ

σ
ν)
)

(13)

� Teleparallel equivalent of GR : Gravity = Torsion (R̄ = Q = 0) ;
� Symmetric Teleparallel equivalent of GR : Gravity = Non-metricity (R̄ = T = 0) ;
� Features :

? Quadratic actions not unique ;

L = αµναβγδ (g)QµναQβγδ + βµναβγδ (g)TµναTβγδ (14)

? The actions are Lorentz invariant only up to boundary terms ;
? Coupling with matter field : More complicated prescription are needed ;

• Purely affine (Eddington (1923)) (Q=0) : Solve g(Γ) in Palatini ;

I
[
Γσµν
]

= 1
Λ

∫
d4x

√
−det

(
R̄(µν)

)
(15)
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Modified gravity
• General action for modified gravity ;

I =
∫

dDx︸︷︷︸
Dimensionality

L

 {gµν ,Γαµν}︸ ︷︷ ︸
Geometrical fields

, {ψ, φ,Aµ, Aaµ}︸ ︷︷ ︸
Matter fields

, {φ, vµ, fµν}︸ ︷︷ ︸
Background structures

, {λ}︸︷︷︸
Lagrange multipliers

, { ∂n}︸ ︷︷ ︸
Higher-order & non-locality

 (16)

• Geometrical fields : metric & affine connection ;
• Matter fields : scalar, vector, gauge field, spinor, higher rank tensors, other spins ;
• Background structures : time coordinate, aether, fiducial metric ;

� Can break Lorentz & diffeomorphism invariances ;
� Although it is possible to restore symmetries by Stuckelberg fields (cf artificial/substantial gauge

symmetries, Dirac (55), Francois (2023)) ;
• Notice that same form of corrections in different formalisms can be widely inequivalent f(R), f(Q), f(T ),

Born-Infeld type action :

I
[
gµν ,Γσµν

]
=
∫
d4x

√
−det

(
gµν + R̄(µν)

)
(17)

which is Ghost free in Palatini and has a ghost in the metric formalism ;
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Theoretical criterions
• Unicity
• Stability : positive energy (no ghosts : a > 0) and no gradient instability (b > 0):

L = aφ̇2 − bgij∂iφ∂jφ (18)

• All classical field theories in physics have second order equations of motion
• Have some kind of internal symmetries or participate (gauge fields, charged particle, Higgs,

etc). In particular Conformal Invariance :

I [gµν ] = I
[
eφgµν

]
(19)

• Unification : cf metric affine, Kaluza Klein
• Similar exact solutions structure as GR & primary % secondary hair
• Simplicity : scalar fields are good theoretical labs because they are the simplest possible

modifications : just 1 additional degree of freedom % GR.
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Theoretical criterion : Lovelock unicity theorem
• Lovelock-Lanczos gravity (LLG) is the only purely metric (UV) extension of GR w. diffeomorphism invariance

and 2sd order field equations ;

I = 1
2κ

∫
M
dDx
√
−g
bD/2c∑
p=0

αpLp , Lp = 1
2p δ

µ1ν1...µpνp
σ1ρ1...σpρp

p∏
r=1

Rσrρr
µrνr

, (20)

where Rµνσρ = gγµR ν
σργ and δµ1...µp

σ1...νp = δµ1
[ν1
. . . δ

µp

νp],

L0 = 1 , L1 = R , L2 = R2 − 4RµνRνµ +RσρµνR
µν
σρ , (21)

� Topological in D = 2p, because ∝ to the Euler characteristic χ (M) (= genus of closed orientable
manifolds) ; Trivial in D < 2p ;

� Unique purely gravitational theory whose Palatini formalism always admits a Levi-Civita solution ;

� Appears in the low-energy effective action of String Theory ;

� Related to Chern-Simons and Born-Infeld theories of gravity ;
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Theoretical criterions : quantum gravity predictions

Although we do not have a consensus on a quantum gravity theory, there are many results regarding the
description of gravitating systems at small scales which can be obtained in quantum field theory in curved
spacetimes and semi-classical gravity ;
• What is the gravitational field of an electron, of an atom, etc... ?
• What is the effect of quantum fields on black hole horizons, on an expanding Universe ?

� Hawking radiation : black hole evaporate ;
� Particle production in an expanding universe ;

• Semi-classical gravity ⇐⇒ (Classical gravity + Quantum matter + backreaction)

Gµν = 8πG
c4
〈T̂µν〉 (22)

Valid for E � EPlanck ≈ 1019GeV and small quantum fluctuations.
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Two predictions for high energy gravity
• QFTCST and semi-classical gravity yields the Trace Anomaly :

� Quantum Conformal Field Theories (CFT) are rigorously defined QFTs (cf. ”cut-off free”) ;
Quantum Conformal Invariance implies :

ηµν〈0|T̂µν |0〉ren = 0 (23)

� When considered in (classical) (d = 2p)-dimensional curved spacetime, a so-called Trace Anomaly
appears :

gµν〈0|T̂µν |0〉ren = a Ep + · · · = a

(
1
2p δ

µ1ν1...µpνp
σ1ρ1...σpρp

p∏
r=1

Rσrρr
µrνr

)
+ . . . (24)

The Quantum Conformal Invariance is broken by the so-called Euler densities/Critical Lovelock gravity ;
� In two spacetime dimensions, the Hawking effect is due entirely to the trace anomaly,

[Christensen and Fulling, Phys.Rev.D15(1977)].

Therefore, the (quantum) effective equation for gravity should account for that term :

Gµν + ζGµν + · · · = κTµν , gµνGµν = Ep
4D= G = R2 − 4RµνRµν +RµνρσR

µνρσ (25)
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Universal correction to the Bekenstein-Hawking Entropy found in many QG approaches :
� Perturbative quantum gravity [Solodukhin, Phys.Rev.D51, 618 (1995)]
� String theory [Maldacena, Strominger, Witten, JHEP 9712:002,(1997)]
� Loop quantum gravity [Engle, Noui, Perez, Phys.Rev.Lett. 105, (2010)].

S = A

4 + ζ log (A) + . . . (26)

Is it possible to find local effective field theories of d-dimensional gravity with these (quantum)
properties ?
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2sd order field equations : 1. Unicity theorems - Horndeski

• Scalar-tensor theory : Horndeski (1974)

IHorndeski [gµν , φ] =
∫
d4x
√
−g

5∑
n=2

LH
n X = −gµνφµφν , φµ = ∇µφ , φµν = ∇µ∇νφ (27)

LH
2 := G2 (φ,X) , LH

3 := G3 (φ,X)�φ , LH
4 := G4 (φ,X)R+G4,Xδ

αβ
µν φ

µ
αφ

ν
β

LH
5 := G5 (φ,X)Gµνφνµ −

1
6G5,Xδ

αβρ
µνσφ

µ
αφ

ν
βφ

σ
ρ .

(28)

• U(1)-tensor theory : Horndeski (1976)

IU(1) [gµν , Aµ] =
∫
d4x
√
−g
(
R+ L (FµνFµν , ∗FµνFµν) + γ ∗Fσρ

∗FµνRσρµν
)
, (29)

where ∗F ρσ = 1
2ε
µνρσFµν and Rµνσρ = gγµR ν

σργ
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Horndeski theories accounting for the trace anomaly : 2D

• In two dimensions, a scalar-tensor theory with these properties has been found from a dimensional
regularization of Einstein gravity (the first Critical Lovelock theory) ; (Mann, (1993) ) :

Consider a conformal metric ḡµν = eφgµν ,

L(1) = lim
d→2

√
−ḡR̄−

√
−gR+ . . .

d− 2 = φ

2

(
R− 1

2�φ
)

(30)

so that half-onshell, it reduces to the famous two-dimensional Polyakov quantum gravity action (Polyakov, (1981))

2δL1

δφ
= R−�φ = 0 =⇒ φ = 1

�
R =⇒ L1 = 1

4R
1
�
R (31)

This theory accounts for the trace anomaly :

E1 = R = κ Tµνg
µν (32)
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Horndeski theories accounting for the trace anomaly : 4D

• In four dimensions, a scalar-tensor theory with these properties has been found from :
? Renormalization Group flows Komargodski (2011)

? Compactification of higher-dimensional Lovelock gravity Van Acoleyen (2011), Charmousis (2015)

? Dimensional regularization of Gauss-Bonnet gravity Hennigar (2020), Fernandes (2020)

The theory is given by the (ghost-free) theory (w. φµ = ∂µφ) :

I =
∫
d4x
√
−g

[
R+ ζ

(
φ

2L2 −Gµνφµφν −
1
2φ

ζφζ�φ−
(
φζφζ

)2
8

)]
(33)

and account from the trace anomaly and the logarithmic correction to the entropy :

R+ ζ

2E2 = κTµνg
µν , S = A

4 + 2πζ log A

A0
(34)
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2sd order field equations : Conformally invariant theories in 4D
• Exact solutions, identical to that of Lovelock (for FLRW, spherically symmetric and slowly rotating black

hole) but in lower dimensions, e.g. for regularization of Gauss-Bonnet gravity,

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2 , f(r) = 1 + r2

2α

(
1−

√
1 + 4α

(
2M
r3 + Λ

3

))
,

φ±(t, r) = qt− 2 log
(
r

r0

)
±
∫
dr

√
q2r2 + 4f(r)
rf(r) −→ secondary hair q

(35)

• This theory is closely related to conformal invariance, assuming only conformal invariant field equation of the
scalar field (Fernandes (2020)), the unique four-dimensional scalar-tensor action with second order equations of
motion is :

I =
∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−g̃
(
βR̃− 2λ

)
+ γ lim

D→4

1
D − 4

∫
dDx

(√
−g̃G̃ −

√
−gG

)
=
∫
d4x

(
R− 2Λ + β

(
R

6 φ
2 + gµνφµφν

)
− 2λφ4 + α

(
φ

2L2 −Gµνφµφν −
1
2φ

ζφζ�φ−
(
φζφζ

)2
8

)) (36)
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Higher-order : 1. UV improved theories
• One way to bypass Lovelock theorem is to allow interactions with higher (than two) order field equations ;
• Properties and features :

� Yields additional degrees of freedom (more initial conditions needed) ;
� Improves the UV behaviour of the fields (higher powers of momentum in integrals) ;
� In some cases, equivalent to Pauli-Villars regularization ;

• Examples :
� Stelle Gravity (77) : Renormalizable ; scale and conformal invariant UV corrections ;

I =
∫
d4x
√
−g
(
R+ αR2 + βCµνρσCµνρσ

)
(37)

� Bopp-Podolsky action (40, 42)

IBP =
∫
d4x

(
−1

4FµνF
µν − a2

2 ∂µF
µν∂ρFρν

)
(38)

� One photon and one ghost-like ”Pauli-Villars” massive photon (a Proca field) of mass 1/a2

� Non-singular modified Coulomb potential for specific boundary cdts : V (r) = q
r

(
1− e−r/a

)
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Higher-order : 2. Ostrogradski ghost
• Higher order derivatives generically implies additional degrees of freedom and usually have negative kinetic

energy for these. Consider the Pais-Uhlenbeck oscillator,

L = q̈2 + αq̇2 − βq2 ⇐⇒ Lequiv = φ2 + αq̇2 − βq2 + λ (q̈ − φ)

= φ2 + αq̇2 − βq2 −
(
λ̇q̇ + λφ

)
+ b.t.

(39)

� At the level of the Lagrangian, solving δLequiv/δφ = 2φ− λ = 0, in φ and defining we obtain

Lequiv|φ(λ) = αγ̇2 − λ̇2

4α + V (λ, γ) , with γ = q − λ

2α (40)

so the kinetic energy has the wrong sign ;
� At the level of the Hamiltonian, considering instead

L̃equiv = φ̇2 + αφ2 − βq2 + λ (q̇ − φ) , with {p, ψ} = ∂L̃equiv

∂∂t{q, φ}
(41)

we obtain,

H = pq̇ + ψφ̇− L̃equiv = −1
4ψ

2 + φp+ Ṽ (q, φ) (42)
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Higher-order : 3. Ostrogradski theorem and caveats

• Ostrogradski theorem : A non-degenerate theory with higher order equations of motion yields a Hamiltonian
that is linear in one of the momenta and so is unbounded from below ;

• This does not necessarily yield classical instability :
• Theorem (Liapunov) : If V (q, q̇) is an integral of motion with a strict minimum at the equilibrium position
q = q̇ = 0, then this equilibrium point is stable.

• In some cases, the associated quantum theory has negative norm states and the theory suffers from a
quantum instability ;

• However, we will see that there are some caveats :
� In quantum field theories : examples of non-perturbative QED and Non-local gravity
� Different Hamiltonians can yields same classical field equations : some can be bounded from below :

f(R) theory ;
� More generally, the energy in (metric) gravity is a very subtle notion ;
� Degenerate theories ;
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Higher-order : 2. Ghosts in quantum field theories
• Klein-Gordon, propagator and particle production I = 1

2

∫
d4xφ

(
�−m2)φ −→ G(q) = 1

q2−m2

• Effective (quantum) actions are usually non-local, for example for QED :

Γ0 = −1
4

∫
d4xFµνP (�)Fµν , P

(
q2) = 1− α

3π log
(
q2 − 4m2

e

4m2
e

)
at one loop (43)

It vanishes (Landau pole) at q ≈ 10227GeV (q ≈ 1034GeV for the standard model) : Perturbative theory
breaks down. It can be seen as a ghost.

• However, non-perturbative (resummation of loops) form-factor P (�) can solve the issue and be ghost-free,
even though they have ghosts (artifacts) in perturbation (see Platania 2020)

• Generalization for gravity : Non-local gravity (see Beneito 2022)

I =
∫
d4x
√
−g (R+Rγ0 (�)R+Rµνγ1 (�)Rµν) (44)

• Finally, some theories with Ostrogradski ghost can be quantized and are unitary (no ghost) (see Donoghue 2021)

I = 1
2

∫
d4x
(
∂µφ∂

µφ−m2φ2 − 1
M2 (�φ)2

)
(45)
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Higher-order : 3. The case of f(R)
• Not all higher order theories have ghosts, even if (one of the many forms of) their Hamiltonian is linear in

one of the momenta ;
• Consider the case of f(R) gravity :

S =
∫
d4x
√
−gf(R) ≡

∫
d4x
√
−g
(
f(φ) + df(φ)

dφ
(R− φ)

)
(46)

whose field equations are indeed higher order :

F (R)Rµν −
1
2f(R)gµν −∇µ∇νF (R) + gµν�F (R) = 0 , F (R) = ∂f/∂R (47)

• Under a conformal transformation, it reduces to a ghost-free minimally coupled scalar-tensor theory ;
• For instance, the Starobinsky model of inflation given by

S =
∫
d4x
√
−g
(
R+ λ

16R
2
)

(48)

yields after the above redefinition followed by a conformal transformation :

S ≡
∫
d4x
√
−g
(
R− 1

2∂µφ∂
µφ− V (φ)

)
, V (φ) = 1

λ

(
1− exp

(
−φ/
√

3
))2 (49)
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Higher-order : 4. Energy of (metric) gravitational theories
• The gravitational energy (Hamiltonian of GR) is vanishing onshell for manifold without boundary ;
• Hamiltonian formalism of General Relativity : For any non-null vector n (ie gµνnµnν 6= 0),

R+ 2δµνσρ∇µ
[
nσ∇νnρ

nγnγ

]
= δξµνζσρ

(
nξn

ζ

nγnγ

)[
1
2R

σρ
µν + 2∇µn

σ∇νnρ

nγnγ

]
(50)

• If we define the projector orthogonal to n,

hµν = δµν −
nµnν
nγnγ

, which implies hµνn
ν = 0 , and δξµνζσρ

(
nξn

ζ

nγnγ

)
= hµνσρ = hµσh

ν
ρ − hµρhνσ (51)

• With this method, the extrinsic curvature appears naturally as an algebraic object. Defining

Kµ
ν = hµαh

β
ν∇βnα , (52)

and noting that Gξζ = − 1
4δ
ξµν
ζσρR

σρ
µν , we obtain

R+ 2δµνσρ∇µ
[
nσ∇νnρ

nγnγ

]
= −2

(
nµnν

nγnγ

)
Gµν + 2

nγnγ
hµνσρK

σ
µK

ρ
ν (53)
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• We obtain for a manifold without boundary

I =
∫
d4x
√
−gR =

∫
d4x
√
−g
(
−H⊥ + 2Kµ

ν π
ν
µ

)
(54)

where

H⊥ = 2
(
nµnν

nγnγ

)
Gµν , πµσ = 1

nγnγ
hµνσρK

ρ
ν ⇐⇒ Kρ

ν = nγn
γh(−1)σρ

µνπ
µ
σ (55)

• Introducing a ADM foliation adapted to the vector n, ie M = R×Σ where hµν is the projector to Σ and nµ
is its normalized normal (set n2 = −1)

ds2 = gµνdx
µdxν = −N2dt2 + hab (dxa +Nadt)

(
dxb +Nbdt

)
, nµ = −

δ0
µ

N
(56)

� Latin indices are spatial a, b = 1, 2, 3
� N and Na are respectively the lapse and the shift
� D the covariant derivative compatible with hab
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• Using the decompositions of extrinsic curvature and 4D determinant,

Kab = 1
2N
(
∂0hab −D(aNb)

)
,
√
−g = N

√
|h| (57)

we obtain

I =
∫
d4x
√
−g
(
−H⊥ + 2Kµ

ν π
ν
µ

)
=
∫
dt

∫
Σ
d3x
√
|h|

πab∂0hab −NH⊥ −NaHa−D(a
(
Nb)π

ab
)︸ ︷︷ ︸

Spatial boundary term

 =
∫
dtL

(58)

where the vector constraint and scalar constraint (using the Gauss-Codazzi equation (∗)) are given by

Ha = −2Dbπba , H⊥ = 2
(
nµnν

nγnγ

)
Gµν = −1

2h
µν
σρR

σρ
µν
∗= −R(3) + hµνσρK

σ
µK

ρ
ν = H⊥

[
hab, π

ab
]

(59)

Therefore, πab is the momentum density, N , Na are Lagrange multipliers and the Hamiltonian vanishes
onshell,

H =
∫

Σ
d3x
(√

hπab∂0hab − L
)

=
∫

Σ
d3x
√
h [NH⊥ +NaH

a] onshell= 0 (60)
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Degenerate theories : Invertible disformal transformations
• It is possible to obtain equivalent theories from the previous second order Lagrangians by performing any

invertible field transformations :

g̃µν = Φgµν + f(µν) , with det
(
δg̃ρσ
δgµν

)
6= 0 (61)

• Although, the Einstein and Jordan frames are equivalent : eg∫
d4x
√
−g (R− 2Λ) + IM [ψ, g] ≡

∫
d4x
√
−g̃
(
R̃− 2Λ

)
+ IM [ψ, g̃] (62)

• This is no longer the case when the matter action couples to the Einstein frame metric :∫
d4x
√
−g̃
(
R̃− 2Λ

)
+ IM [ψ, g] (63)

• Disformal transformation : contains derivative of a scalar and so generates higher-order equations of motion
while preserving the degrees of freedom :

g̃µν = Φ (φ,X) gµν + Ψ (φ,X)φµφν (64)
• In addition, it is a very useful solution-generating-technique enabling to obtain exact solutions in highly

non-trivial theories (see eg Babichev (2020)) ;
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Degenerate theories : Pais-Uhlenbeck oscillator
• Why these higher order field equations have no ghost ? : Degenerate coupled Pais-Uhlenbeck oscillator

L =q̈2 + αq̇2 + aQ̇2 + 2bq̈Q̇+ cq̇Q̇− V (q,Q)
⇐⇒

Lequiv =φ̇2 + αφ2 + aQ̇2 + 2bφ̇Q̇+ cφQ̇− V (q,Q) + λ (q̇ − φ)
(65)

• Phase space : {p, q} = {ψ, φ} = {P,Q} = 1 and momenta :

p = ∂Lequiv

∂∂tq
= λ , ψ = ∂Lequiv

∂∂tφ
= 2

(
bQ̇− φ̇

)
, P = ∂Lequiv

∂∂tQ
= 2

(
aQ̇+ bφ̇

)
+ cφ (66)

� If a+ b2 6= 0, it is possible to express the velocities in terms of the momenta

λ = p , Q̇ = 1
2(a+ b2) (P + bψ − cφ) , φ̇ = 1

2(a+ b2) (bP − aψ − bcφ) (67)

so we end up with 3 degrees of freedom with a ghost.
� If a+ b2 = 0, we have a constraint among the momenta and the Lagrangian becomes

C = P + bψ − cφ = 0 , Lequiv =
(
φ̇− bQ̇

)2 + cφQ̇− V (q,Q) + λ (q̇ − φ) + αφ2 (68)
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• 6-dimensional phase space : {p, q} = {ψ, φ} = {P,Q} = 1, with coordinate qi and momenta pi, and primary
constraint :

p = λ , ψ = 2
(
bQ̇− φ̇

)
, C = P + bψ − cφ ≈ 0 (69)

• Adding the constraint to the theory via a Lagrange multiplier γ enables invert the velocities

Htot = pq̇ + ψφ+ PQ̇− Lequiv +
(
γ − Q̇− 1

4b2C
)
C

= −1
4ψ

2 + pφ− aφ2 + V (q,Q) + γC = H0 + γC

(70)

• The secondary and tertiary constraint (time evolution of the primary) yields,

Ċ = {C,Htot} =
3∑
i=1

(
δC

δqi

δHtot

δpi
− δC

δpi

δHtot

δqi

)
= −bp+ c

2ψ + 2αbφ− VQ ≈ 0

C̈ = {Ċ,Htot} = {Ċ,H0}+ γ{Ċ, C} ≈ 0

(71)

where

{Ċ,Htot} = − c2p− αbψ + αcφ , {Ċ, C} = 2αb2 + c2

2 − VQQ (72)

� If {Ċ, C} 6= 0, this fixes the Lagrange multiplier γ. (Otherwise keep going with quaternary etc)
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• Using the secondary constraint, we obtain the physical Hamiltonian which is quadratic in the momentum :

Hphysical = − P
2

4b2 +
(
α+ c2

4b2

)
φ2 − φVQ

b
+ V (73)

• The theory possesses (6− 2)/2 = 2 degrees of freedom and the Ostrogradski ghost has disappeared.
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Degenerate theories : Classifications of higher order theories
• Non-perturbative one-loop slowly varying approximation in QED : Euler-Heisenberg Lagrangian and its

extensions ;
• Scalar-tensor (DHOSTs) Langlois, Noui (2016), B. Achour (2016)

Iquadratic =
∫
d4x
√
−g (f (φ,X)R+ Cµνρσ (g, φ, φα)φµνφρσ) (74)

Icubic =
∫
d4x
√
−g
(
h (φ,X)φµφνGµν + Cµνρσγδ (g, φ, φα)φµνφρσφγδ

)
(75)

• U(1)-tensor theory :

Iquadratic =
∫
d4x
√
−g
(
L
(
F 2, ∗FF

)
+ 1

4A µνρσ (F, g)Rµνρσ + Bγµν,δρσ (F, g)∇γFµν∇δFρσ
)
, (76)

where A and B are the most general tensors built from Fρσ with the corresponding symmetries.
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Degenerate theories
• For quadratic scalar-tensor, degeneracy conditions obtained imposing

Lkin = KijklKijKkl + Bij φ̈Kij +Aφ̈2 + V
(
φ̇
)

= Kijkl
(
Kij + Eij φ̈

) (
Kkl + Eklφ̈

)
+ V

(
φ̇
)

(77)

where {K,B,A, E} come from {f, C} and depend on φ, φ̇, ∂iφ.
• Similarly for quadratic U(1)-tensor, degeneracy conditions obtained imposing

Lkin = KijklKijKkl + BijkĖkKij +AijĖiĖj + V (E,B)

= Kijkl
(
Kij + FaijĖa

) (
Kkl + FbklĖb

)
+ V (E,B)

(78)

where {K,B,A,F} and depend on E,B.
• Beyond Horndeski (obtained from disformal transformation of the Horndeski action)∫

d4x
√
−gF4 (φ,X) εµνρσ εαβγσ φµφαφνβφργ (79)

• Lovelock’s unique purely metric action with third order field equations∫
d4x
√
−g ? Rµναβ ? R

ρσ
µν ? R

αβ
ρσ (80)
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Thank you for your attention !
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