

Einstein Telescope: a 3rd-generation gravitational-wave detector

6th Univers du pôle A2C, 21 June 2024 Adrian Macquet - GW group

GW astronomy today

Laboratoire de Physique
des 2 Infinis

unive sité A Université

CNTS

- **→** 2024: ~200 detections (90 published from O1+O2+O3 and \sim 100 public alerts in O4).
- \rightarrow All from CBC sources.

3rd generation GW detectors

Einstein Telescope / Cosmic Explorer (CE)

- \rightarrow ~10 times more sensitive.
- \rightarrow Sensitive to lower frequencies (o(1 Hz)).

GW detectors sensitive to the amplitude -> detection volume x 1000.

Properties of compact objects

- \rightarrow Tighter constraints on population properties and evolution vs redshift (up to $z=20$)
- **→** Lower frequencies: higher masses (IMBH)
- \rightarrow Tests of GR.

Multi-messenger astronomy

Stochastic GW background

- BNS post-merger
- Core-collapse supernovae
- Magnetar flares / Fast radio bursts.
- \rightarrow Properties and phenomenology of NS.
- Astrophysical + cosmological component.
- Constrain cosmological models and scenarios.
- Window of observation before CMB.

Design of ET

Dual-recycled Fabry-Perot-Michelson interferometers

- **● Longer arms (>= 10 km).**
- **● Underground (~100m).**
	- \triangleright Mitigation of seismic noise.
- **● 2 sets of detector (xylophone):**
	- \triangleright HF: high laser power.
	- \triangleright LF: cryogenic.
- **● Triangular configuration.**
	- Good sky coverage.
	- $>$ Null stream.

Schematic optical layout of ET (credit: Rowlinson et al., Phys. Rev. D 103, 023004 (2021))

Current design: 6 V-shaped nested interferometers forming an equilateral triangle.

ET activities @ IJCLab in a nutshell

Instrumental activities

- Optics : squeezing
	- \Rightarrow squeezing source @ 1064 nm
	- ⇒ filtering cavities for LF and HF
	- ⇒ pyGWINC (simulation code)
- Interferometer ⇒ noise characterization
- Vacuum and Cryogenics (mechanical workshop) ⇒ design of vacuum towers with EGO ⇒ design of cryostat with KIT

(MAVERICS team) ⇒ mirror surface in-situ characterization and cleaning

tests on CALVA

Observational Science activities

- Mock Data Challenge (MDC)
- Multi-messenger follow-up (in particular for GRBs)
- Predictions for supernovae
- Synergies with LISA and 2G detectors
- Test of General Relativity (theory group)

General activities

- Computational infrastructure (IT group)
- Sustainability
- Project office (organization)

- LVK: \sim 1 CBC signal per day (O5).
- ET: \sim 1 signal per minute.

Much more signals in the data -> analyses need to cope with that.

- **→** Overlapping signals: disentanglement and Parameter Estimation (PE).
- \rightarrow CBC foreground mask other sources (stochastic background / other transients).
- ➔ Computational cost: PE is expensive
	- \triangleright Need rapid PE for EM follow-up (chirp mass and sky position).

ET Mock Data Challenge

Dataset simulating ET data (expected noise + realistic signal distribution)

Goal: test data analysis techniques and study signal recovery.

- ➢ Validate science objectives.
- \geq Anticipate potential issues.

Current MDC (T. Regimbau et al.):

- 1 month of data.
- Gaussian noise at ET design sensitivity.
- CBC distribution from most recent population models $(\sim]70000$ signals).

université LAJ Université

Distribution of signals in ET MDC

Modeled searches (matched filtering):

- Optimal detection statistic.
- Well-suited for CBCs
- Computationally expensive.
- Sensitive to errors in the waveform.
- Parameter space dependant on the template bank.

Unmodeled searches (excess of power):

- Sub-optimal.
- Suited for weakly modelled signals.

- Computationally cheaper.
- Sensitive to a wide variety of signals.

Can we use an unmodelled search to search for CBC signals in ET?

Search method

Unmodelled search: look for generic excess of power in detectors' data.

- Time-frequency representation.
- Pattern recognition algorithm.
- Cross-correlation between several detectors

Estimation of the chirp mass

- $\mathcal{M}_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
• Primary parameter of the waveform (controls amplitude and frequency evolution).
- Proxy for the total mass -> nature of compact object and potential EM counterpart.
- \rightarrow Compute time-frequency templates depending only Mc.
- \rightarrow Fit templates onto spectrogram and keep highest SNR.

Examples of templates fitted on

Results: detection of CBC

- 38% of BBH recovered
	- \geq 88% for M $>$ 100 solar masses
	- 70 BNS recovered
		- \geq 2.6 per days.
- ➔ **Not as efficient as dedicated CBC searches but still sensitive (especially for large masses).**

Results: estimation of the chirp mass

- ➔ Chirp mass (detector frame) well estimated for all detected BNS (rms error 1.4%).
- ➔ Fast analysis (~10s per 500s of data).
- \rightarrow Fast estimation of the chirp mass useful for MM astronomy (early warnings to EM observatories).

Conclusion

- ET will be \sim 10x more sensitive than Advanced LIGO/Virgo.
	- \triangleright Huge potential for astrophysics, cosmology, NS physics, tests of GR...
- Many instrumental challenges to overcome in next decade.
	- \triangleright IJCLab involved in squeezing, vacuum + leadership.
- Much more signals in the data: data analysis techniques have to be adapted.
	- \triangleright "Burst" searches could be used for CBC detection and fast PE of the chirp mass.
	- \triangleright Complementary to matched-filtering based searches.

Next steps: tests on more realistic MDCs (non-Gaussian noise, calibration errors, non-CBC sources…).

université Al Université **Cnrs**