Summary		
0		

tion Fo

ormalisms of General Relativity

Classification of modified gravity theories $\overset{O}{_{00000}}$

Modified gravity 0000 0000000 0000000

Modified gravity

Colléaux Aimeric

 $18 \ {\rm June} \ 2024$

Tests de la relativité générale et théories alternatives, IJCLab

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
•	00	00	0 00000	0000 00000000 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Introduction

Formalisms of General Relativity

 $\begin{array}{l} {\sf Gravity} = {\sf Geometry} \\ {\sf Equivalent} \mbox{ formalisms of GR} \end{array}$

Classification of modified gravity theories Theoretical criterions

Modified gravity

Additional fields with second order field equations Higher-order theories Degenerate theories

Introduction	Formalisms of Gener
•0	00

Classification of modified gravity theories 0 00000 Modified gravity 0000 0000000 0000000

Introduction : Singularities & Quantum gravity

- Several deep issues of the high energy description of gravitational systems :
 - Hawking-Penrose theorems : Under realistic physical conditions, the solutions of General Relativity generically suffer from geodesic incompleteness and curvature divergences ; E.g. black holes and cosmological models :

$$ds^{2} = -\left(1 - \frac{2M}{t}\right)dr^{2} + \frac{dt^{2}}{1 - \frac{2M}{t}} + t^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad ; \quad t \to 0$$

$$ds^{2} = -dt^{2} + a_{0}^{2}t^{\frac{4}{3(w+1)}}\left(dx^{2} + dy^{2} + dz^{2}\right) \quad ; \quad t \to 0$$
(1)

- Information loss : What happens to the information trapped inside black holes ? What is the final stage of Hawking evaporation ? Possible stable black hole remnants accounting for part of dark matter ;
- **Quantum gravity** (QG) (or Emergent gravity, or modifications of quantum theory ?) : Gravity is perturbatively non-renormalizable, i.e. not possible to quantize like all the other fundamental fields
 - □ Path integral : Asymptotic Safety & Causal Dynamical Triangulations ; ... ?
 - □ Hamiltonian : Wheeler-DeWitt equation ; Loop Quantum Gravity ;
 - $\hfill\square$ Higher dimensions : String theory ; Supergravity ; ... ?
 - Higher order gravities : Stelle gravity ; Conformal gravity ; Non-local gravity ; Horava-Lifshitz ;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Introduction : Modified gravity and infrared issues

- Whatever the high energy completion of GR is, it should have an expansion in terms of high energy **corrections** as an effective field theory ;
- ٠ To distinguish between those corrections, make use of known principles :
 - Second order field equations : no ghosts & unitarity :
 - Stability :

0.

- Renormalizable/quantum gravity inspired corrections ;
- Symmetry principles : etc . . .
- Other issues at large scales :
 - Dark energy (Λ ?)
 - Dark matter (primordial black holes, right-handed neutrino ?)
 - ٠ Hubble tension

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	•0	0	0000
		00	00000	00000000

Formalisms of General Relativity : "Gravity = Geometry of spacetime"

- What action should be modified ? General Relativity is a peculiar theory which can be expressed in terms of completely different fields ;
- Assuming that gravity is described in terms of the geometry of space-time means that it depends on a metric field (or a frame) and an affine connection ;
- Theorem : The most general affine connection decomposes as (cf Unicity of Levi-Civita connection) :

$$\bar{\Gamma}^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\mu\nu} + K^{\sigma}{}_{\mu\nu} + L^{\sigma}{}_{\mu\nu} = \Gamma^{\sigma}{}_{\mu\nu} + \delta\Gamma^{\sigma}{}_{\mu\nu} \tag{2}$$

where

$$\Gamma^{\sigma}{}_{\mu\nu} = \frac{1}{2} g^{\sigma\rho} \left(\partial_{(\mu} g_{\nu)\rho} - \partial_{\rho} g_{\mu\nu} \right) \quad \text{Levi-Civita connection}$$

$$K^{\sigma}{}_{\mu\nu} = \frac{1}{2} \left(T^{\sigma}{}_{\mu\nu} + T_{(\mu}{}^{\sigma}{}_{\nu)} \right) \quad \text{Contorsion} \qquad (3)$$

$$L^{\sigma}{}_{\mu\nu} = \frac{1}{2} \left(Q^{\sigma}{}_{\mu\nu} - Q_{(\mu}{}^{\sigma}{}_{\nu)} \right) \quad \text{Disformation}$$

in terms of the fundamental geometric quantities (and metric field) :

$$T^{\sigma}{}_{\mu\nu} = \bar{\Gamma}^{\sigma}{}_{[\mu\nu]} \quad \text{Torsion}$$

$$Q_{\sigma\mu\nu} = \bar{\nabla}_{\sigma}g_{\mu\nu} \quad \text{Non-metricity}$$

$$(4)$$

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	0.	0	0000
		00	00000	0000000
				000000

• These quantities give rise to the (post-Riemannian) curvature

$$\bar{R}^{\gamma}{}_{\sigma\mu\nu} = \partial_{[\mu}\bar{\Gamma}^{\gamma}{}_{\nu]\sigma} + \bar{\Gamma}^{\gamma}{}_{[\mu|\rho}\bar{\Gamma}^{\rho}{}_{|\nu]\sigma} = R^{\gamma}{}_{\sigma\mu\nu}\left(g\right) + \nabla_{[\mu}\delta\Gamma^{\gamma}{}_{\nu]\sigma} + \delta\Gamma^{\gamma}{}_{[\mu|\rho}\delta\Gamma^{\rho}{}_{|\nu]\sigma} \tag{5}$$

- Geometrical interpretations :
 - □ Riemann Curvature R: Given three vectors U, V, W: parallel transport W along closed parallelogram $\{U, V\}$, then

$$\delta W^{\mu} = R_{\mu\nu\rho\sigma} W^{\nu} U^{\rho} V^{\sigma} \tag{6}$$

 \Box Torsion (% Lie Derivative) : Given two vectors U, V : the parallelogram made of parallel transports (% flows) closes only up to a translation ;

$$T(U,V) = \bar{\nabla}_U V - \bar{\nabla}_V U - [U,V] \tag{7}$$

□ Non-metricity : parallel transport changes length :

$$U^{\mu}\bar{\nabla}_{\mu}\left(V^{\nu}V_{\nu}\right) = -V^{\mu}V^{\nu}U^{\sigma}Q_{\sigma\mu\nu} \neq 0 \tag{8}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 国 ○ ○ ○ ○

Summary	Introduc
0	00

Classification of modified gravity theories 0 00000 Modified gravity 0000 0000000 0000000

Formalisms of General Relativity

- Further motivations : If gravity is emergent (cf no sense to quantize Navier-Stokes), similar to elastic media with microstructure. E.g. In continuum theory of lattice defects (see Hehl (94)) :
 - \Box Non-metricity emerges from density of point defects ;
 - □ Torsion emerges from density of line defects ;
- In order to know which theory to modify, need to make a choice between the following equivalent formalisms :
- Metric formalism (historical) : Gravity = Riemann Curvature ;

$$I[g_{\mu\nu}] = \int d^4x \sqrt{-g} \ (R - 2\Lambda) \,, \tag{9}$$

• Palatini formalism (metric-compatible) ;

$$I\left[g_{\mu\nu},\bar{\Gamma}^{\sigma}_{\mu\nu}\right] = \int d^4x \sqrt{-g} \left(g^{\sigma\nu}\delta^{\mu}_{\gamma}\bar{R}^{\gamma}_{\ \sigma\mu\nu} - 2\Lambda\right),\tag{10}$$

 \Box Enjoy an additional local symmetry % GR, projective invariance :

$$\bar{\Gamma}^{\sigma}_{\mu\nu} \to \bar{\Gamma}^{\sigma}_{\mu\nu} + A_{\mu}\delta^{\sigma}_{\nu} , \qquad \bar{R}_{\mu\nu} \to \bar{R}_{\mu\nu} + F_{\mu\nu} (A)$$
(11)

 \Box Necessary (in first order formalism) in Loop Quantum Gravity (Immirzi parameter $\gamma^{-1} \varepsilon^{\mu
u
ho\sigma} \bar{R}_{\mu
u
ho\sigma}$;

Summary	Introductio
)	00

Formalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity 0000 0000000 0000000

• Teleparallel equivalents of GR (|| transport does not depend on path) :

$$I_{\mathsf{GR}}\left[g_{\mu\nu},\bar{\Gamma}^{\sigma}_{\mu\nu}\right] = \int d^4x \sqrt{-g} \left(\bar{R}+\delta\Gamma\right) = \int d^4x \sqrt{-g} \left(R+\nabla_{\mu}\left(\delta\Gamma^{\mu\nu}{}_{\nu}-\delta\Gamma_{\nu}{}^{\nu\mu}\right)\right) \tag{12}$$

where

$$\delta\Gamma = \delta\Gamma^{\mu\nu}{}_{\sigma}\delta\Gamma^{\sigma}{}_{\mu\nu} - \delta\Gamma^{\sigma}{}_{\sigma\nu}\delta\Gamma^{\nu\mu}{}_{\mu} , \quad \delta\Gamma^{\sigma}{}_{\mu\nu} = K^{\sigma}{}_{\mu\nu} + L^{\sigma}{}_{\mu\nu} = \frac{1}{2}\left(T^{\sigma}{}_{\mu\nu} + T_{(\mu}{}^{\sigma}{}_{\nu)} + Q^{\sigma}{}_{\mu\nu} - Q_{(\mu}{}^{\sigma}{}_{\nu)}\right)$$
(13)

- \Box Teleparallel equivalent of GR : Gravity = Torsion ($ar{R}=Q=0$) ;
- \Box Symmetric Teleparallel equivalent of GR : Gravity = Non-metricity ($\bar{R} = T = 0$) ;

Features :

* Quadratic actions not unique ;

$$L = \alpha^{\mu\nu\alpha\beta\gamma\delta} (g) Q_{\mu\nu\alpha} Q_{\beta\gamma\delta} + \beta^{\mu\nu\alpha\beta\gamma\delta} (g) T_{\mu\nu\alpha} T_{\beta\gamma\delta}$$
(14)

- * The actions are Lorentz invariant only up to boundary terms ;
- \star Coupling with matter field : More complicated prescription are needed ;
- Purely affine (Eddington (1923)) (Q=0) : Solve $g(\Gamma)$ in Palatini ;

$$I\left[\Gamma^{\sigma}_{\mu\nu}\right] = \frac{1}{\Lambda} \int d^4x \sqrt{-\det\left(\bar{R}_{(\mu\nu)}\right)} \tag{15}$$

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00	•	0000
		00	00000	00000000

Modified gravity

General action for modified gravity ;

$$I = \int \underbrace{d^{D}x}_{\text{Dimensionality}} L \begin{bmatrix} \{g_{\mu\nu}, \Gamma^{\alpha}_{\mu\nu}\}, \{\psi, \phi, A_{\mu}, A^{a}_{\mu}\}, \{\phi, v_{\mu}, f_{\mu\nu}\}, \{\lambda\}, \{\lambda\}, \{\lambda\}, \{\lambda\}, \{\partial^{n}\} \end{bmatrix}$$
(16)

- Geometrical fields : metric & affine connection ;
- Matter fields : scalar, vector, gauge field, spinor, higher rank tensors, other spins ;
- Background structures : time coordinate, aether, fiducial metric ;
 - Can break Lorentz & diffeomorphism invariances ;
 - Although it is possible to restore symmetries by Stuckelberg fields (cf artificial/substantial gauge symmetries, Dirac (55), Francois (2023));
- Notice that same form of corrections in different formalisms can be widely inequivalent f(R), f(Q), f(T), Born-Infeld type action :

$$I\left[g_{\mu\nu},\Gamma^{\sigma}_{\mu\nu}\right] = \int d^4x \sqrt{-\det\left(g_{\mu\nu} + \bar{R}_{(\mu\nu)}\right)} \tag{17}$$

which is Ghost free in Palatini and has a ghost in the metric formalism ;

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00	0	0000
		00	00000	00000000

Theoretical criterions

- Unicity
- Stability : positive energy (no ghosts : a > 0) and no gradient instability (b > 0):

$$L = a\dot{\phi}^2 - bg^{ij}\partial_i\phi\partial_j\phi \tag{18}$$

- All classical field theories in physics have second order equations of motion
- Have some kind of internal symmetries or participate (gauge fields, charged particle, Higgs, etc). In particular Conformal Invariance :

$$I[g_{\mu\nu}] = I\left[e^{\phi}g_{\mu\nu}\right] \tag{19}$$

- Unification : cf metric affine, Kaluza Klein
- Similar exact solutions structure as GR & primary % secondary hair
- Simplicity : scalar fields are good theoretical labs because they are the simplest possible modifications : just 1 additional degree of freedom % GR.

ary	Introduction
	00

Formalisms of General Relativity

Classification of modified gravity theories $\circ \\ \circ \bullet \circ \circ \circ$

Modified gravity 0000 0000000 0000000

Theoretical criterion : Lovelock unicity theorem

 Lovelock-Lanczos gravity (LLG) is the only purely metric (UV) extension of GR w. diffeomorphism invariance and 2^{sd} order field equations;

$$I = \frac{1}{2\kappa} \int_{\mathcal{M}} d^D x \sqrt{-g} \sum_{p=0}^{\lfloor D/2 \rfloor} \alpha_p \mathcal{L}_p , \qquad \mathcal{L}_p = \frac{1}{2^p} \delta^{\mu_1 \nu_1 \dots \mu_p \nu_p}_{\sigma_1 \rho_1 \dots \sigma_p \rho_p} \prod_{r=1}^p R^{\sigma_r \rho_r}_{\mu_r \nu_r} , \qquad (20)$$

where $R^{\mu\nu}_{\sigma\rho} = g^{\gamma\mu}R_{\sigma\rho\gamma}^{\ \nu}$ and $\delta^{\mu_1...\mu_p}_{\sigma_1...\nu_p} = \delta^{\mu_1}_{[\nu_1}...\delta^{\mu_p}_{\nu_p]}$, $\mathcal{L}_0 = 1 , \quad \mathcal{L}_1 = R , \quad \mathcal{L}_2 = R^2 - 4R^{\mu}_{\nu}R^{\nu}_{\mu} + R^{\sigma\rho}_{\mu\nu}R^{\mu\nu}_{\sigma\rho} ,$ (21)

- □ Topological in D = 2p, because \propto to the Euler characteristic $\chi(\mathcal{M})$ (= genus of closed orientable manifolds); Trivial in D < 2p;
- Unique purely gravitational theory whose Palatini formalism always admits a Levi-Civita solution ;
- $\hfill\square$ Appears in the low-energy effective action of String Theory ;
- $\hfill\square$ Related to Chern-Simons and Born-Infeld theories of gravity ;

Summary S ormalisms of General Relativity

Classification of modified gravity theories \circ $\circ \circ \circ \circ \circ \circ$ Modified gravity 0000 00000000 0000000

Theoretical criterions : quantum gravity predictions

Although we do not have a consensus on a quantum gravity theory, there are many results regarding the description of gravitating systems at small scales which can be obtained in quantum field theory in curved spacetimes and semi-classical gravity ;

- What is the gravitational field of an electron, of an atom, etc... ?
- What is the effect of quantum fields on black hole horizons, on an expanding Universe ?

(

- □ Hawking radiation : black hole evaporate ;
- □ Particle production in an expanding universe ;
- Semi-classical gravity ⇐⇒ (Classical gravity + Quantum matter + backreaction)

$$G_{\mu\nu} = \frac{8\pi G}{c^4} \left\langle \hat{T}_{\mu\nu} \right\rangle \tag{22}$$

Valid for $E \ll E_{\text{Planck}} \approx 10^{19} \text{GeV}$ and small quantum fluctuations.

・ロット (四)・ (目)・ (日)・ (日)

ummary	Introduc
	00

Formalisms of General Relativity

Classification of modified gravity theories \circ

Modified gravity 0000 0000000 0000000

Two predictions for high energy gravity

- QFTCST and semi-classical gravity yields the Trace Anomaly :
 - □ Quantum Conformal Field Theories (CFT) are rigorously defined QFTs (cf. "cut-off free") ; Quantum Conformal Invariance implies :

$$\eta^{\mu\nu} \langle 0|\hat{T}_{\mu\nu}|0\rangle_{\rm ren} = 0 \tag{23}$$

□ When considered in (classical) (d = 2p)-dimensional curved spacetime, a so-called Trace Anomaly appears :

$$g^{\mu\nu}\langle 0|\hat{T}_{\mu\nu}|0\rangle_{\mathsf{ren}} = a\,\mathcal{E}_p + \dots = a\left(\frac{1}{2^p}\delta^{\mu_1\nu_1\dots\mu_p\nu_p}_{\sigma_1\rho_1\dots\sigma_p\rho_p}\prod_{r=1}^p R^{\sigma_r\rho_r}_{\mu_r\nu_r}\right) + \dots$$
(24)

 The Quantum Conformal Invariance is broken by the so-called Euler densities/Critical Lovelock gravity;
 In two spacetime dimensions, the Hawking effect is due entirely to the trace anomaly, [Christensen and Fulling, Phys.Rev.D15(1977)].

Therefore, the (quantum) effective equation for gravity should account for that term :

$$G_{\mu\nu} + \zeta \mathfrak{G}_{\mu\nu} + \dots = \kappa T_{\mu\nu} , \quad g^{\mu\nu} \mathfrak{G}_{\mu\nu} = \mathcal{E}_p \stackrel{4D}{=} \mathcal{G} = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \tag{25}$$

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00 00	0 00000	0000 00000000 0000000

Universal correction to the Bekenstein-Hawking Entropy found in many QG approaches :

- □ Perturbative quantum gravity [Solodukhin, Phys.Rev.**D**51, 618 (1995)]
- □ String theory [Maldacena, Strominger, Witten, JHEP 9712:002,(1997)]
- Loop quantum gravity [Engle, Noui, Perez, Phys.Rev.Lett. 105, (2010)].

$$S = \frac{A}{4} + \zeta \log(A) + \dots$$
(26)

Is it possible to find local effective field theories of d-dimensional gravity with these (quantum) properties ?

Summary	Introduction	Formalisms of General Relativity	Classification of r
0	00	00	0

Modified gravity

2^{sd} order field equations : 1. Unicity theorems - Horndeski

• Scalar-tensor theory : Horndeski (1974)

$$I_{\text{Horndeski}}\left[g_{\mu\nu},\phi\right] = \int d^4x \sqrt{-g} \sum_{n=2}^{5} \mathcal{L}_n^{\text{H}} \qquad X = -g^{\mu\nu}\phi_{\mu}\phi_{\nu} , \quad \phi_{\mu} = \nabla_{\mu}\phi , \quad \phi_{\mu\nu} = \nabla_{\mu}\nabla_{\nu}\phi \qquad (27)$$

$$\mathcal{L}_{2}^{\mathsf{H}} := G_{2}(\phi, X) , \quad \mathcal{L}_{3}^{\mathsf{H}} := G_{3}(\phi, X) \Box \phi , \quad \mathcal{L}_{4}^{\mathsf{H}} := G_{4}(\phi, X) R + G_{4,X} \delta^{\alpha\beta}_{\mu\nu} \phi^{\mu}_{\alpha} \phi^{\nu}_{\beta} \mathcal{L}_{5}^{\mathsf{H}} := G_{5}(\phi, X) G^{\mu}_{\nu} \phi^{\nu}_{\mu} - \frac{1}{6} G_{5,X} \delta^{\alpha\beta\rho}_{\mu\nu\sigma} \phi^{\mu}_{\alpha} \phi^{\nu}_{\beta} \phi^{\sigma}_{\rho} .$$
(28)

• U(1)-tensor theory : Horndeski (1976)

$$I_{\rm U(1)}\left[g_{\mu\nu}, A_{\mu}\right] = \int d^4x \sqrt{-g} \left(R + \mathscr{L}\left(F_{\mu\nu}F^{\mu\nu}, {}^*F_{\mu\nu}F^{\mu\nu}\right) + \gamma \,{}^*F_{\sigma\rho}\,{}^*F^{\mu\nu}R^{\sigma\rho}_{\mu\nu}\right),\tag{29}$$

where ${}^*F^{\rho\sigma}=\frac{1}{2}\varepsilon^{\mu\nu\rho\sigma}F_{\mu\nu}$ and $R^{\mu\nu}_{\sigma\rho}=g^{\gamma\mu}R_{\sigma\rho\gamma}{}^\nu$

ummary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
)	00	00	0 00000	0000
				0000000

Horndeski theories accounting for the trace anomaly : 2D

In two dimensions, a scalar-tensor theory with these properties has been found from a dimensional regularization of Einstein gravity (the first Critical Lovelock theory); (Mann, (1993)):

Consider a conformal metric $\bar{g}_{\mu\nu} = e^{\phi}g_{\mu\nu}$,

$$\mathfrak{L}_{(1)} = \lim_{d \to 2} \frac{\sqrt{-\bar{g}}\bar{R} - \sqrt{-g}R + \dots}{d-2} = \frac{\phi}{2} \left(R - \frac{1}{2} \Box \phi \right)$$
(30)

so that half-onshell, it reduces to the famous two-dimensional Polyakov quantum gravity action (Polyakov, (1981))

$$2\frac{\delta\mathfrak{L}_1}{\delta\phi} = R - \Box\phi = 0 \implies \phi = \frac{1}{\Box}R \implies \mathfrak{L}_1 = \frac{1}{4}R\frac{1}{\Box}R \tag{31}$$

This theory accounts for the trace anomaly :

$$\mathcal{E}_1 = R = \kappa \, T_{\mu\nu} g^{\mu\nu} \tag{32}$$

Introduction Formalis

Classification of modified gravity theories $\overset{O}{_{00000}}$

Modified gravity

Horndeski theories accounting for the trace anomaly : 4D

- In four dimensions, a scalar-tensor theory with these properties has been found from :
 - * Renormalization Group flows Komargodski (2011)
 - * Compactification of higher-dimensional Lovelock gravity Van Acoleyen (2011), Charmousis (2015)
 - * Dimensional regularization of Gauss-Bonnet gravity Hennigar (2020), Fernandes (2020)

The theory is given by the (ghost-free) theory (w. $\phi_{\mu}=\partial_{\mu}\phi$) :

$$I = \int d^4x \sqrt{-g} \left[R + \zeta \left(\frac{\phi}{2} \mathcal{L}_2 - G^{\mu}_{\nu} \phi_{\mu} \phi^{\nu} - \frac{1}{2} \phi^{\zeta} \phi_{\zeta} \Box \phi - \frac{\left(\phi^{\zeta} \phi_{\zeta}\right)^2}{8} \right) \right]$$
(33)

and account from the trace anomaly and the logarithmic correction to the entropy :

$$R + \frac{\zeta}{2} \mathcal{E}_2 = \kappa T_{\mu\nu} g^{\mu\nu} , \quad S = \frac{A}{4} + 2\pi\zeta \log \frac{A}{A_0}$$
(34)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q ()

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00	0	0000
		00	00000	00000000

2^{sd} order field equations : Conformally invariant theories in 4D

• Exact solutions, identical to that of Lovelock (for FLRW, spherically symmetric and slowly rotating black hole) but in lower dimensions, e.g. for regularization of Gauss-Bonnet gravity,

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{2}^{2}, \quad f(r) = 1 + \frac{r^{2}}{2\alpha}\left(1 - \sqrt{1 + 4\alpha\left(\frac{2M}{r^{3}} + \frac{\Lambda}{3}\right)}\right),$$

$$\phi_{\pm}(t,r) = qt - 2\log\left(\frac{r}{r_{0}}\right) \pm \int dr \frac{\sqrt{q^{2}r^{2} + 4f(r)}}{rf(r)} \quad \longrightarrow \quad \text{secondary hair } q \qquad (35)$$

• This theory is closely related to conformal invariance, assuming only conformal invariant field equation of the scalar field (Fernandes (2020)), the unique four-dimensional scalar-tensor action with second order equations of motion is :

$$\begin{split} I &= \int d^4x \sqrt{-g} \left(R - 2\Lambda \right) + \int d^4x \sqrt{-\tilde{g}} \left(\beta \tilde{R} - 2\lambda \right) + \gamma \lim_{D \to 4} \frac{1}{D - 4} \int d^Dx \left(\sqrt{-\tilde{g}} \tilde{\mathcal{G}} - \sqrt{-g} \mathcal{G} \right) \\ &= \int d^4x \left(R - 2\Lambda + \beta \left(\frac{R}{6} \phi^2 + g^{\mu\nu} \phi_\mu \phi_\nu \right) - 2\lambda \phi^4 + \alpha \left(\frac{\phi}{2} \mathcal{L}_2 - G^\mu_\nu \phi_\mu \phi^\nu - \frac{1}{2} \phi^\zeta \phi_\zeta \Box \phi - \frac{\left(\phi^\zeta \phi_\zeta \right)^2}{8} \right) \right) \end{split}$$
(3)

Summary O duction

Classification of modified gravity theories 0 00000 Modified gravity

Higher-order : 1. UV improved theories

- One way to bypass Lovelock theorem is to allow interactions with higher (than two) order field equations ;
- Properties and features :
 - \Box Yields additional degrees of freedom (more initial conditions needed) ;
 - \Box Improves the UV behaviour of the fields (higher powers of momentum in integrals) ;
 - $\hfill \square$ In some cases, equivalent to Pauli-Villars regularization ;
- Examples :

 \Box Stelle Gravity (77) : Renormalizable ; scale and conformal invariant UV corrections ;

$$I = \int d^4x \sqrt{-g} \left(R + \alpha R^2 + \beta C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} \right)$$
(37)

Bopp-Podolsky action (40, 42)

$$I_{BP} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{a^2}{2} \partial_\mu F^{\mu\nu} \partial^\rho F_{\rho\nu} \right)$$
(38)

□ One photon and one ghost-like "Pauli-Villars" massive photon (a Proca field) of mass $1/a^2$ □ Non-singular modified Coulomb potential for specific boundary cdts : $V(r) = \frac{q}{r} \left(1 - e^{-r/a}\right)$ ummary Intr 00 ction

Formalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity

Higher-order : 2. Ostrogradski ghost

• Higher order derivatives generically implies additional degrees of freedom and usually have negative kinetic energy for these. Consider the Pais-Uhlenbeck oscillator,

$$L = \dot{q}^{2} + \alpha \dot{q}^{2} - \beta q^{2} \iff L_{\text{equiv}} = \phi^{2} + \alpha \dot{q}^{2} - \beta q^{2} + \lambda \left(\ddot{q} - \phi \right)$$
$$= \phi^{2} + \alpha \dot{q}^{2} - \beta q^{2} - \left(\dot{\lambda} \dot{q} + \lambda \phi \right) + \text{b.t.}$$
(39)

 \Box At the level of the Lagrangian, solving $\delta L_{
m equiv}/\delta\phi=2\phi-\lambda=0$, in ϕ and defining we obtain

$$L_{\text{equiv}}|_{\phi(\lambda)} = \alpha \dot{\gamma}^2 - \frac{\dot{\lambda}^2}{4\alpha} + V(\lambda, \gamma) , \quad \text{with} \quad \gamma = q - \frac{\lambda}{2\alpha}$$
 (40)

so the kinetic energy has the wrong sign ;

 $\hfill\square$ At the level of the Hamiltonian, considering instead

$$\tilde{L}_{\text{equiv}} = \dot{\phi}^2 + \alpha \phi^2 - \beta q^2 + \lambda \left(\dot{q} - \phi \right) , \quad \text{with} \quad \{p, \psi\} = \frac{\partial \tilde{L}_{\text{equiv}}}{\partial \partial_t \{q, \phi\}}$$
(41)

we obtain,

$$H = p\dot{q} + \psi\dot{\phi} - \tilde{L}_{\text{equiv}} = -\frac{1}{4}\psi^2 + \phi p + \tilde{V}(q,\phi) \tag{42}$$

ımm	ary		

Classification of modified gravity theories 0 00000

Higher-order : 3. Ostrogradski theorem and caveats

- Ostrogradski theorem : A non-degenerate theory with higher order equations of motion yields a Hamiltonian that is linear in one of the momenta and so is unbounded from below ;
- This does not necessarily yield classical instability :
- Theorem (Liapunov) : If $V(q, \dot{q})$ is an integral of motion with a strict minimum at the equilibrium position $q = \dot{q} = 0$, then this equilibrium point is stable.
- In some cases, the associated quantum theory has negative norm states and the theory suffers from a quantum instability ;
- However, we will see that there are some caveats :
 - □ In quantum field theories : examples of non-perturbative QED and Non-local gravity
 - $\hfill\square$ Different Hamiltonians can yields same classical field equations : some can be bounded from below : f(R) theory ;
 - $\hfill\square$ More generally, the energy in (metric) gravity is a very subtle notion ;
 - □ Degenerate theories ;

ummary

ion For 00

Formalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity

Higher-order : 2. Ghosts in quantum field theories

- Klein-Gordon, propagator and particle production $I = \frac{1}{2} \int d^4x \phi \left(\Box m^2 \right) \phi \longrightarrow G(q) = \frac{1}{q^2 m^2}$
- Effective (quantum) actions are usually non-local, for example for QED :

$$\Gamma_0 = -\frac{1}{4} \int d^4 x F_{\mu\nu} P\left(\Box\right) F^{\mu\nu}, \quad P\left(q^2\right) = 1 - \frac{\alpha}{3\pi} \log\left(\frac{q^2 - 4m_e^2}{4m_e^2}\right) \quad \text{at one loop} \tag{43}$$

It vanishes (Landau pole) at $q \approx 10^{227}$ GeV ($q \approx 10^{34}$ GeV for the standard model) : Perturbative theory breaks down. It can be seen as a ghost.

- However, non-perturbative (resummation of loops) form-factor *P*(□) can solve the issue and be ghost-free, even though they have ghosts (artifacts) in perturbation (see Platania 2020)
- Generalization for gravity : Non-local gravity (see Beneito 2022)

$$I = \int d^4x \sqrt{-g} \left(R + R\gamma_0 \left(\Box \right) R + R_{\mu\nu} \gamma_1 \left(\Box \right) R^{\mu\nu} \right)$$
(44)

• Finally, some theories with Ostrogradski ghost can be quantized and are unitary (no ghost) (see Donoghue 2021)

$$I = \frac{1}{2} \int d^4x \left(\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2 - \frac{1}{M^2} \left(\Box \phi \right)^2 \right) \tag{45}$$

Summary D tion F

Formalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity

Higher-order : 3. The case of f(R)

- Not all higher order theories have ghosts, even if (one of the many forms of) their Hamiltonian is linear in one of the momenta ;
- Consider the case of f(R) gravity :

$$S = \int d^4x \sqrt{-g} f(R) \equiv \int d^4x \sqrt{-g} \left(f(\phi) + \frac{df(\phi)}{d\phi} (R - \phi) \right)$$
(46)

whose field equations are indeed higher order :

$$F(R)R_{\mu\nu} - \frac{1}{2}f(R)g_{\mu\nu} - \nabla_{\mu}\nabla_{\nu}F(R) + g_{\mu\nu}\Box F(R) = 0, \qquad F(R) = \partial f/\partial R$$
(47)

- Under a conformal transformation, it reduces to a ghost-free minimally coupled scalar-tensor theory ;
- For instance, the Starobinsky model of inflation given by

$$S = \int d^4x \sqrt{-g} \left(R + \frac{\lambda}{16} R^2 \right) \tag{48}$$

yields after the above redefinition followed by a conformal transformation :

$$S \equiv \int d^4x \sqrt{-g} \left(R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right), \quad V(\phi) = \frac{1}{\lambda} \left(1 - \exp\left(-\phi/\sqrt{3}\right) \right)^2 \tag{49}$$

ary Intro 00 Classification of modified gravity theories 0 00000 Modified gravity

Higher-order : 4. Energy of (metric) gravitational theories

- The gravitational energy (Hamiltonian of GR) is vanishing onshell for manifold without boundary ;
- Hamiltonian formalism of General Relativity : For any non-null vector n (ie $g_{\mu\nu}n^{\mu}n^{\nu} \neq 0$),

$$R + 2\delta^{\mu\nu}_{\sigma\rho}\nabla_{\mu}\left[\frac{n^{\sigma}\nabla_{\nu}n^{\rho}}{n_{\gamma}n^{\gamma}}\right] = \delta^{\xi\mu\nu}_{\zeta\sigma\rho}\left(\frac{n_{\xi}n^{\zeta}}{n_{\gamma}n^{\gamma}}\right)\left[\frac{1}{2}R^{\sigma\rho}_{\mu\nu} + 2\frac{\nabla_{\mu}n^{\sigma}\nabla_{\nu}n^{\rho}}{n_{\gamma}n^{\gamma}}\right]$$
(50)

• If we define the projector orthogonal to n,

$$h^{\mu}_{
u} = \delta^{\mu}_{
u} - \frac{n^{\mu}n_{
u}}{n^{\gamma}n_{\gamma}}, \quad \text{which implies} \quad h_{\mu
u}n^{
u} = 0, \quad \text{and} \quad \delta^{\xi\mu
u}_{\zeta\sigma
ho} \left(\frac{n_{\xi}n^{\zeta}}{n_{\gamma}n^{\gamma}}\right) = h^{\mu
u}_{\sigma
ho} = h^{\mu}_{\sigma}h^{
u}_{
ho} - h^{\mu}_{
ho}h^{
u}_{\sigma} \tag{51}$$

• With this method, the extrinsic curvature appears naturally as an algebraic object. Defining

$$K^{\mu}_{\nu} = h^{\mu}_{\alpha} h^{\beta}_{\nu} \nabla_{\beta} n^{\alpha} \,, \tag{52}$$

and noting that $G^\xi_\zeta=-\frac{1}{4}\delta^{\xi\mu\nu}_{\zeta\sigma\rho}R^{\sigma\rho}_{\mu\nu}$, we obtain

$$R + 2\delta^{\mu\nu}_{\sigma\rho}\nabla_{\mu}\left[\frac{n^{\sigma}\nabla_{\nu}n^{\rho}}{n_{\gamma}n^{\gamma}}\right] = -2\left(\frac{n^{\mu}n^{\nu}}{n_{\gamma}n^{\gamma}}\right)G_{\mu\nu} + \frac{2}{n_{\gamma}n^{\gamma}}h^{\mu\nu}_{\sigma\rho}K^{\sigma}_{\mu}K^{\rho}_{\nu}$$
(53)

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00	0	0000
		00	00000	00000000
				000000

• We obtain for a manifold without boundary

$$I = \int d^4x \sqrt{-g} R = \int d^4x \sqrt{-g} \left(-H_{\perp} + 2K^{\mu}_{\nu} \pi^{\nu}_{\mu} \right)$$
(54)

where

$$H_{\perp} = 2\left(\frac{n^{\mu}n^{\nu}}{n_{\gamma}n^{\gamma}}\right)G_{\mu\nu} \quad , \qquad \pi^{\mu}_{\sigma} = \frac{1}{n_{\gamma}n^{\gamma}}h^{\mu\nu}_{\sigma\rho}K^{\rho}_{\nu} \iff K^{\rho}_{\nu} = n_{\gamma}n^{\gamma}h^{(-1)}{}^{\sigma\rho}_{\mu\nu}\pi^{\mu}_{\sigma} \tag{55}$$

• Introducing a ADM foliation adapted to the vector n, ie $M = R \times \Sigma$ where $h_{\mu\nu}$ is the projector to Σ and n_{μ} is its normalized normal (set $n^2 = -1$)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -N^{2}dt^{2} + h_{ab}\left(dx^{a} + N^{a}dt\right)\left(dx^{b} + N^{b}dt\right), \quad n_{\mu} = -\frac{\delta_{\mu}^{0}}{N}$$
(56)

- \Box Latin indices are spatial a, b = 1, 2, 3
- $\hfill\square\hfill\hf$
- \Box D the covariant derivative compatible with h_{ab}

ummary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
)	00	00	0	0000
		00	00000	0000000

• Using the decompositions of extrinsic curvature and 4D determinant,

$$K_{ab} = \frac{1}{2N} \left(\partial_0 h_{ab} - D_{(a} N_{b)} \right), \quad \sqrt{-g} = N \sqrt{|h|}$$
(57)

we obtain

$$I = \int d^{4}x \sqrt{-g} \left(-H_{\perp} + 2K_{\nu}^{\mu}\pi_{\mu}^{\nu}\right)$$

=
$$\int dt \int_{\Sigma} d^{3}x \sqrt{|h|} \left[\pi^{ab}\partial_{0}h_{ab} - NH_{\perp} - N_{a}H^{a} \underbrace{-D_{(a}\left(N_{b})\pi^{ab}\right)}_{\text{Spatial boundary term}}\right] = \int dtL$$
(58)

where the vector constraint and scalar constraint (using the Gauss-Codazzi equation (*)) are given by

$$H_{a} = -2D_{b}\pi_{a}^{b}, \quad H_{\perp} = 2\left(\frac{n^{\mu}n^{\nu}}{n_{\gamma}n^{\gamma}}\right)G_{\mu\nu} = -\frac{1}{2}h_{\sigma\rho}^{\mu\nu}R_{\mu\nu}^{\sigma\rho} \stackrel{*}{=} -R^{(3)} + h_{\sigma\rho}^{\mu\nu}K_{\mu}^{\sigma}K_{\nu}^{\rho} = H_{\perp}\left[h_{ab}, \pi^{ab}\right]$$
(59)

Therefore, π_{ab} is the momentum density, N, N^a are Lagrange multipliers and the Hamiltonian vanishes onshell,

$$H = \int_{\Sigma} d^3x \left(\sqrt{h} \pi^{ab} \partial_0 h_{ab} - L \right) = \int_{\Sigma} d^3x \sqrt{h} \left[NH_{\perp} + N_a H^a \right] \stackrel{\text{onshell}}{=} 0 \tag{60}$$

ary I

Formalisms

Classification of modified gravity theories 0 00000 Modified gravity

Degenerate theories : Invertible disformal transformations

• It is possible to obtain equivalent theories from the previous second order Lagrangians by performing any invertible field transformations :

$$\tilde{g}_{\mu\nu} = \Phi g_{\mu\nu} + f_{(\mu\nu)}, \quad \text{with} \quad \det\left(\frac{\delta \tilde{g}_{\rho\sigma}}{\delta g_{\mu\nu}}\right) \neq 0$$
(61)

• Although, the Einstein and Jordan frames are equivalent : eg

$$\int d^4x \sqrt{-g} \left(R - 2\Lambda\right) + I_{\mathsf{M}}\left[\psi, g\right] \equiv \int d^4x \sqrt{-\tilde{g}} \left(\tilde{R} - 2\Lambda\right) + I_{\mathsf{M}}\left[\psi, \tilde{g}\right] \tag{62}$$

• This is no longer the case when the matter action couples to the Einstein frame metric :

$$\int d^{4}x \sqrt{-\tilde{g}} \left(\tilde{R} - 2\Lambda\right) + I_{\mathsf{M}}\left[\psi, g\right]$$
(63)

• Disformal transformation : contains derivative of a scalar and so generates higher-order equations of motion while preserving the degrees of freedom :

$$\tilde{g}_{\mu\nu} = \Phi\left(\phi, X\right) g_{\mu\nu} + \Psi\left(\phi, X\right) \phi_{\mu}\phi_{\nu} \tag{64}$$

 In addition, it is a very useful solution-generating-technique enabling to obtain exact solutions in highly non-trivial theories (see eg Babichev (2020)); ummary I

n Form

ormalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity

Degenerate theories : Pais-Uhlenbeck oscillator

• Why these higher order field equations have no ghost ? : Degenerate coupled Pais-Uhlenbeck oscillator

- Phase space : $\{p,q\}=\{\psi,\phi\}=\{P,Q\}=1$ and momenta :

$$p = \frac{\partial L_{\text{equiv}}}{\partial \partial_t q} = \lambda, \quad \psi = \frac{\partial L_{\text{equiv}}}{\partial \partial_t \phi} = 2\left(b\dot{Q} - \dot{\phi}\right), \quad P = \frac{\partial L_{\text{equiv}}}{\partial \partial_t Q} = 2\left(a\dot{Q} + b\dot{\phi}\right) + c\phi \tag{66}$$

 \Box If $a + b^2 \neq 0$, it is possible to express the velocities in terms of the momenta

$$\lambda = p, \quad \dot{Q} = \frac{1}{2(a+b^2)} \left(P + b\psi - c\phi \right), \quad \dot{\phi} = \frac{1}{2(a+b^2)} \left(bP - a\psi - bc\phi \right)$$
(67)

so we end up with 3 degrees of freedom with a ghost.

 $\hfill \mbox{If } a+b^2=0,$ we have a constraint among the momenta and the Lagrangian becomes

$$C = P + b\psi - c\phi = 0 \quad , \qquad L_{\text{equiv}} = \left(\dot{\phi} - b\dot{Q}\right)^2 + c\phi\dot{Q} - V\left(q,Q\right) + \lambda\left(\dot{q} - \phi\right) + \alpha\phi^2 \tag{68}$$

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00	0	0000
		00	00000	00000000

• 6-dimensional phase space : $\{p,q\} = \{\psi,\phi\} = \{P,Q\} = 1$, with coordinate q_i and momenta p_i , and primary constraint :

$$p = \lambda, \quad \psi = 2 \left(b \dot{Q} - \dot{\phi} \right), \quad C = P + b \psi - c \phi \approx 0$$
 (69)

• Adding the constraint to the theory via a Lagrange multiplier γ enables invert the velocities

$$H_{\text{tot}} = p\dot{q} + \psi\phi + P\dot{Q} - L_{\text{equiv}} + \left(\gamma - \dot{Q} - \frac{1}{4b^2}C\right)C = -\frac{1}{4}\psi^2 + p\phi - a\phi^2 + V(q,Q) + \gamma C = H_0 + \gamma C$$
(70)

The secondary and tertiary constraint (time evolution of the primary) yields,

$$\dot{C} = \{C, H_{\text{tot}}\} = \sum_{i=1}^{3} \left(\frac{\delta C}{\delta q_i} \frac{\delta H_{\text{tot}}}{\delta p_i} - \frac{\delta C}{\delta p_i} \frac{\delta H_{\text{tot}}}{\delta q_i} \right) = -bp + \frac{c}{2}\psi + 2\alpha b\phi - V_Q \approx 0$$

$$\ddot{C} = \{\dot{C}, H_{\text{tot}}\} = \{\dot{C}, H_0\} + \gamma\{\dot{C}, C\} \approx 0$$
(71)

where

$$\{\dot{C}, H_{\text{tot}}\} = -\frac{c}{2}p - \alpha b\psi + \alpha c\phi , \qquad \{\dot{C}, C\} = 2\alpha b^2 + \frac{c^2}{2} - V_{QQ}$$
(72)

□ If $\{\dot{C}, C\} \neq 0$, this fixes the Lagrange multiplier γ . (Otherwise keep going with quaternary etc)

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00 00	0 00000	0000 00000000 0000000

• Using the secondary constraint, we obtain the physical Hamiltonian which is quadratic in the momentum :

$$H_{\text{physical}} = -\frac{P^2}{4b^2} + \left(\alpha + \frac{c^2}{4b^2}\right)\phi^2 - \frac{\phi V_Q}{b} + V \tag{73}$$

• The theory possesses (6-2)/2 = 2 degrees of freedom and the Ostrogradski ghost has disappeared.

Summary	Introduction	Formalisms of General Relativity	Classification of modified gravity theories	Modified gravity
0	00	00	0	0000
		00	00000	00000000

Degenerate theories : Classifications of higher order theories

- Non-perturbative one-loop slowly varying approximation in QED : Euler-Heisenberg Lagrangian and its extensions;
- Scalar-tensor (DHOSTs) Langlois, Noui (2016), B. Achour (2016)

$$I_{\text{quadratic}} = \int d^4 x \sqrt{-g} \left(f(\phi, X) R + C^{\mu\nu\rho\sigma}(g, \phi, \phi_{\alpha}) \phi_{\mu\nu} \phi_{\rho\sigma} \right)$$
(74)

$$I_{\text{cubic}} = \int d^4x \sqrt{-g} \left(h\left(\phi, X\right) \phi^{\mu} \phi^{\nu} G_{\mu\nu} + C^{\mu\nu\rho\sigma\gamma\delta}\left(g, \phi, \phi_{\alpha}\right) \phi_{\mu\nu} \phi_{\rho\sigma} \phi_{\gamma\delta} \right)$$
(75)

• U(1)-tensor theory :

$$I_{\mathsf{quadratic}} = \int d^4x \sqrt{-g} \left(\mathscr{L}\left(F^2, {}^*FF\right) + \frac{1}{4} \mathscr{A}^{\mu\nu\rho\sigma}\left(F,g\right) R_{\mu\nu\rho\sigma} + \mathscr{B}^{\gamma\mu\nu,\delta\rho\sigma}\left(F,g\right) \nabla_{\gamma}F_{\mu\nu}\nabla_{\delta}F_{\rho\sigma} \right), \quad (76)$$

where \mathscr{A} and \mathscr{B} are the most general tensors built from $F_{\rho\sigma}$ with the corresponding symmetries.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Immary	Introduction	For
	00	00
		00

Formalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity

Degenerate theories

For quadratic scalar-tensor, degeneracy conditions obtained imposing

$$\mathcal{L}_{kin} = \mathcal{K}^{ijkl} K_{ij} K_{kl} + \mathcal{B}^{ij} \ddot{\phi} K_{ij} + \mathcal{A} \ddot{\phi}^2 + V\left(\dot{\phi}\right) = \mathcal{K}^{ijkl} \left(K_{ij} + \mathcal{E}_{ij} \ddot{\phi}\right) \left(K_{kl} + \mathcal{E}_{kl} \ddot{\phi}\right) + V\left(\dot{\phi}\right)$$
(77)

where $\{\mathcal{K}, \mathcal{B}, \mathcal{A}, \mathcal{E}\}$ come from $\{f, C\}$ and depend on $\phi, \dot{\phi}, \partial_i \phi$.

• Similarly for quadratic U(1)-tensor, degeneracy conditions obtained imposing

$$\mathcal{L}_{kin} = \mathcal{K}^{ijkl} K_{ij} K_{kl} + \mathcal{B}^{ijk} \dot{E}_k K_{ij} + \mathcal{A}^{ij} \dot{E}_i \dot{E}_j + V(E, B)$$

$$= \mathcal{K}^{ijkl} \left(K_{ij} + \mathcal{F}^a_{ij} \dot{E}_a \right) \left(K_{kl} + \mathcal{F}^b_{kl} \dot{E}_b \right) + V(E, B)$$
(78)

where $\{\mathcal{K}, \mathcal{B}, \mathcal{A}, \mathcal{F}\}$ and depend on E, B.

• Beyond Horndeski (obtained from disformal transformation of the Horndeski action)

$$\int d^4x \sqrt{-g} F_4(\phi, X) \, \varepsilon^{\mu\nu\rho\sigma} \, \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \, \phi_{\mu}\phi_{\alpha}\phi_{\nu\beta}\phi_{\rho\gamma} \tag{79}$$

Lovelock's unique purely metric action with third order field equations

$$\int d^4x \sqrt{-g} \star R^{\mu\nu}_{\alpha\beta} \star R^{\rho\sigma}_{\mu\nu} \star R^{\alpha\beta}_{\rho\sigma} \tag{80}$$

Summary	Introduction
0	00

Formalisms of General Relativity

Classification of modified gravity theories 0 00000 Modified gravity

Thank you for your attention !

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで