

Einstein Telescope: a 3rd-generation gravitational-wave detector

6th Univers du pôle A2C, 21 June 2024 Adrian Macquet - GW group

GW astronomy today

Laboratoire de Physique des 2 Infinis

2024-03-14	01	02	— O3	— O4	— O5
LIGO	80 Mpc	100 Мрс	100-140 Мрс	150 160+ Mpc	240-325 Мрс
Virgo		30 Мрс	40-50 Мрс	40-80 Мрс	See text
KAGRA			0.7 Мрс	1-3 ≃10 Mpc Mpc	25-128 Mpc

CNIS

Université W Université

- → 2024: ~200 detections (90 published from O1+O2+O3 and ~100 public alerts in O4).
- \rightarrow All from CBC sources.

3rd generation GW detectors

Laboratoire de Physique des 2 Infinis

Einstein Telescope / Cosmic Explorer (CE)

- → ~10 times more sensitive.
- → Sensitive to lower frequencies (o(1 Hz)).

 \rightarrow

GW detectors sensitive to the amplitude -> detection volume x 1000.

Properties of compact objects

- Tighter constraints on population properties and evolution vs redshift (up to z=20)
- → Lower frequencies: higher masses (IMBH)
- → Tests of GR.

Multi-messenger astronomy

Stochastic GW background

- BNS post-merger
- Core-collapse supernovae
- Magnetar flares / Fast radio bursts.
 - Properties and phenomenology of NS.

- Astrophysical + cosmological component.
- Constrain cosmological models and scenarios.
- Window of observation before CMB.

Design of ET

Dual-recycled Fabry-Perot-Michelson interferometers

- Longer arms (>= 10 km).
- Underground (~100m).
 - Mitigation of seismic noise.
- 2 sets of detector (xylophone):
 - ➢ HF: high laser power.
 - > LF: cryogenic.
- Triangular configuration.
 - ➢ Good sky coverage.
 - Null stream.

Schematic optical layout of ET (credit: Rowlinson et al., Phys. Rev. D 103, 023004 (2021))

<u>Current design:</u> 6 V-shaped nested interferometers forming an equilateral triangle.

ET activities @ IJCLab in a nutshell

Instrumental activities

- **Optics : squeezing**
 - \Rightarrow squeezing source @ 1064 nm
 - \Rightarrow filtering cavities for LF and HF
 - \Rightarrow pyGWINC (simulation code)
- Interferometer \Rightarrow noise characterization
- Vacuum and Cryogenics (mechanical workshop) \Rightarrow design of vacuum towers with EGO \Rightarrow design of cryostat with KIT

(MAVERICS team) \Rightarrow mirror surface in-situ characterization and cleaning

tests on CALVA

Observational Science activities

- Mock Data Challenge (MDC)
- Multi-messenger follow-up (in particular for GRBs)
- Predictions for supernovae
- Synergies with LISA and 2G detectors
- Test of General Relativity (theory group)

General activities

- Computational infrastructure (IT group)
- Sustainability
- Project office (organization)

- LVK: ~1 CBC signal per day (O5).
- ET: ~1 signal per minute.

Much more signals in the data -> analyses need to cope with that.

- → <u>Overlapping signals</u>: disentanglement and Parameter Estimation (PE).
- → <u>CBC foreground</u> mask other sources (stochastic background / other transients).
- → <u>Computational cost:</u> PE is expensive
 - ➢ Need rapid PE for EM follow-up (chirp mass and sky position).

ET Mock Data Challenge

Dataset simulating ET data (expected noise + realistic signal distribution)

Goal: test data analysis techniques and study signal recovery.

- > Validate science objectives.
- > Anticipate potential issues.

Current MDC (T. Regimbau et al.):

- 1 month of data.
- Gaussian noise at ET design sensitivity.
- CBC distribution from most recent population models (~70000 signals).

Université W Université

Distribution of signals in ET MDC

Modeled searches (matched filtering):

- Optimal detection statistic.
- Well-suited for CBCs.
- Computationally expensive.
- Sensitive to errors in the waveform.
- Parameter space dependant on the template bank.

Unmodeled searches (excess of power):

- Sub-optimal.
- Suited for weakly modelled signals.

- Computationally cheaper.
- Sensitive to a wide variety of signals.

Can we use an unmodelled search to search for CBC signals in ET?

Search method

Unmodelled search: look for generic excess of power in detectors' data.

- Time-frequency representation.
- Pattern recognition algorithm.
- Cross-correlation between several detectors

Estimation of the chirp mass

- Primary parameter of the waveform (controls amplitude and frequency evolution). $\mathcal{M}_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$
- Proxy for the total mass -> nature of compact object and potential EM counterpart.
- → Compute time-frequency templates depending only Mc.
- → Fit templates onto spectrogram and keep highest SNR.

Examples of templates fitted on the spectrogram

Results: detection of CBC

- 38% of BBH recovered
 - > 88% for M > 100 solar masses
 - 70 BNS recovered
 - > 2.6 per days.
- Not as efficient as dedicated CBC searches but still sensitive (especially for large masses).

Results: estimation of the chirp mass

- → Chirp mass (detector frame) well estimated for all detected BNS (rms error 1.4%).
- → Fast analysis (~10s per 500s of data).
- → Fast estimation of the chirp mass useful for MM astronomy (early warnings to EM observatories).

Conclusion

• ET will be ~10x more sensitive than Advanced LIGO/Virgo.

- > Huge potential for astrophysics, cosmology, NS physics, tests of GR...
- Many instrumental challenges to overcome in next decade.
 - IJCLab involved in squeezing, vacuum + leadership.
- Much more signals in the data: data analysis techniques have to be adapted.
 - "Burst" searches could be used for CBC detection and fast PE of the chirp mass.
 - Complementary to matched-filtering based searches.

<u>Next steps:</u> tests on more realistic MDCs (non-Gaussian noise, calibration errors, non-CBC sources...).

