Application of multiple scattering theory to develop nuclear optical potentials

Matteo Vorabbi

July 10, 2025, IJCLab Seminar

Collaborators:

- Ashley Pitt
- Carlo Barbieri
- Carlotta Giusti
- Michael Gennari
- Paolo Finelli
- Petr Navrátil
- Vittorio Somà

Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

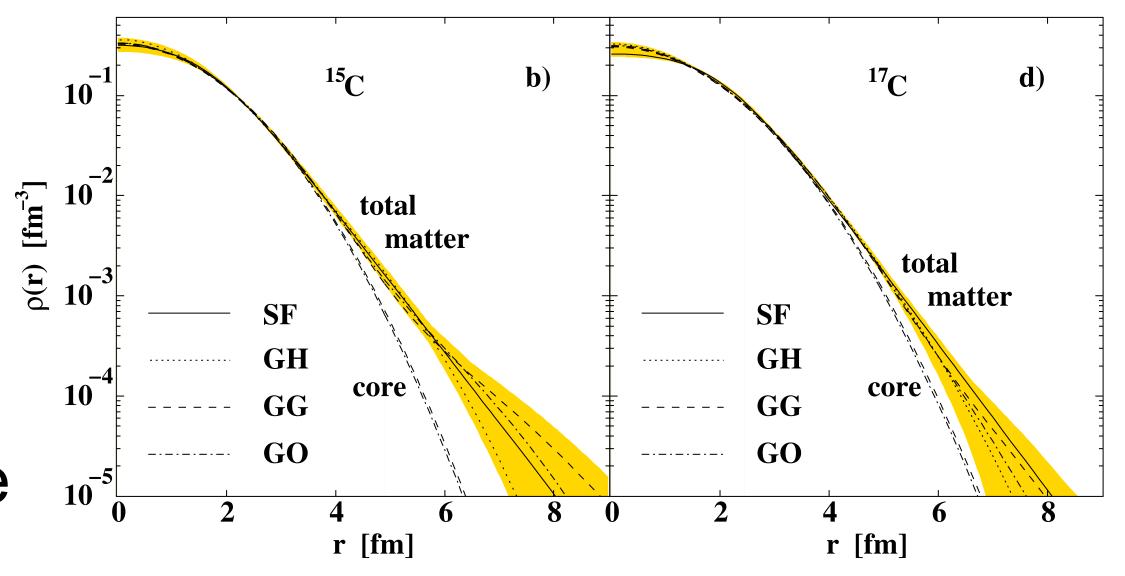
Motivations

- O Increasing experimental efforts to develop the technologies necessary to study the elastic proton scattering in inverse kinematics
- OAttempts to use such experiments to determine the matter distribution of nuclear systems at intermediate energies

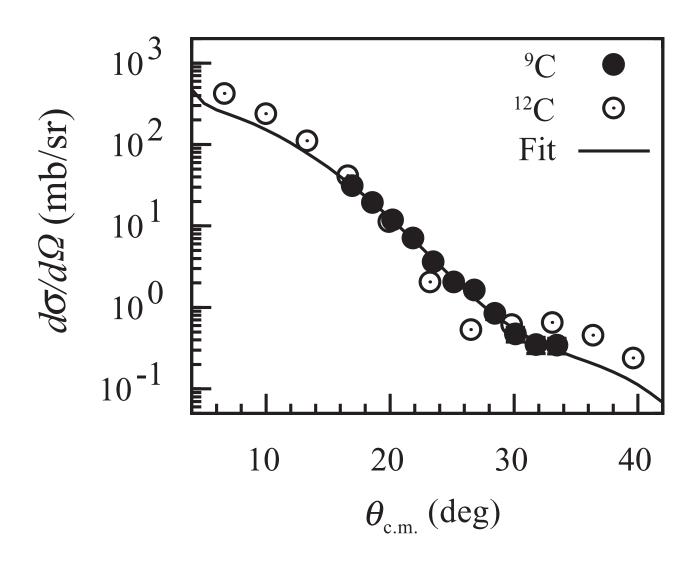
[Sakaguchi, Zenihiro, PPNP 97 (2017) 1–52]

- ☐ Measurements are not free from sizeable uncertainties
- ☐ The Glauber model is used to analyse the data
- ☐ An essential step in the data analysis is the subtraction of contributions from the inelastic scattering

Develop a microscopic approach to make reliable predictions for elastic and inelastic scattering



[Dobrovolsky et al., NPA 1008 (2021) 122154]



[Matsuda et al., PRC **87**, 034614 (2013)]

Optical potential

Phenomenological

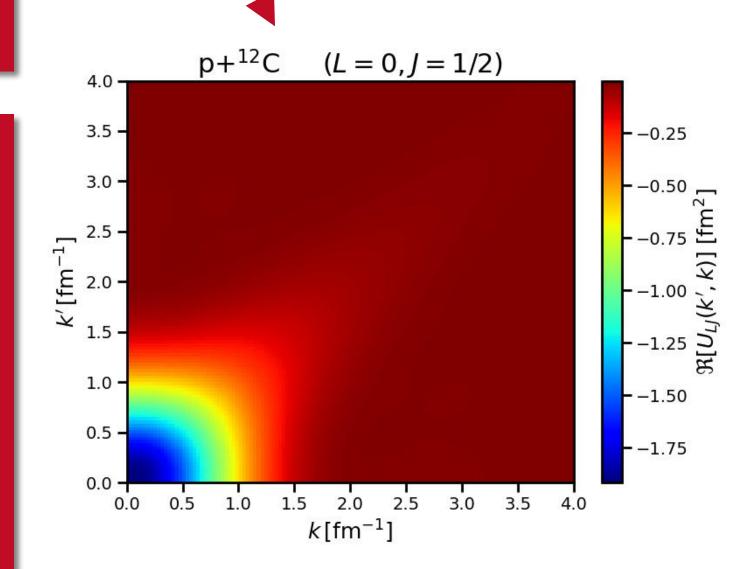
Unfortunately, current used optical potentials for low-energy reactions are phenomenological and primarily constrained by elastic scattering data.

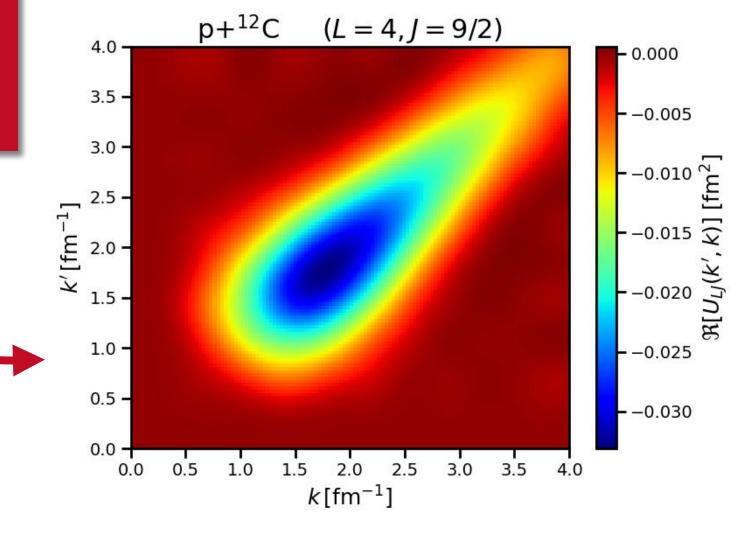
Unreliable when extrapolated beyond their fitted range in energy and nuclei

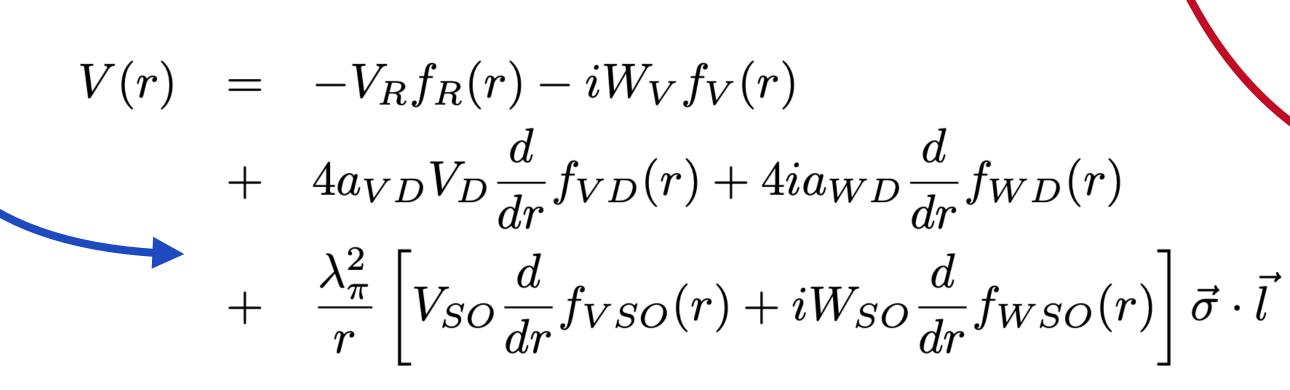
Microscopic

Existing microscopic optical potentials can be developed in a low- (Feshbach theory) or high-energy regime (Watson multiple scattering theory). Calculations are more difficult.

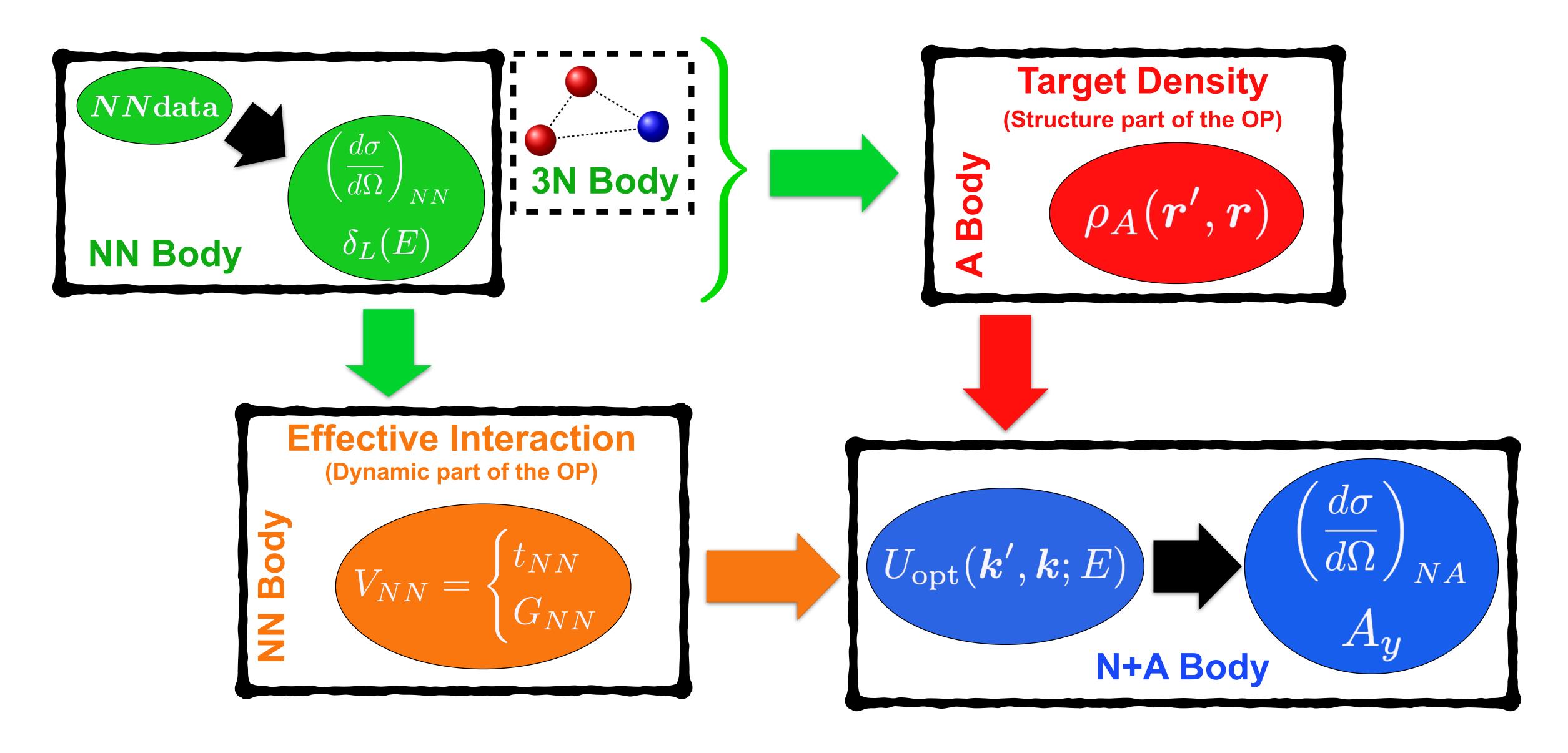
No fit to experimental data







Road map to the optical potential



Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

Lippmann-Schwinger equation for the nucleon-nucleus transition amplitude

$$T = V + VG_0(E)T$$

Projectile-target interaction

$$V = \sum_{i=1}^{A} v_{0i} + \sum_{i < j}^{A} w_{0ij}$$

Full 3N interaction is still missing!

Many-body propagator

$$G_0(E) = (E - H_0 + i\epsilon)^{-1}$$

$$H_0 = h_0 + H_A$$

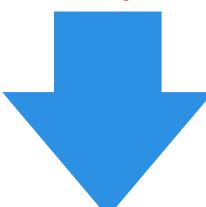
 h_0 = kinetic term of the projectile

Target Hamiltonian

$$H_A|\Psi_0\rangle = E_0|\Psi_0\rangle$$

Lippmann-Schwinger equation for the nucleon-nucleus transition amplitude

$$T = V + VG_0(E)T$$



$$T = U + UG_0(E)PT$$

$$U = V + VG_0(E)QU$$

Projection operators

$$P+Q=1$$

P space (elastic)

$$P = |\Psi_0\rangle\langle\Psi_0|$$

Q Space

$$Q = 1 - P$$

Transition amplitude for elastic scattering

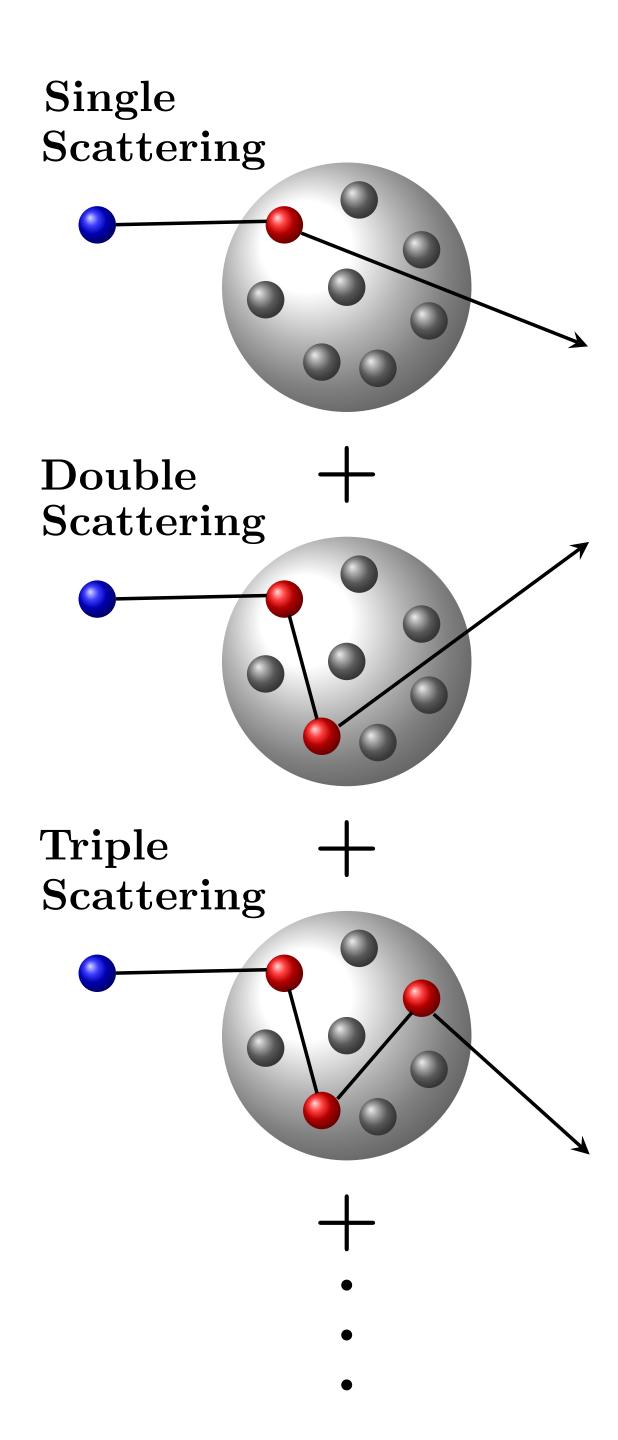
$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

The spectator expansion

[Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)]

$$U = \sum_{i=1}^{A} \tau_{0i} + \sum_{i,j\neq i}^{A} \tau_{0ij} + \sum_{i,j\neq i,k\neq i,j}^{A} \tau_{0ijk} + \dots$$

A terms

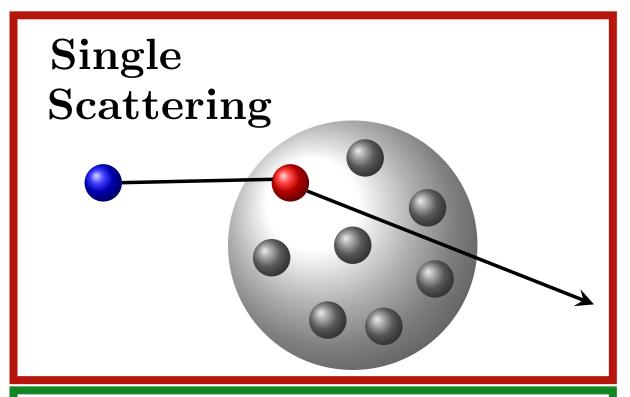


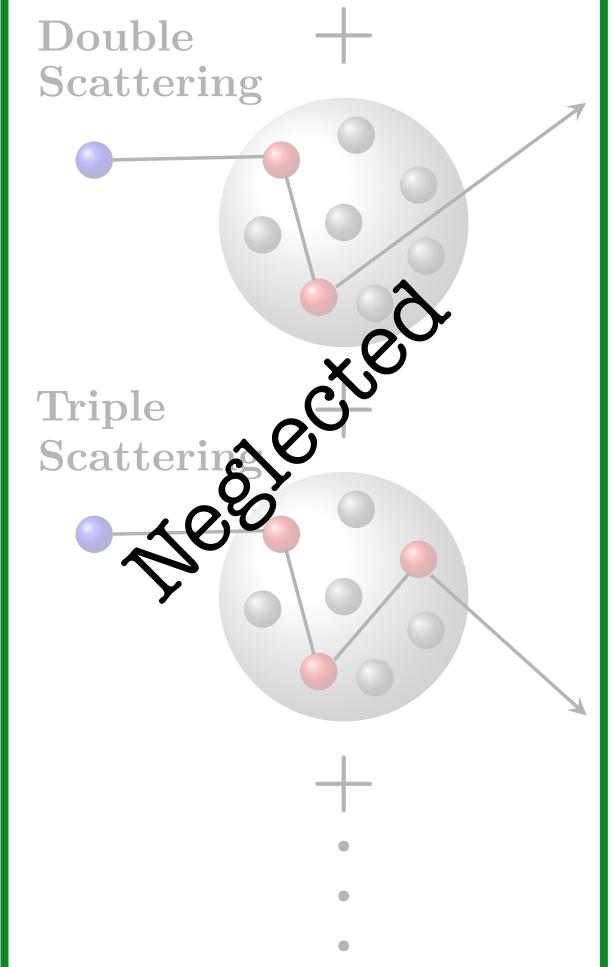
Transition amplitude for elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

The spectator expansion

[Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)]



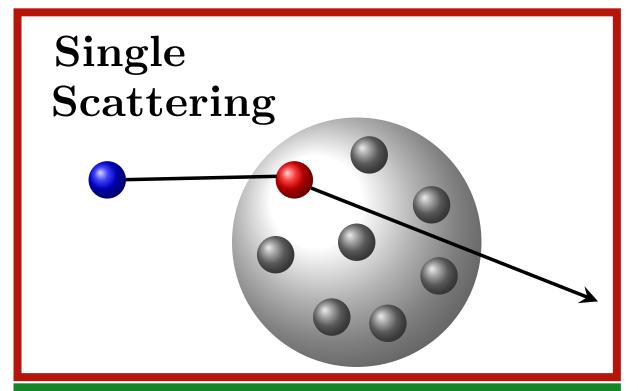


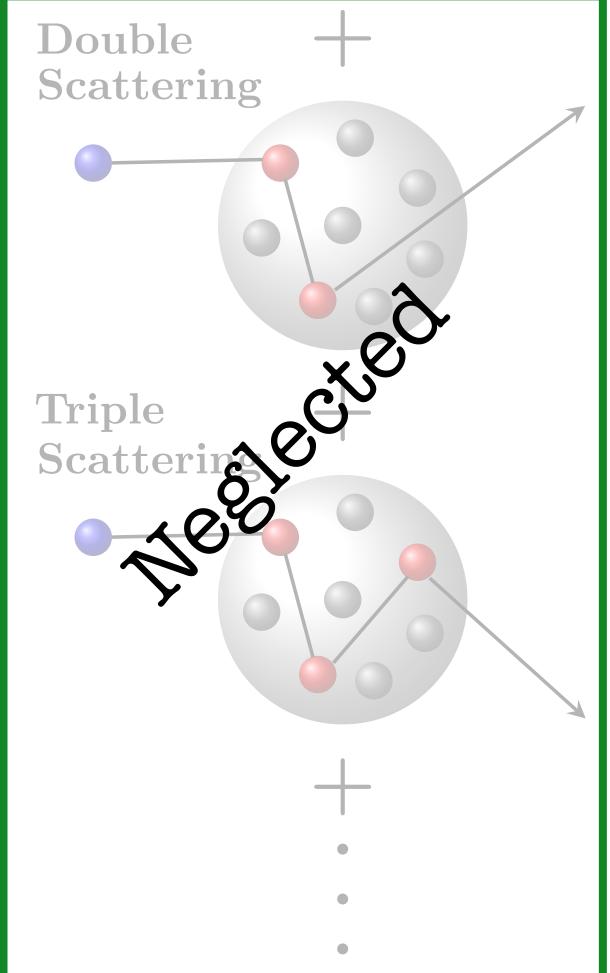
Transition amplitude for elastic scattering

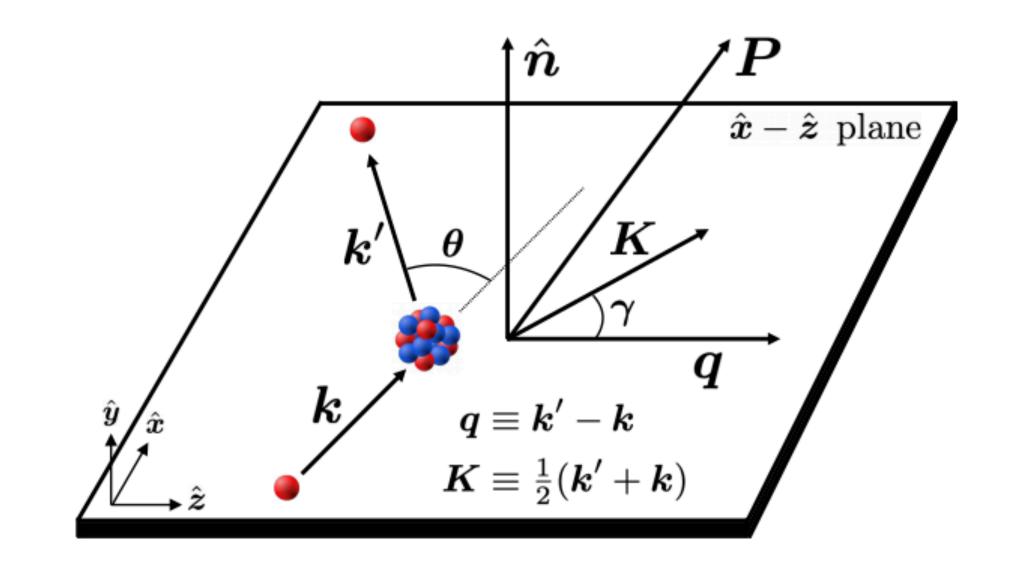
$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

The spectator expansion

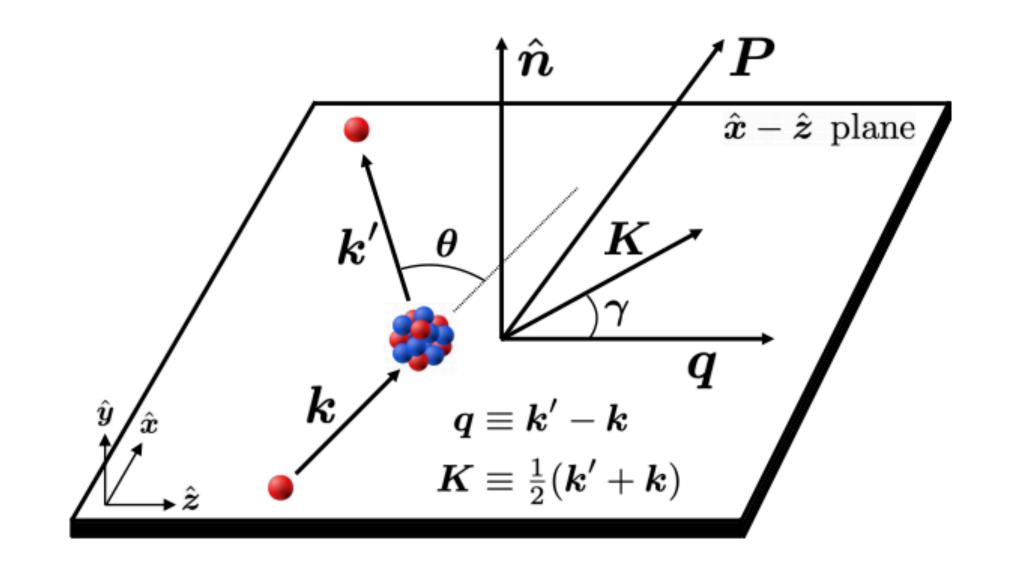
[Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)]







$$U_{\mathbf{p}}(oldsymbol{q},oldsymbol{K}) = \sum_{N=p,n} \int doldsymbol{P} \, \eta(oldsymbol{q},oldsymbol{K},oldsymbol{P}) \, t_{\mathbf{p}N}(oldsymbol{q},oldsymbol{K},oldsymbol{P}) \,
ho_N(oldsymbol{q},oldsymbol{P})$$

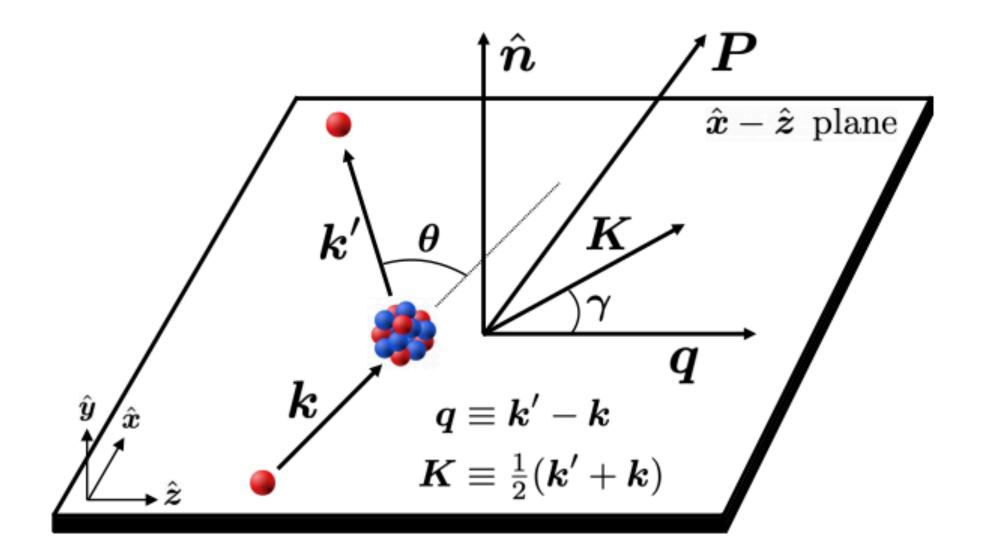


$$U_{\mathbf{p}}(oldsymbol{q},oldsymbol{K}) = \sum_{N=p,n} \int doldsymbol{P} \, \eta(oldsymbol{q},oldsymbol{K},oldsymbol{P}) \, t_{\mathbf{p}N}(oldsymbol{q},oldsymbol{K},oldsymbol{P}) \,
ho_N(oldsymbol{q},oldsymbol{P})$$

Free two-body scattering matrix

$$t_{0i} = v_{0i} + v_{0i} g_{0i} t_{0i}$$
$$g_{0i} = (E - h_0 - h_i + i\epsilon)^{-1}$$

- Simple one-body equation
- Can be solved easily
- Only NN interaction



$$U_{\mathbf{p}}(oldsymbol{q},oldsymbol{K}) = \sum_{N=p,n} \int doldsymbol{P} \, \eta(oldsymbol{q},oldsymbol{K},oldsymbol{P}) \, t_{\mathbf{p}N}(oldsymbol{q},oldsymbol{K},oldsymbol{P}) \,
ho_N(oldsymbol{q},oldsymbol{P})$$

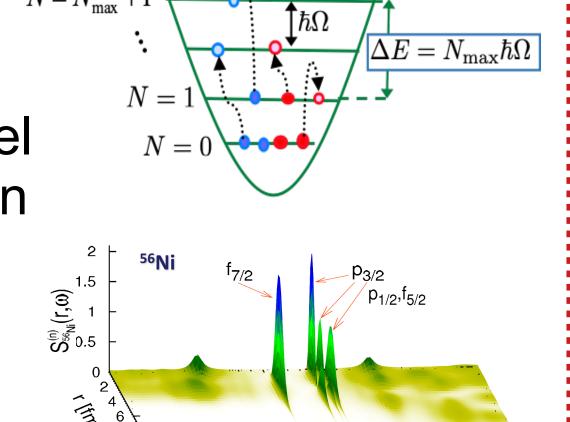
Free two-body scattering matrix

$$t_{0i} = v_{0i} + v_{0i} g_{0i} t_{0i}$$
$$g_{0i} = (E - h_0 - h_i + i\epsilon)^{-1}$$

- Simple one-body equation
- Can be solved easily
- Only NN interaction

Nonlocal one-body density

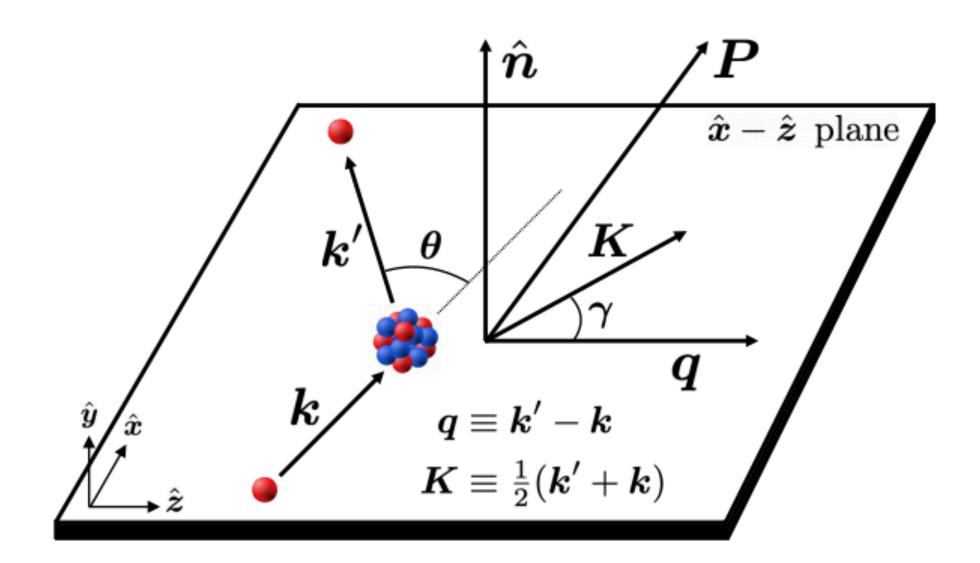
- Computationally expensive
- Obtained from the No-Core Shell Model or the Self-Consistent Green's Function
- Calculation performed with NN and
 3N interaction



Møller factor

$$t_{\mathbf{p}N}^{(NA)} = \eta \, t_{\mathbf{p}N}^{(NN)}$$

It imposes the Lorentz invariance of flux when we pass from the NA to the NN frame where the t matrices are evaluated



$$U_{\mathbf{p}}(oldsymbol{q},oldsymbol{K}) = \sum_{N=p,n} \int doldsymbol{P} \eta(oldsymbol{q},oldsymbol{K},oldsymbol{P}) t_{\mathbf{p}N}(oldsymbol{q},oldsymbol{K},oldsymbol{P})
ho_N(oldsymbol{q},oldsymbol{P})$$

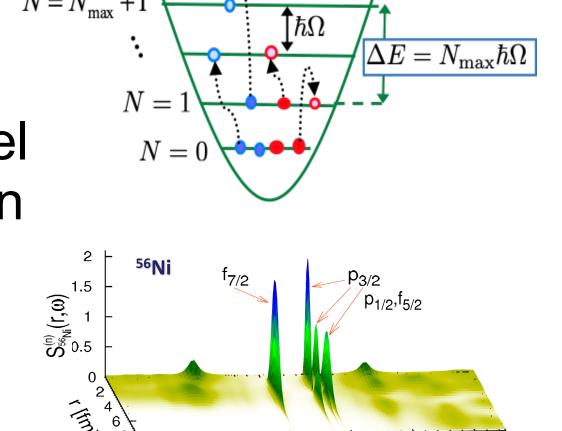
Free two-body scattering matrix

$$t_{0i} = v_{0i} + v_{0i} g_{0i} t_{0i}$$
$$g_{0i} = (E - h_0 - h_i + i\epsilon)^{-1}$$

- Simple one-body equation
- Can be solved easily
- Only NN interaction

Nonlocal one-body density

- Computationally expensive
- Obtained from the No-Core Shell Model or the Self-Consistent Green's Function
- Calculation performed with NN and
 3N interaction



Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

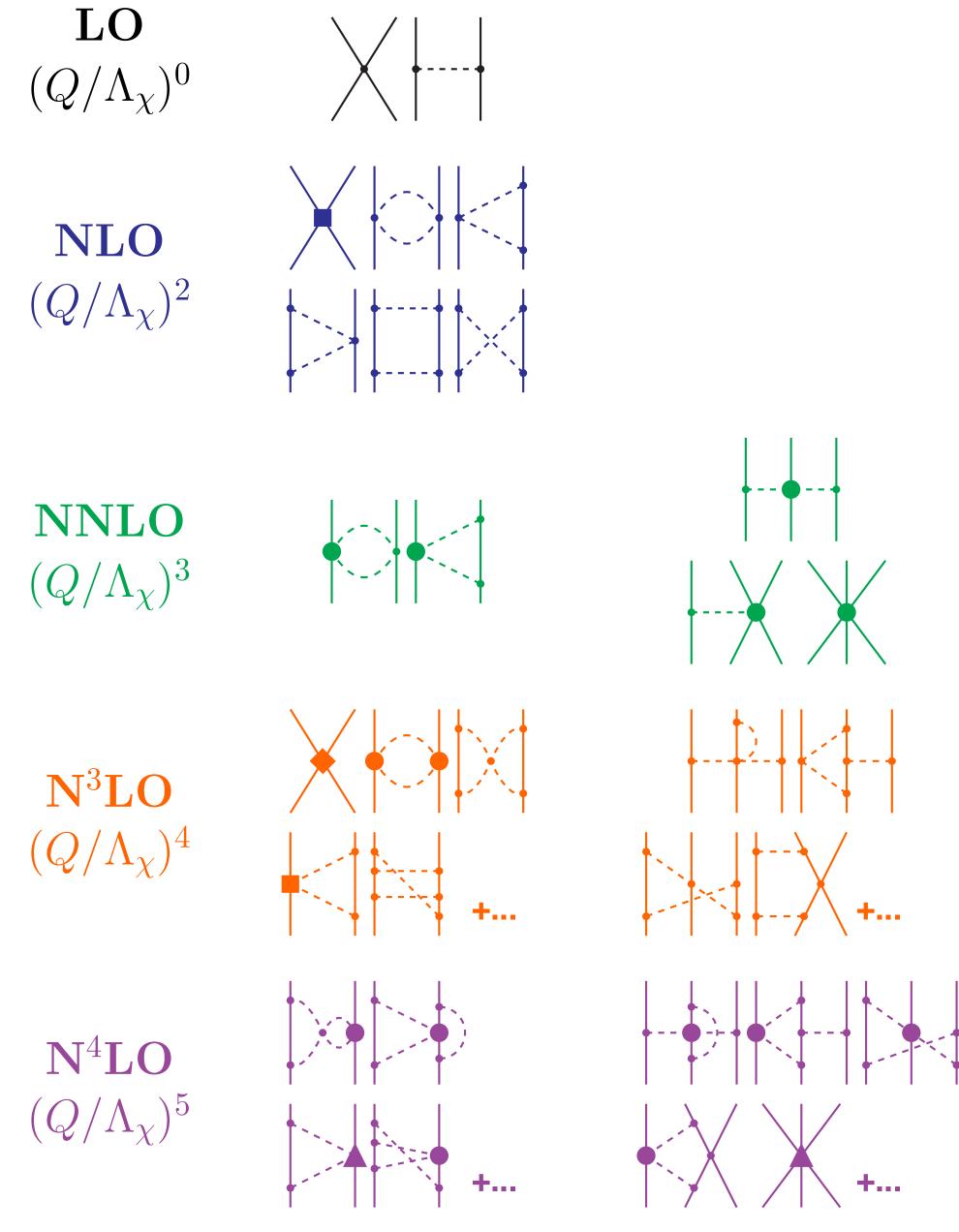
Chiral interactions

Advantages

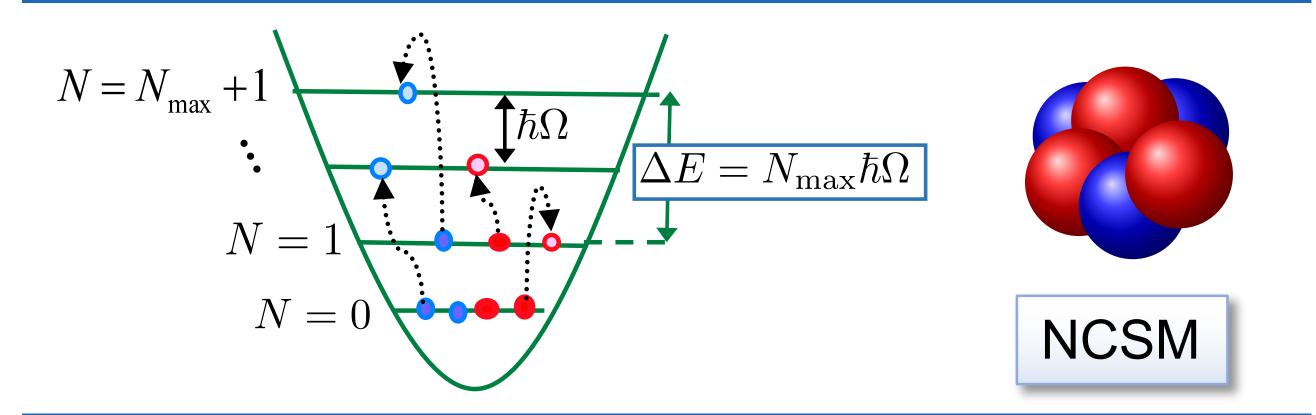
- QCD symmetries are consistently respected
- Systematic expansion (order by order we know exactly the terms to be included)
- Theoretical errors
- Two- and three-nucleon forces belong to the same framework

We use these interactions as the only input to calculate the effective interaction between projectile and target and the target density

\mathbf{LC} $(Q/\Lambda$
\mathbf{NL} $(Q/\Lambda$
$rac{\mathbf{NNI}}{(Q/\Lambda)}$
${f N}^3{f L}$ (Q/Λ)
N^4L



No-Core Shell Model



In collaboration with P. Navrátil and M. Gennari (TRIUMF)

- NN-N⁴LO + 3NInI (¹²C, ¹⁶O)
 - N⁴LO: Entem et al., Phys. Rev. C **96**, 024004 (2017)
 - 3NInI: Navrátil, Few-Body Syst. **41**, 117 (2007)
 - c_D & c_E: Kravvaris et al., Phys. Rev. C **102**, 024616 (2020)
- NN-N³LO + 3NInI (9,13C, 6,7Li, 10B)
 - N³LO: E&M, Phys. Rev. C **68**, 041001(R) (2003)
 - 3NInI: Navrátil, Few-Body Syst. **41**, 117 (2007)
 - c_D & c_E: Somà et al., Phys. Rev. C **101**, 014318 (2020)

LO)/\)⁰

 $(Q/\Lambda_\chi)^0$

 ${f NLO} \ (Q/\Lambda_\chi)^2$

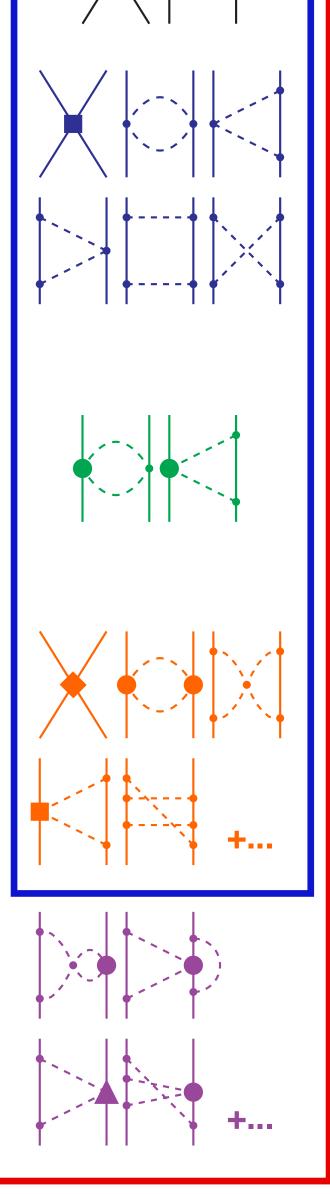
NNLO $(Q/\Lambda_{\chi})^3$

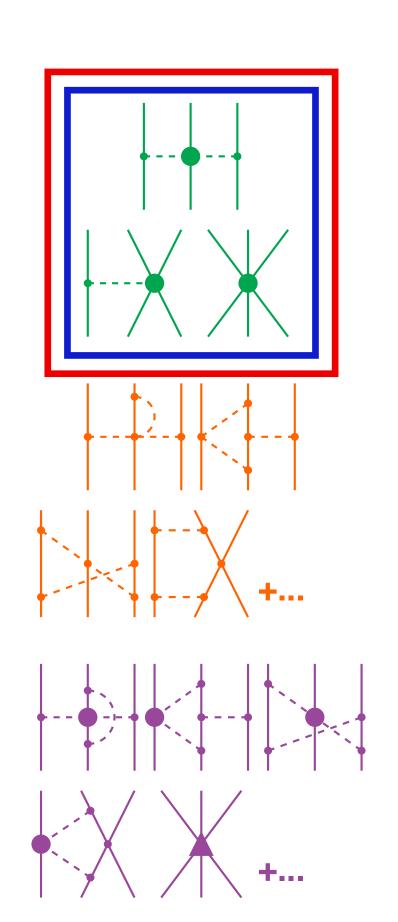
 ${f N}^3{f L}{f O}$ $(Q/\Lambda_\chi)^4$

 ${f N}^4{f L}{f O} \ (Q/\Lambda_\chi)^5$

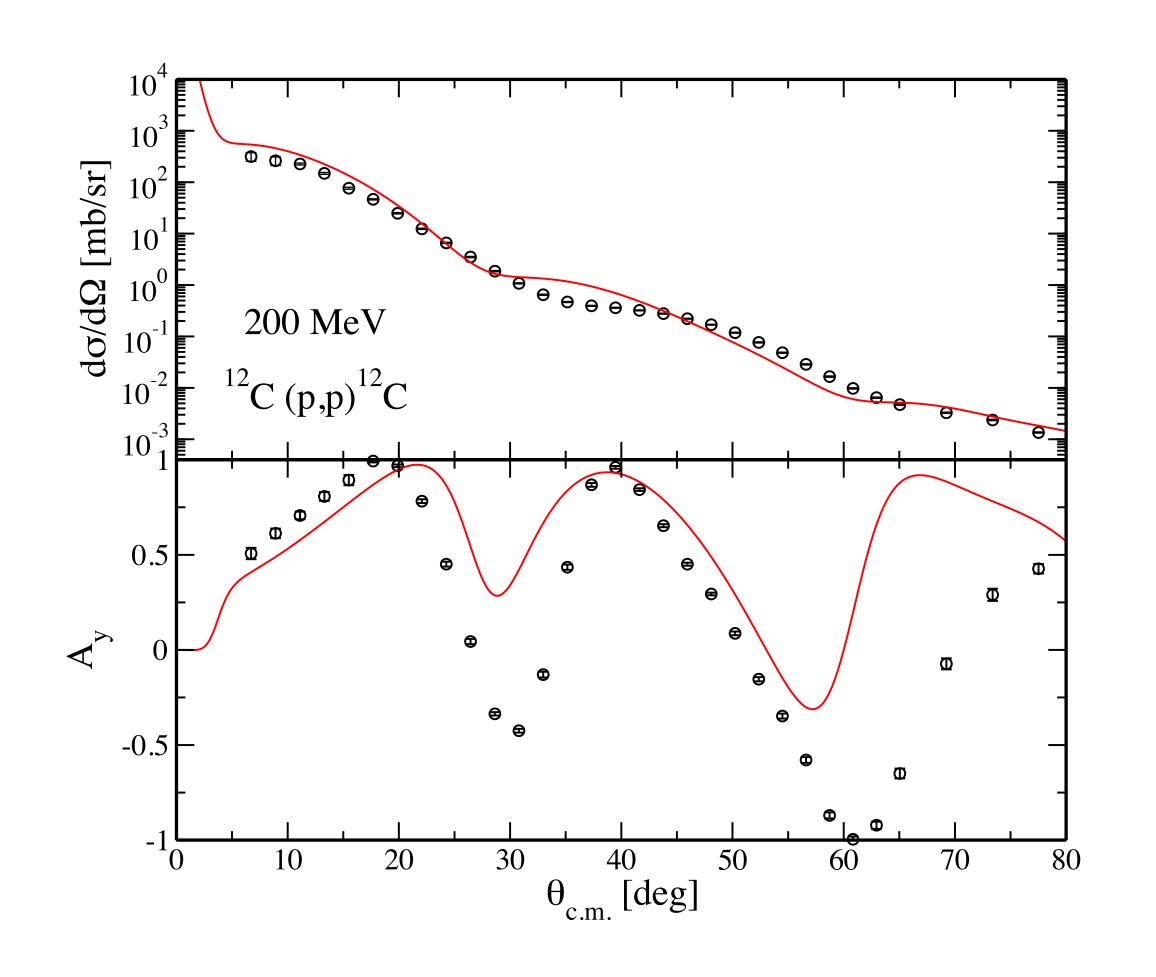
2N Force

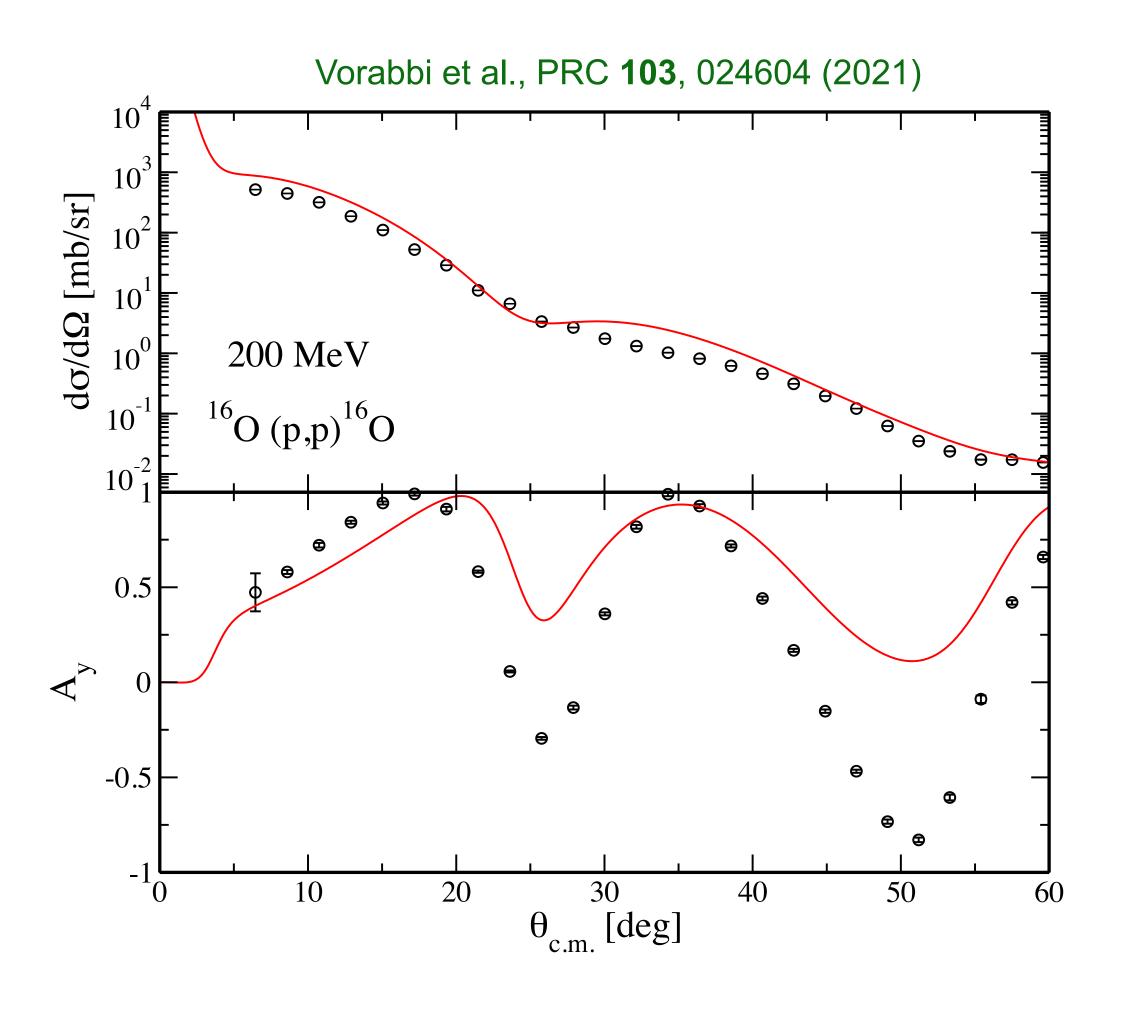
3N Force





Results for p+12C and p+16O with the basic model





- The t matrix is computed with the N⁴LO interaction
- The density is computed with the N⁴LO + 3NInI interaction

Assessing the impact of the 3N interaction

General equation for the optical potential

$$U = (V_{NN} + V_{3N}) + (V_{NN} + V_{3N})G_0(E)QU$$

Treatment of the 3N force

[Holt et al., Phys. Rev. C 81, 024002 (2010)]

$$V_{3N}=rac{1}{2}\sum_{i=1}^{A}\sum_{\substack{j=1\ j
eq i}}^{A}w_{0ij}pprox \sum_{i=1}^{A}\langle w_{0i}
angle$$
 Density dependent

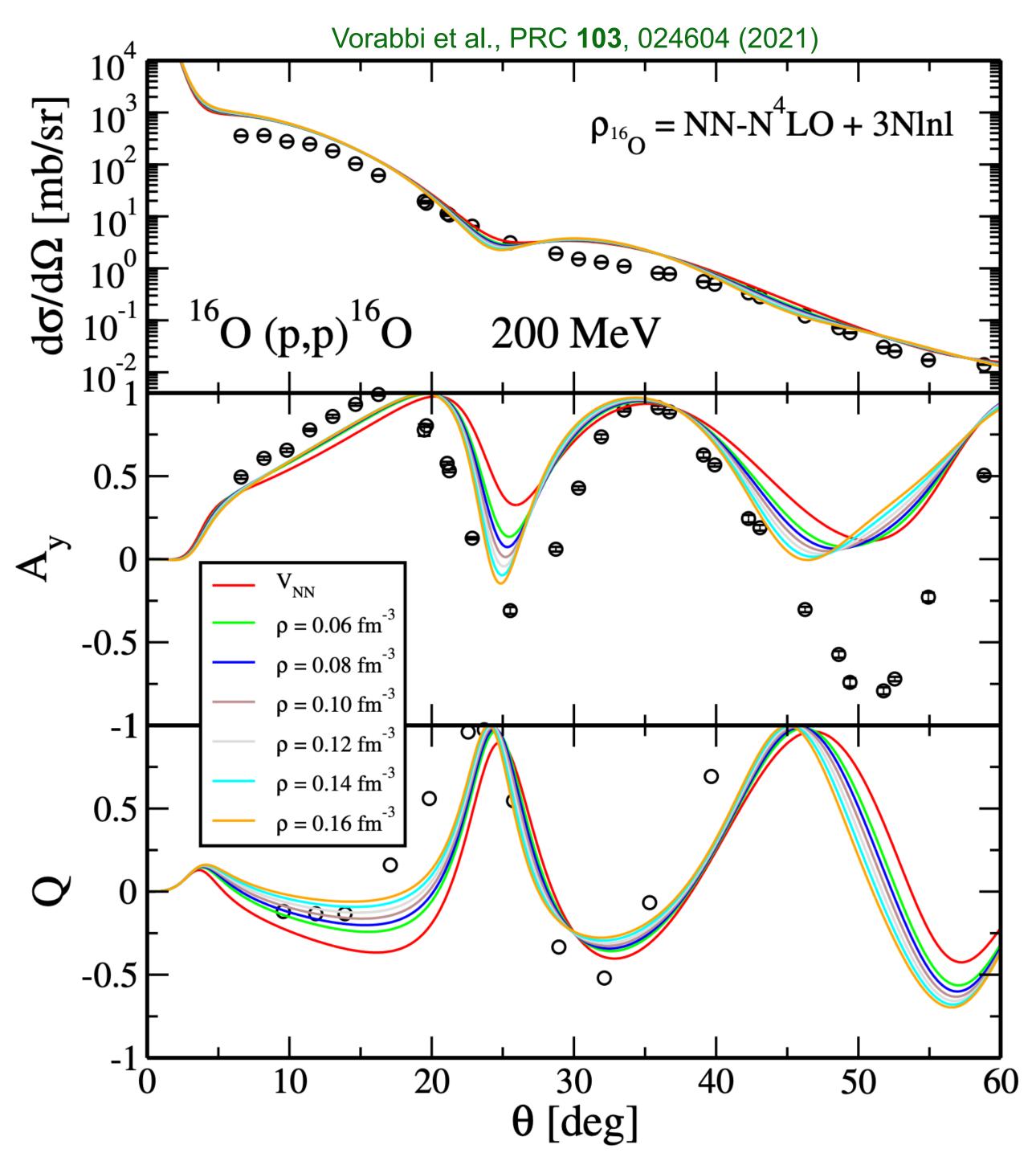
Modification of the *t* matrix

$$t_{0i} = v_{0i}^{(1)} + v_{0i}^{(2)} g_{0i} t_{0i}$$

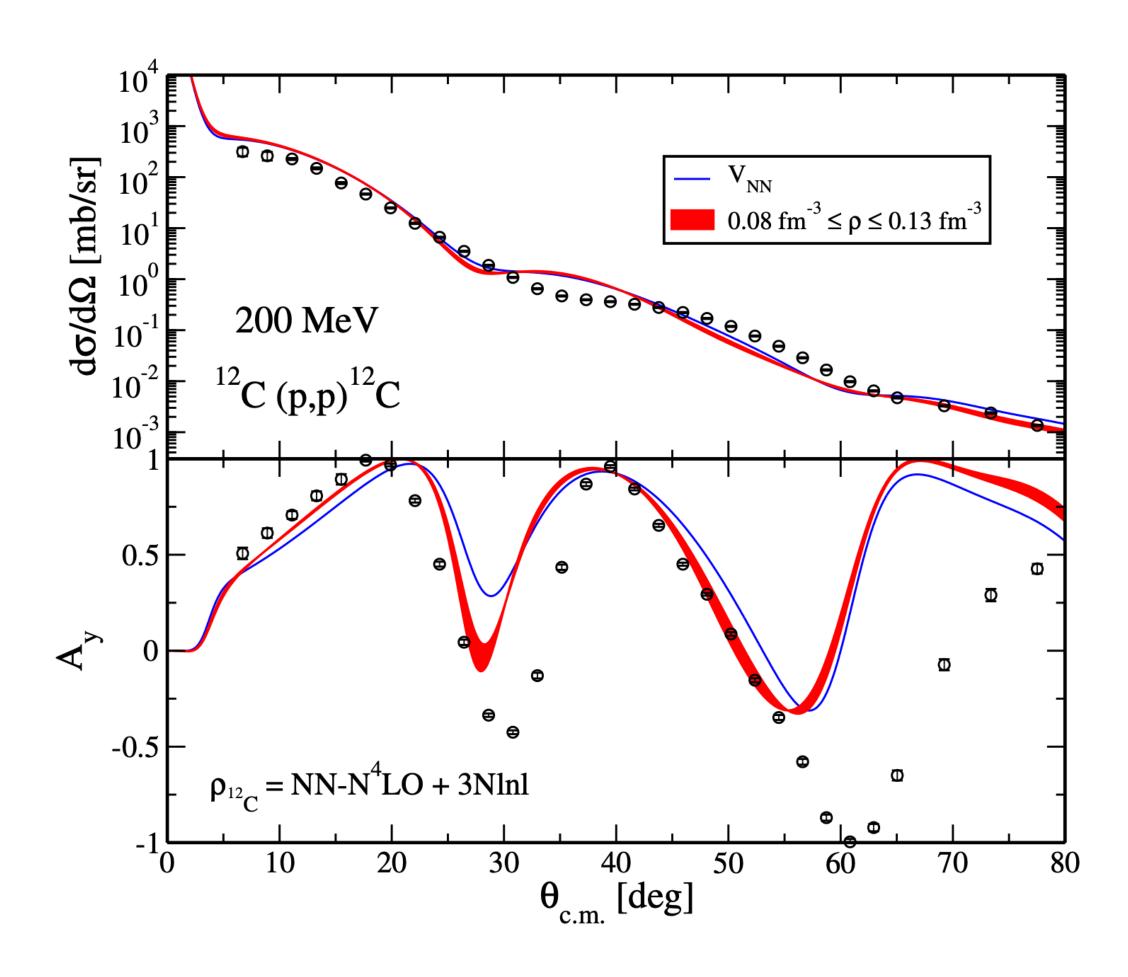
$$v_{0i}^{(1)} = v_{0i} + \frac{1}{2} \langle w_{0i} \rangle$$

$$v_{0i}^{(2)} = v_{0i} + \langle w_{0i} \rangle$$

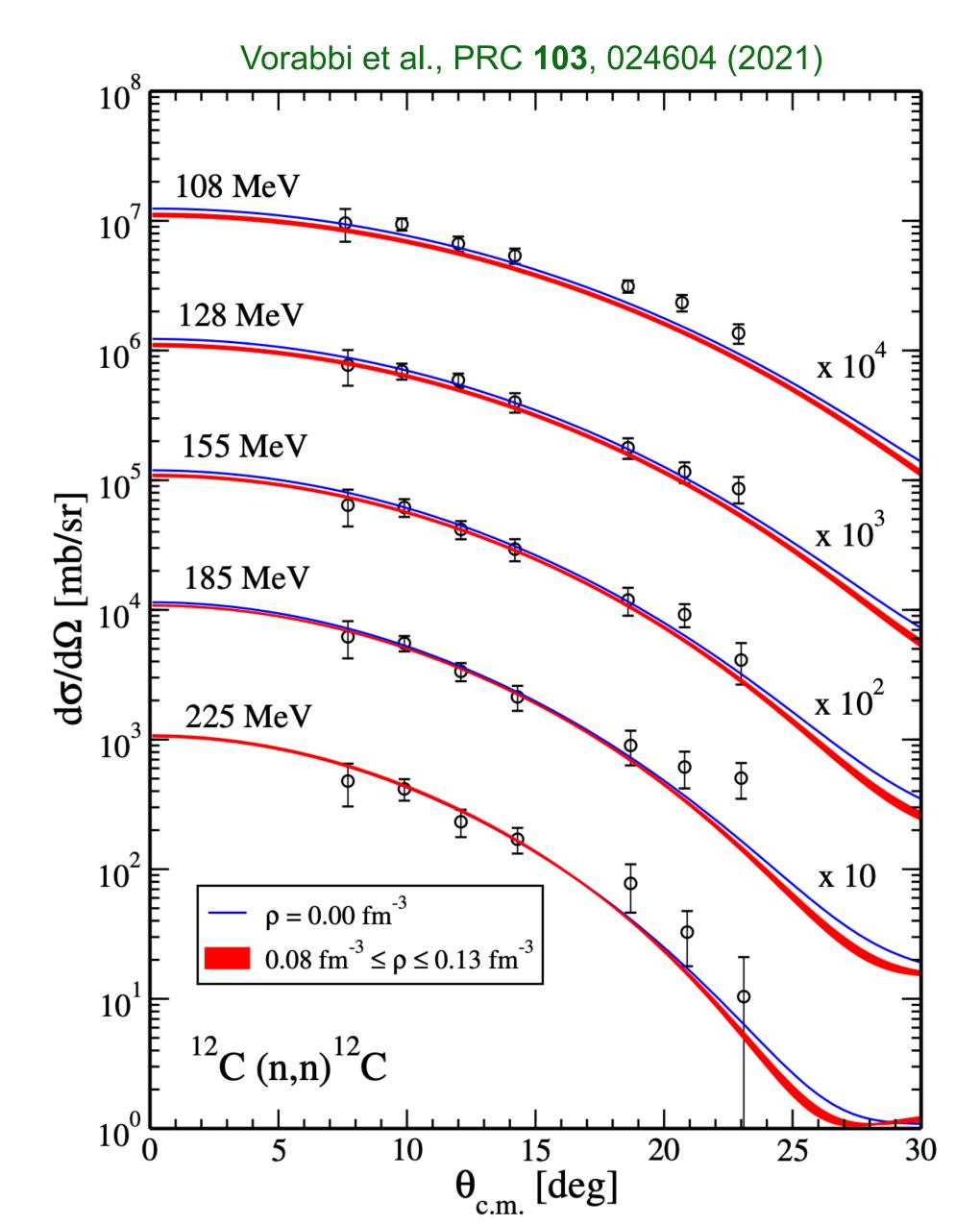
$$v = \begin{bmatrix} r_{12} + r_{12} \\ r_{12} \end{bmatrix} + r_{12}$$



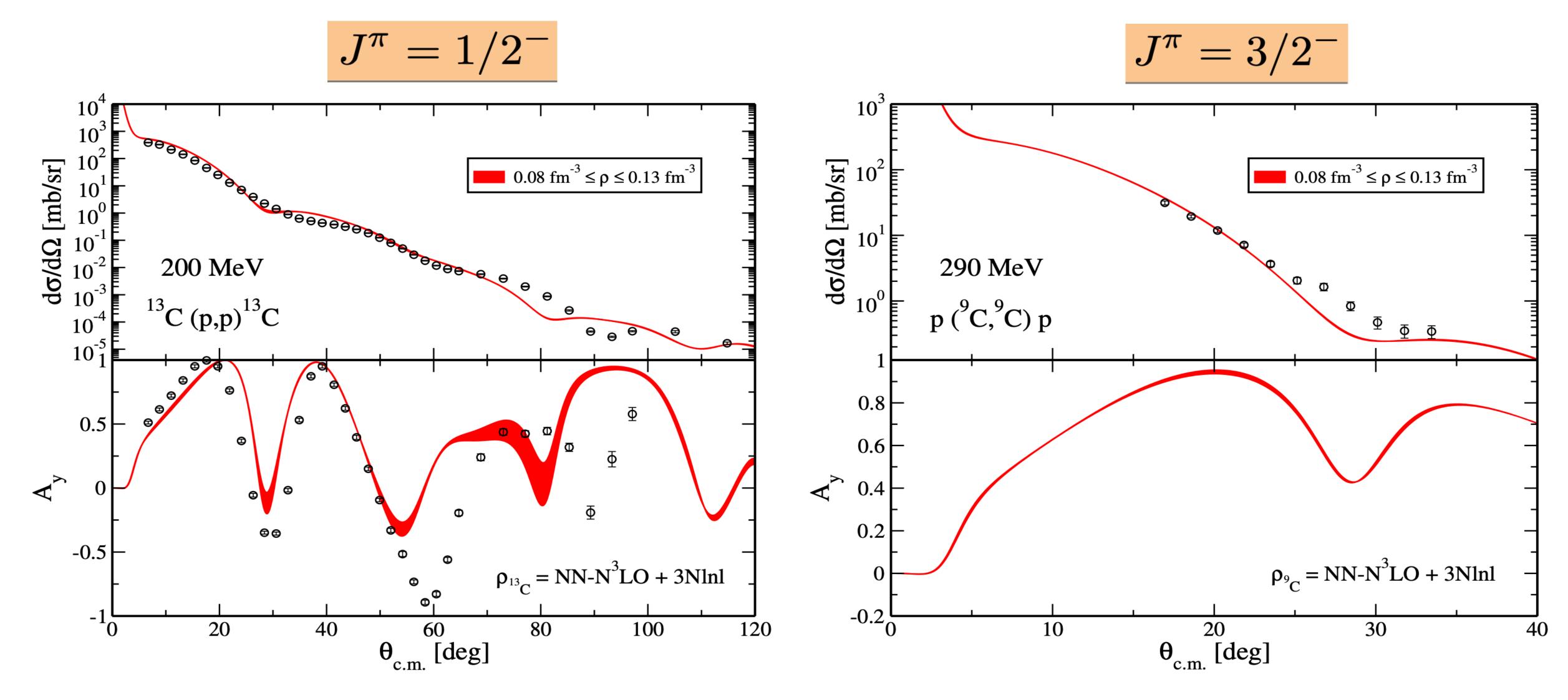
Assessing the impact of the 3N interaction



- For all nuclei we found very small contributions to the differential cross section
- The contributions to the spin observable are larger and they seem to improve the agreement with the data



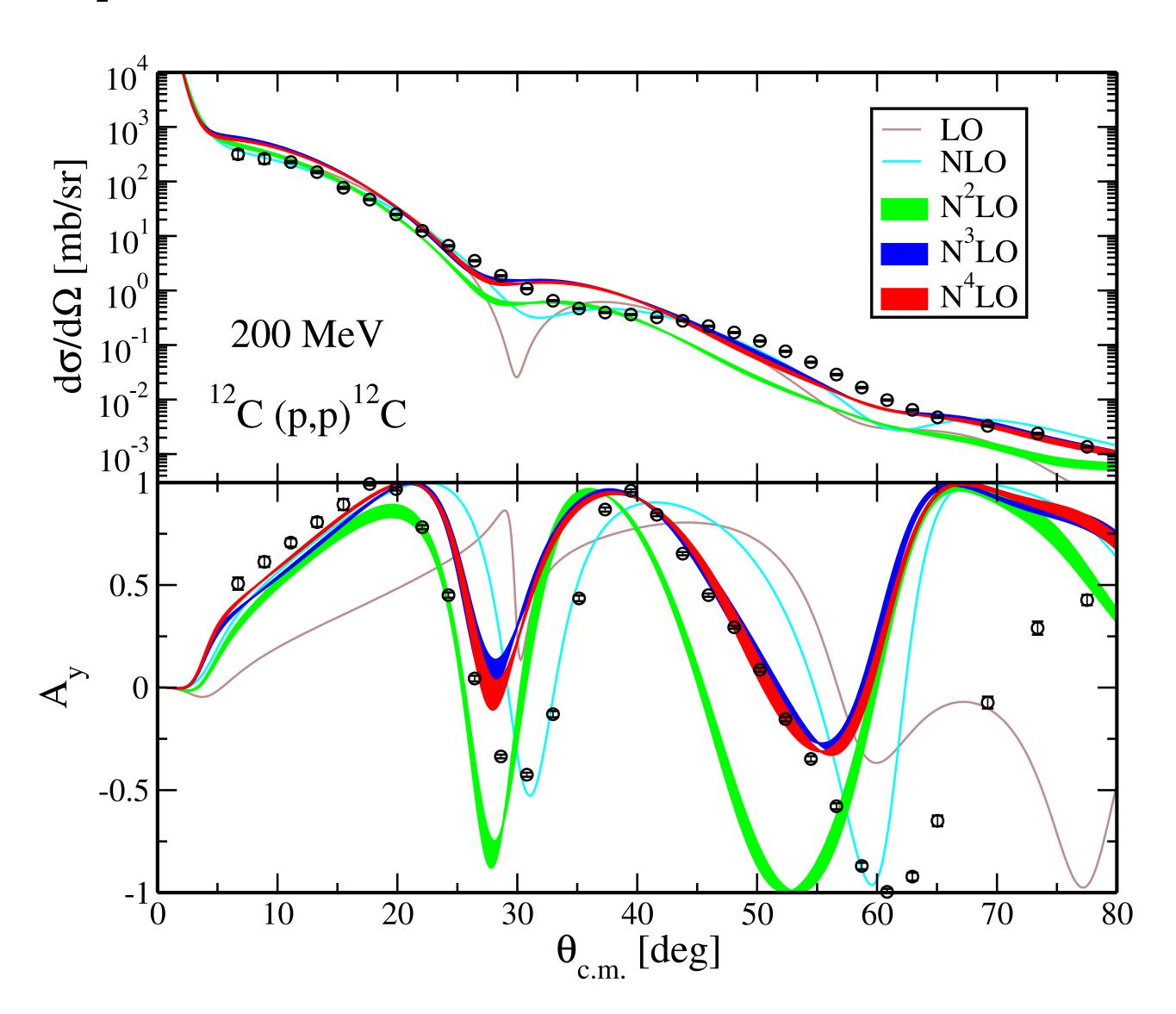
Extension to non-zero spin targets



[Vorabbi et al., Phys. Rev. C **105**, 014621 (2022)]

Convergence in the chiral expansion

- Density computed with NN+3N interaction
 - -NN interactions at all orders taken from Entem et al., PRC **96**, 024004 (2017)
 - -3N only at N²LO with c_D and c_E refitted at each order Kravvaris et al., PRC **102**, 024616 (2020)
- Bands are obtained starting from N²LO when the matter density ρ is allowed to vary between 0.08 and 0.13 fm⁻³
- At N³LO the results seem to achieve a good degree of convergence



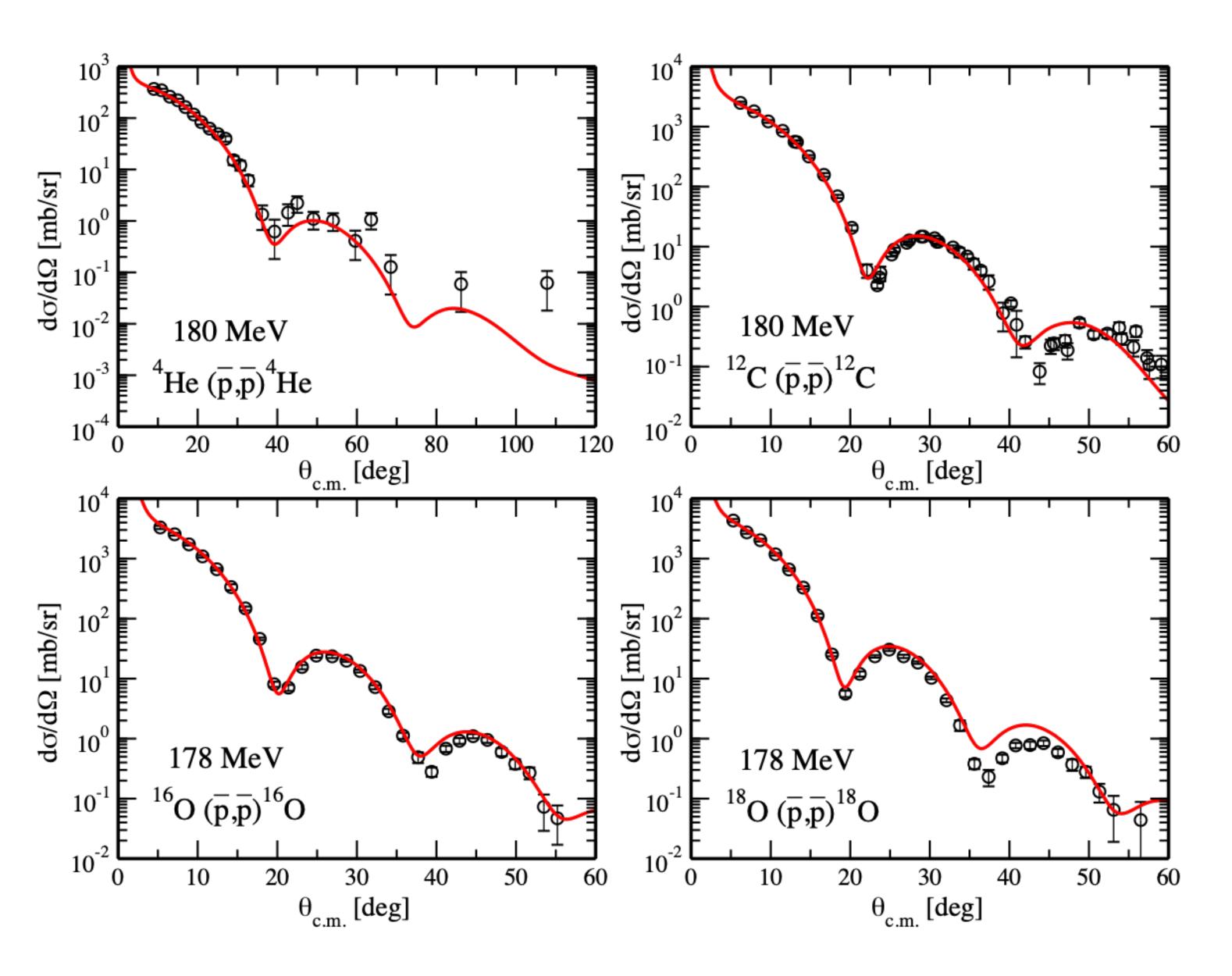
Extension to antiproton-nucleus elastic scattering

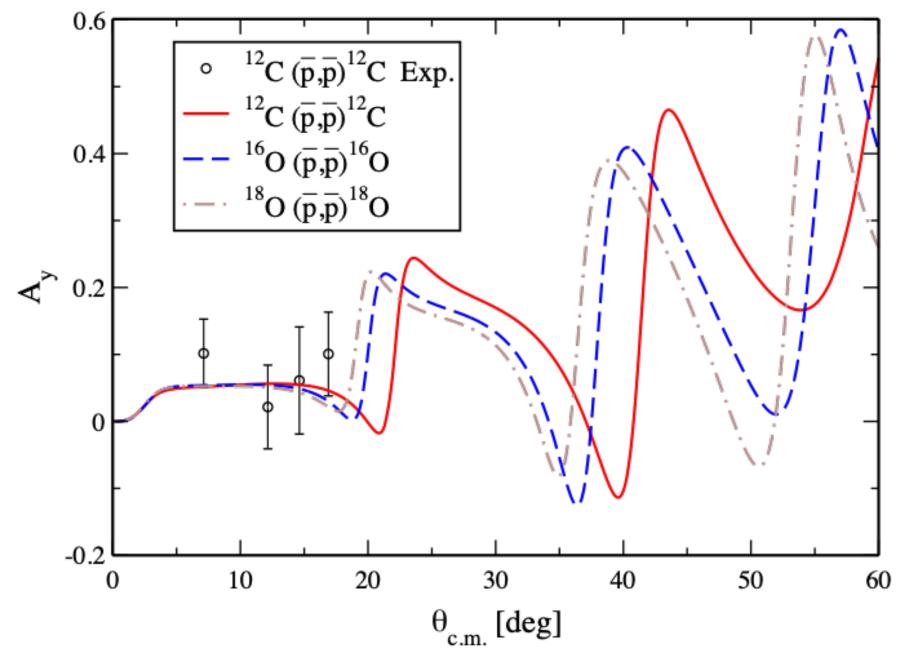
$$U_p(\boldsymbol{q}, \boldsymbol{K}) = \sum_{N=p,n} \int d\boldsymbol{P} \, \eta(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{P}) \, t_{pN}(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{P}) \, \rho_N(\boldsymbol{q}, \boldsymbol{P})$$

$$t_{pN} \Rightarrow t_{\bar{p}N}$$

- The projectile information only enters the t_{pN} matrix. For antiprotons we make the following replacement
- An antiproton-nucleon interaction is needed! $\bar{p}N$ chiral interaction derived up to N³LO [Dai, Haidenbauer, Meißner, JHEP 07 (2017) 78]
- No projectile-target anti-symmetrisation!
- Antiprotons are mostly absorbed at the surface of the nucleus so the first-order expansion should work better in this case!

Extension to antiproton-nucleus elastic scattering





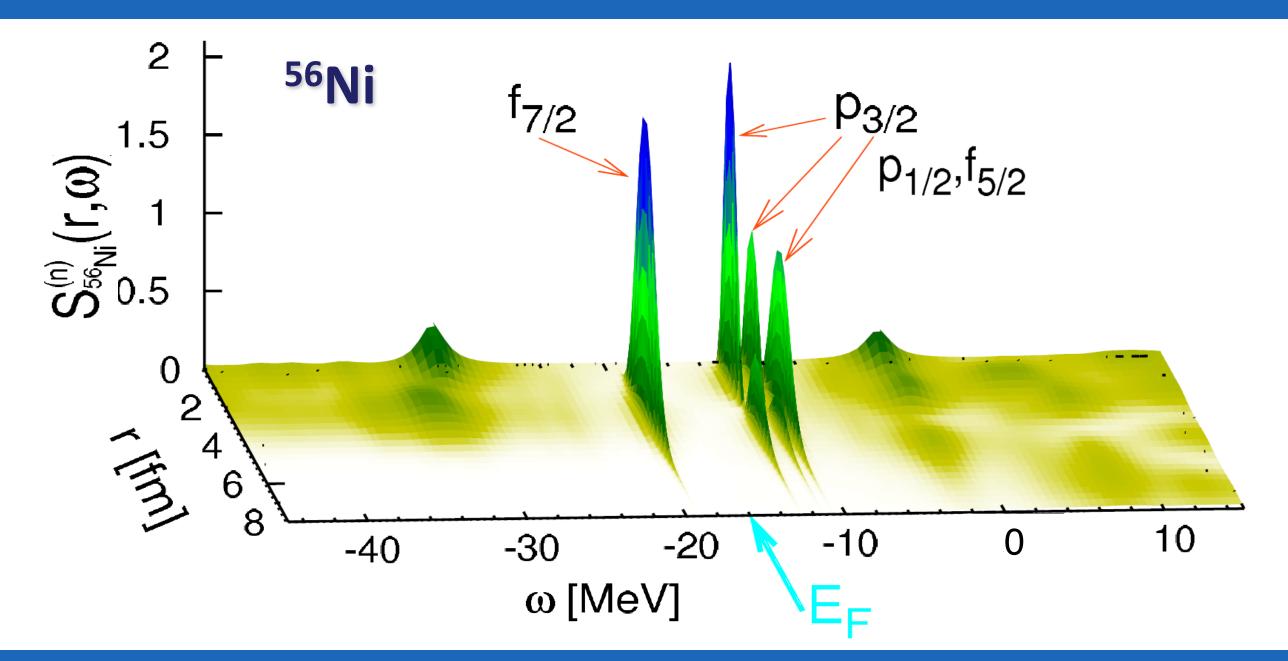
Elastic Antiproton-Nucleus Scattering from Chiral Forces

Matteo Vorabbi⁰, ^{1,2} Michael Gennari⁰, ^{2,3} Paolo Finelli⁰, ⁴ Carlotta Giusti⁰, ⁵ and Petr Navrátil⁰

PHYSICAL REVIEW LETTERS 124, 162501 (2020)

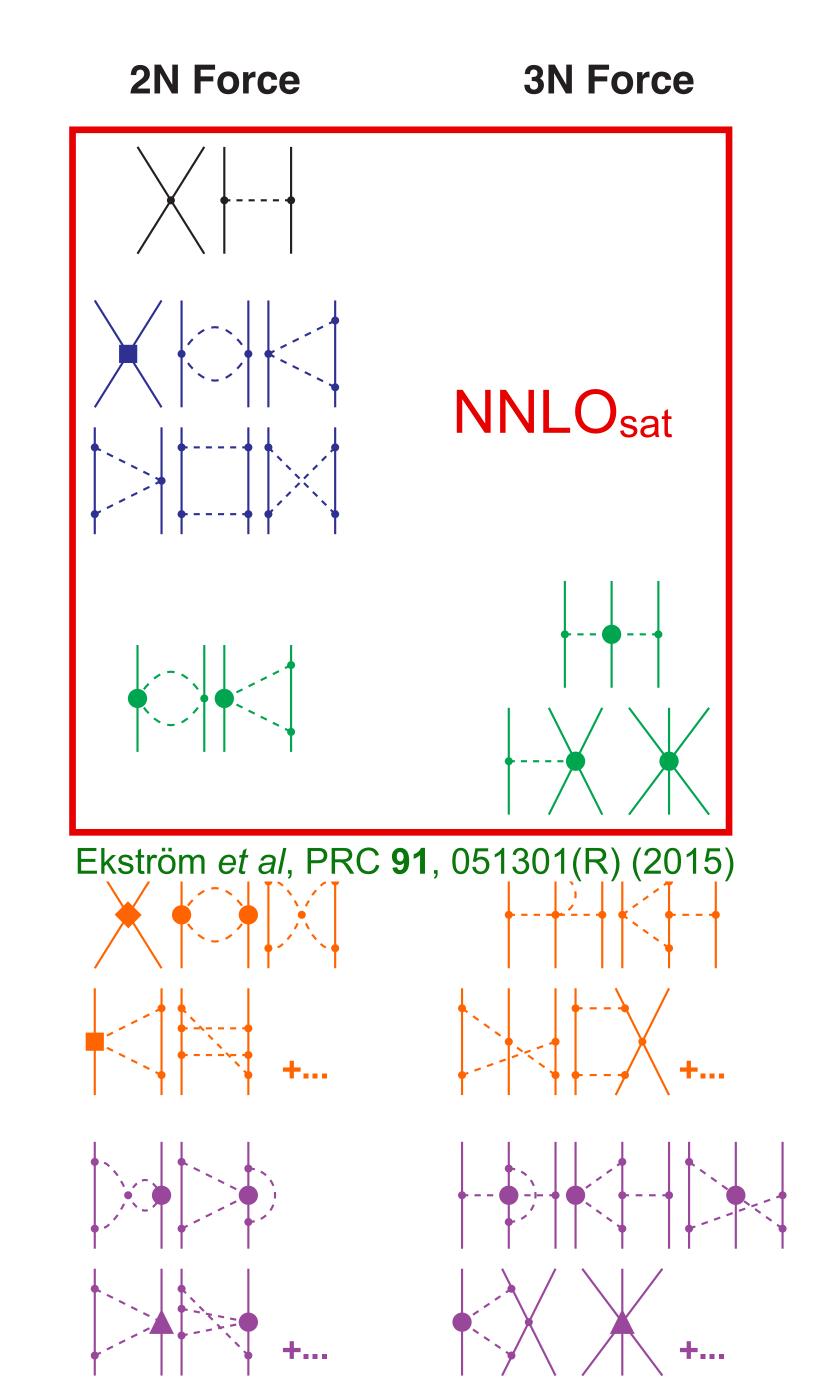
Extension to heavier nuclei

Self Consistent Green's Function (SCGF)



In collaboration with C. Barbieri (Milan) and V. Somà (Paris) Somà, *SCGF Theory for Atomic Nuclei*, Frontiers **8** (2020) 340

$$U_{\mathbf{p}}(\boldsymbol{q}, \boldsymbol{K}) = \sum_{N=p,n} \int d\boldsymbol{P} \, \eta(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{P}) \, t_{\mathbf{p}N}(\boldsymbol{q}, \boldsymbol{K}, \boldsymbol{P}) \, \rho_N(\boldsymbol{q}, \boldsymbol{P})$$



LO

 $(Q/\Lambda_{\chi})^0$

NLO

 $(Q/\Lambda_{\chi})^2$

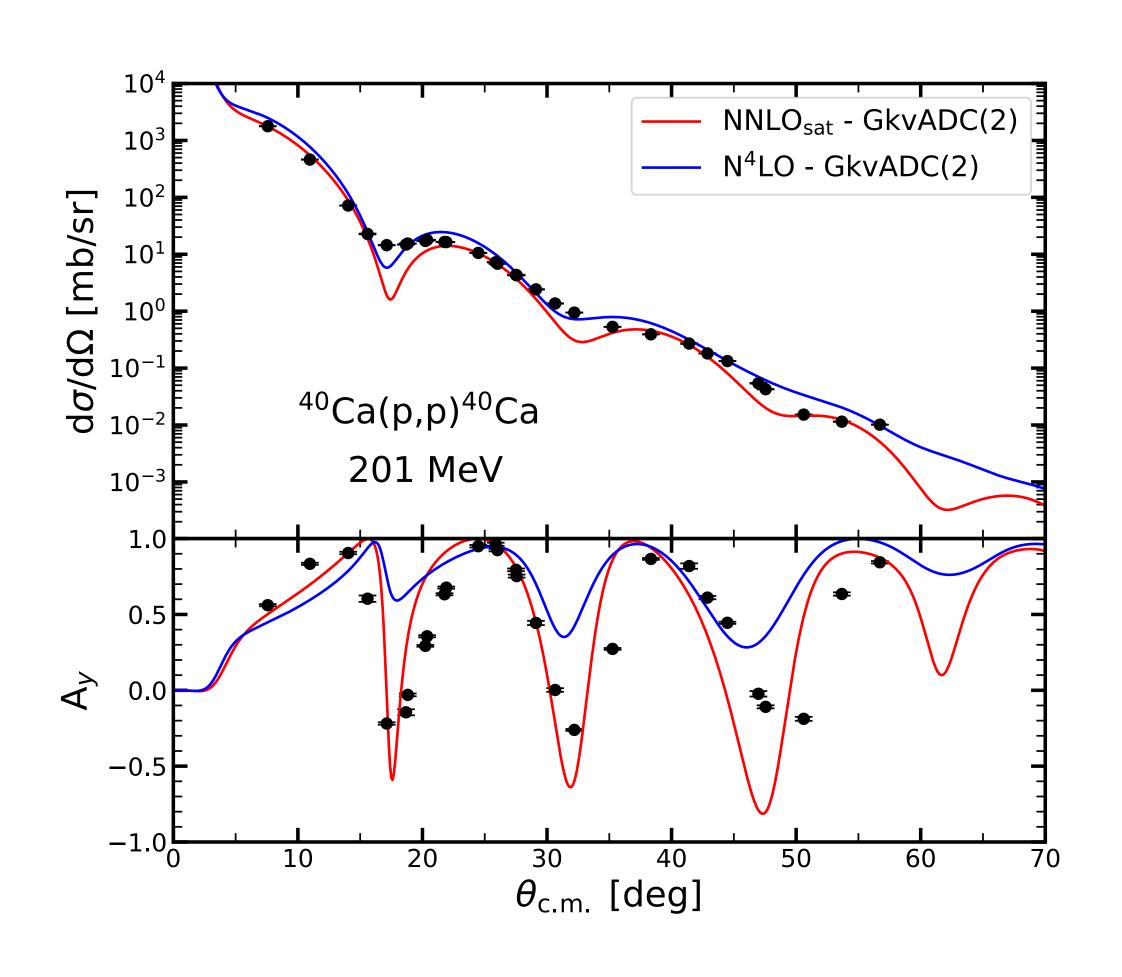
NNLO

 $(Q/\Lambda_{\chi})^3$

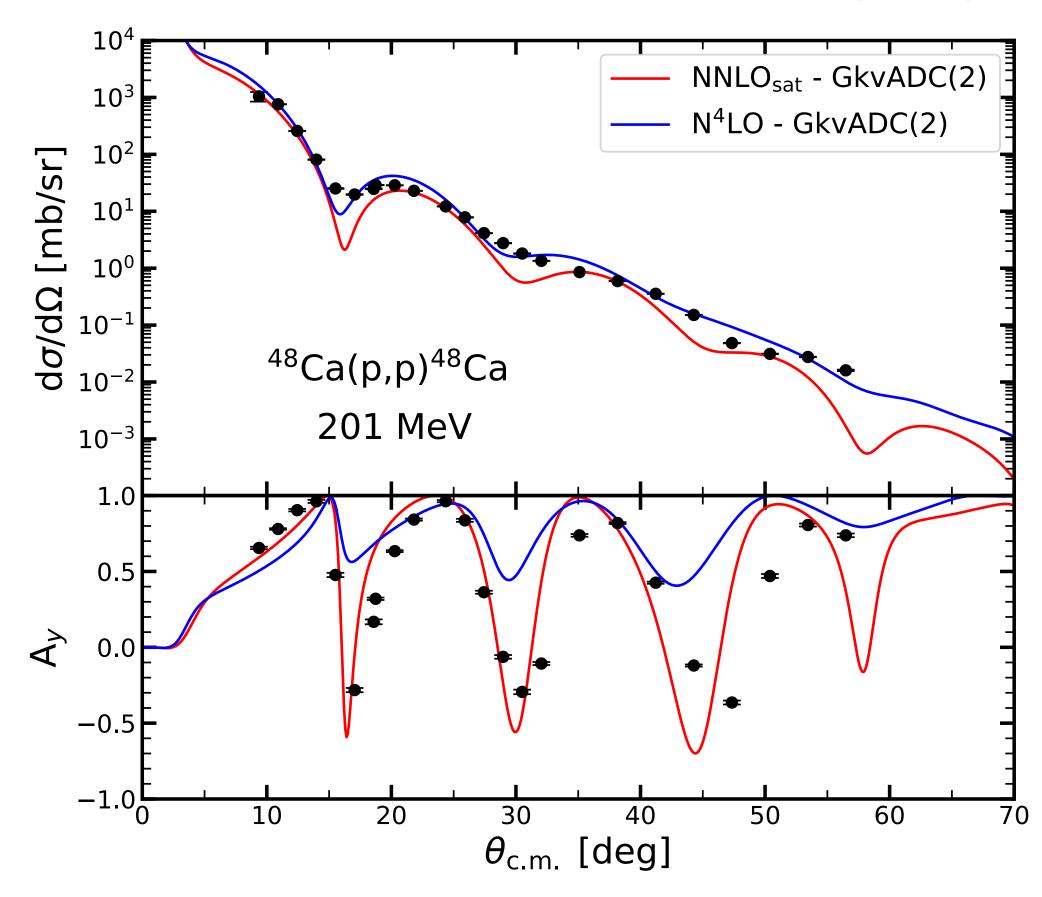
 N^3LO

 $(Q/\Lambda_\chi)^4$

Results for proton scattering off 40,48Ca

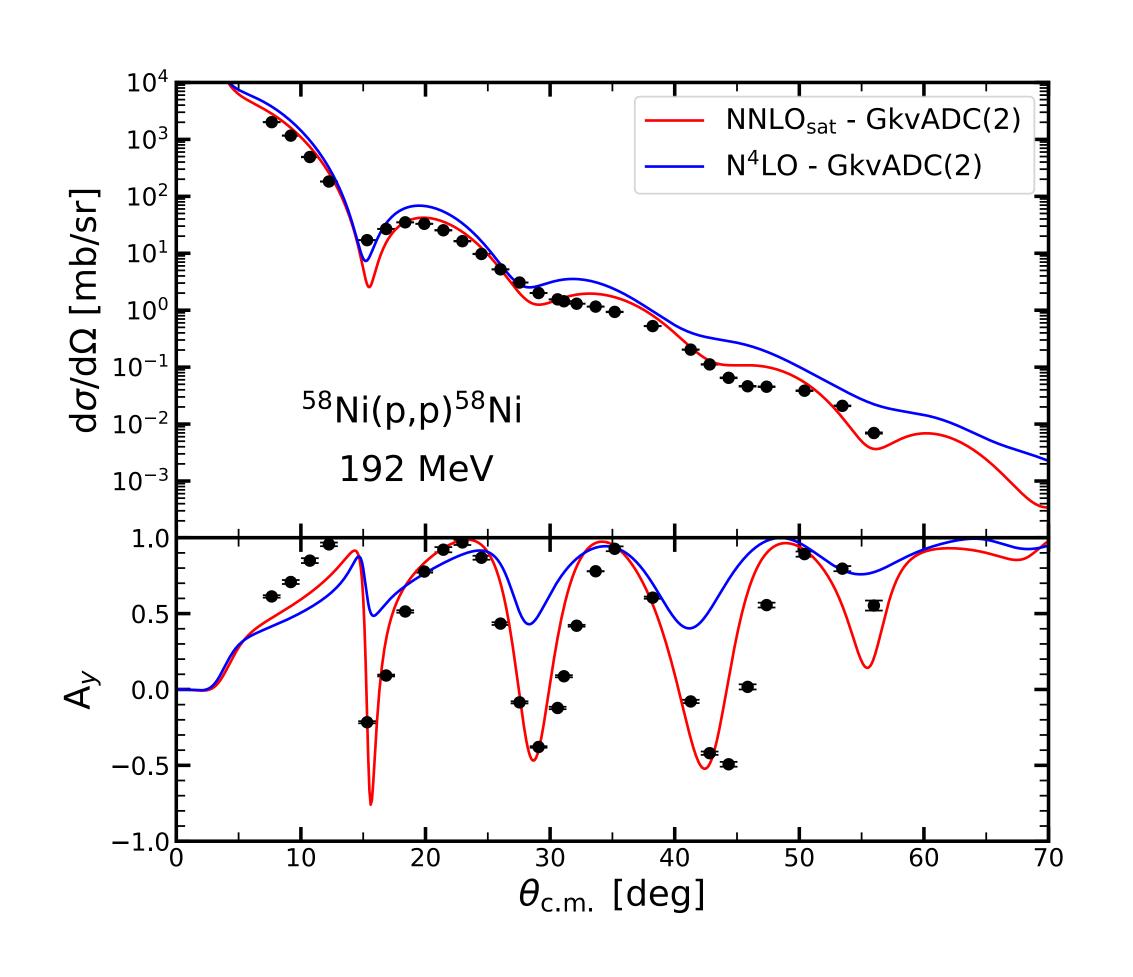


[Vorabbi et al., PRC 109, 034613 (2024)]

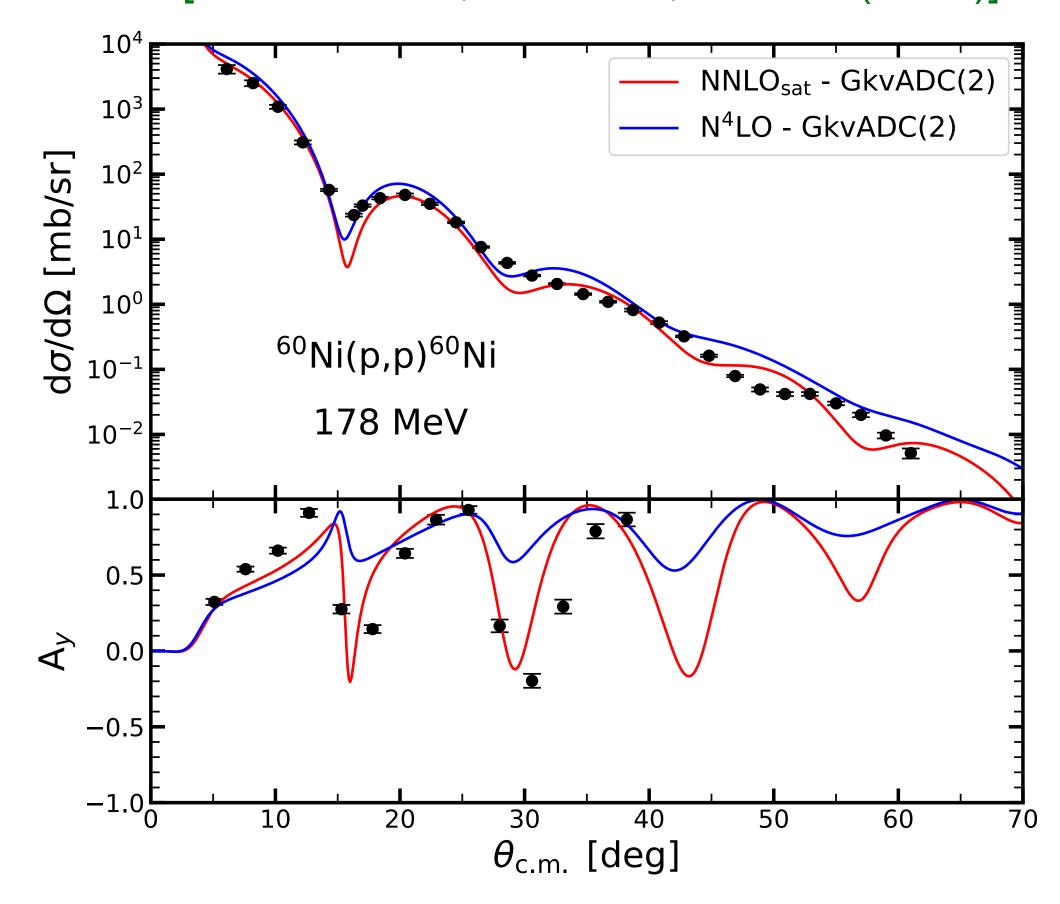


- First microscopic optical potential for calcium and nickel from ab initio densities
- For this comparison the densities are always computed with the NNLO_{sat}

Results for proton scattering off 58,60Ni

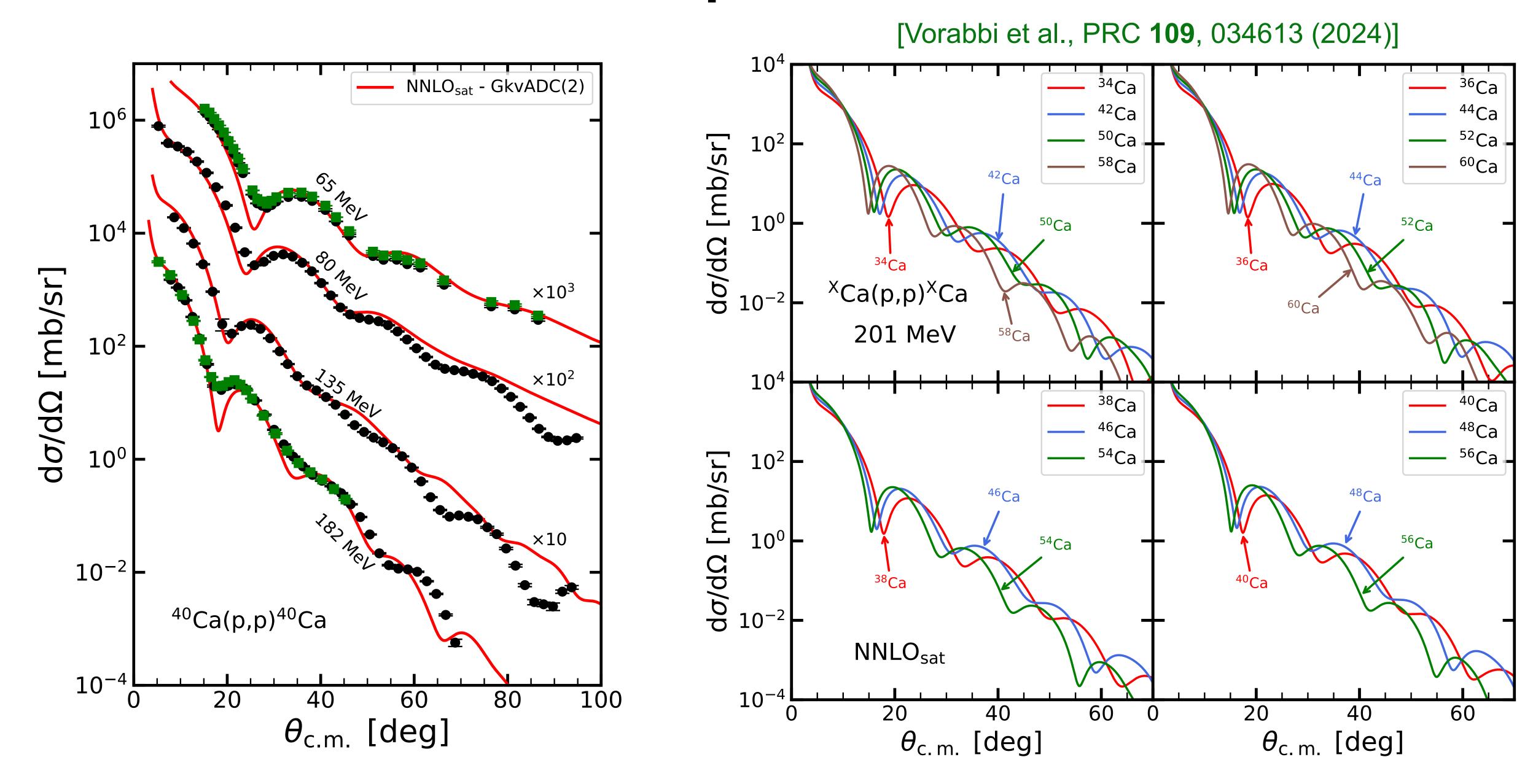


[Vorabbi et al., PRC 109, 034613 (2024)]



The data for the analysing power is remarkably well described! (but remember that the NN potential does not reproduce the NN amplitudes)

Results for Calcium isotopic chain



Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

The inelastic transition amplitude

$$T_{fi}^{\text{inel}} = \langle \psi_f^{(-)} | U_{\text{tr}} | \psi_i^{(+)} \rangle$$

Distorted waves

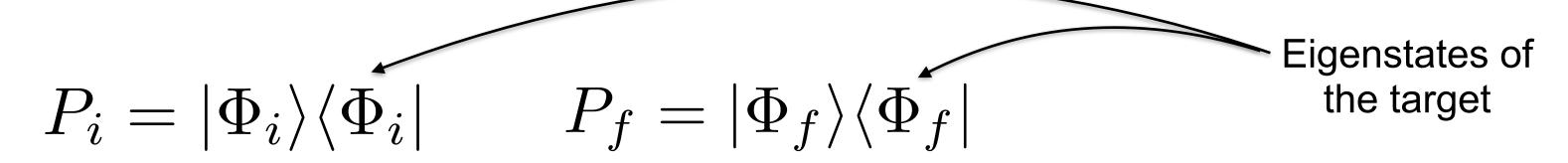
$$|\psi_i^{(+)}\rangle = |\Phi_i \mathbf{k}\rangle + G_0 U_{\text{el}}|\psi_i^{(+)}\rangle$$

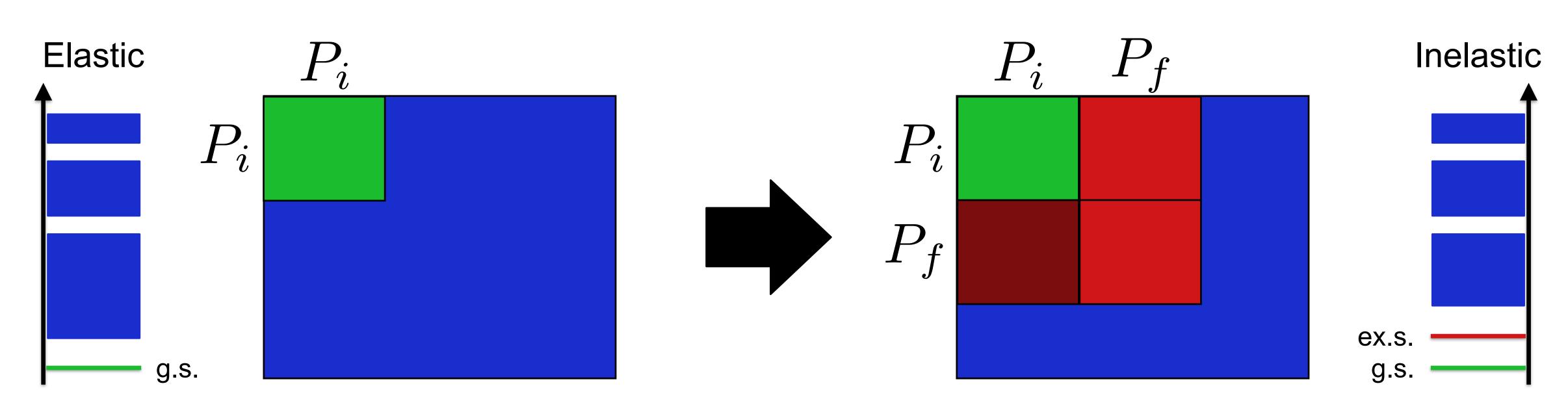
$$\langle \psi_f^{(-)}| = \langle \mathbf{k}'\Phi_f| + \langle \psi_f^{(-)}|U_{\text{ex}}G_0|$$

General expression of the potential

$$U = \sum_{k=1}^{A} t_{0k}$$

- This is obtained in the impulse approximation
- We need to introduce the projection operators to obtain the 3 potentials that we need for the calculations: $U_{\rm tr}$, $U_{\rm el}$, and $U_{\rm ex}$





Potentials

$$U_{\rm el} = \sum_{k=1}^{A} P_i t_{0k} P_i$$

$$U_{\rm ex} = \sum_{k=1}^{A} P_f t_{0k} P_f$$

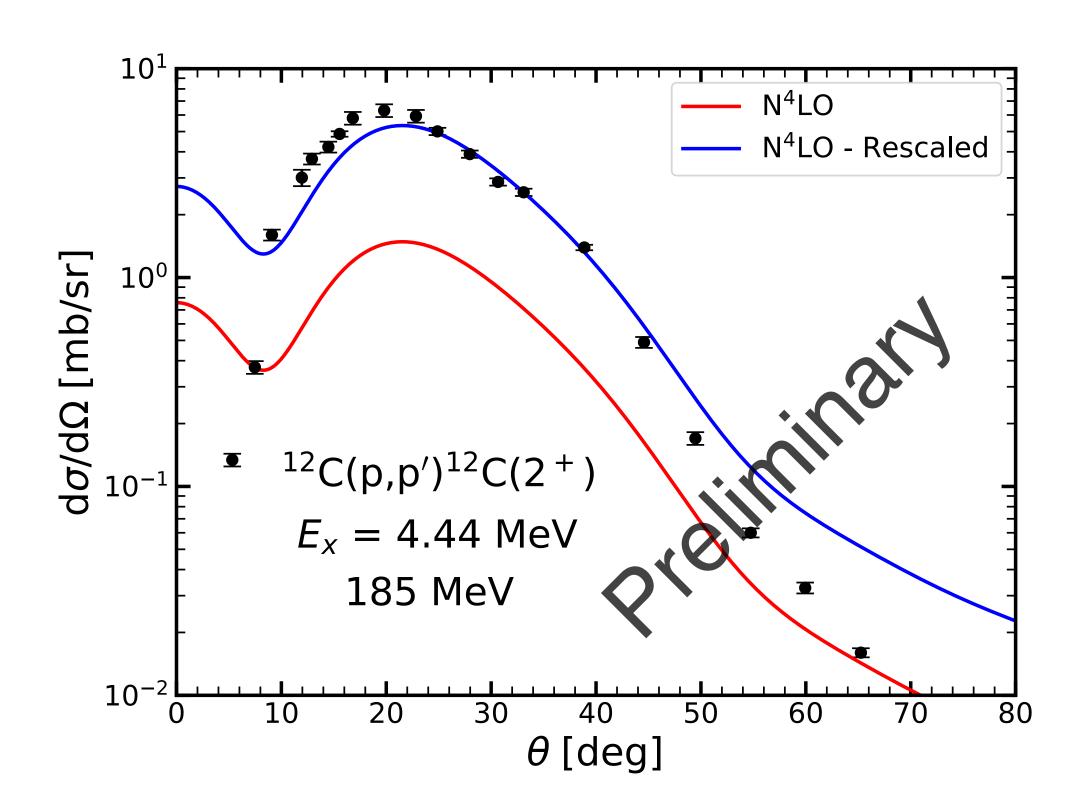
$$U_{\rm tr} = \sum_{k=1}^{A} P_f t_{0k} P_i$$

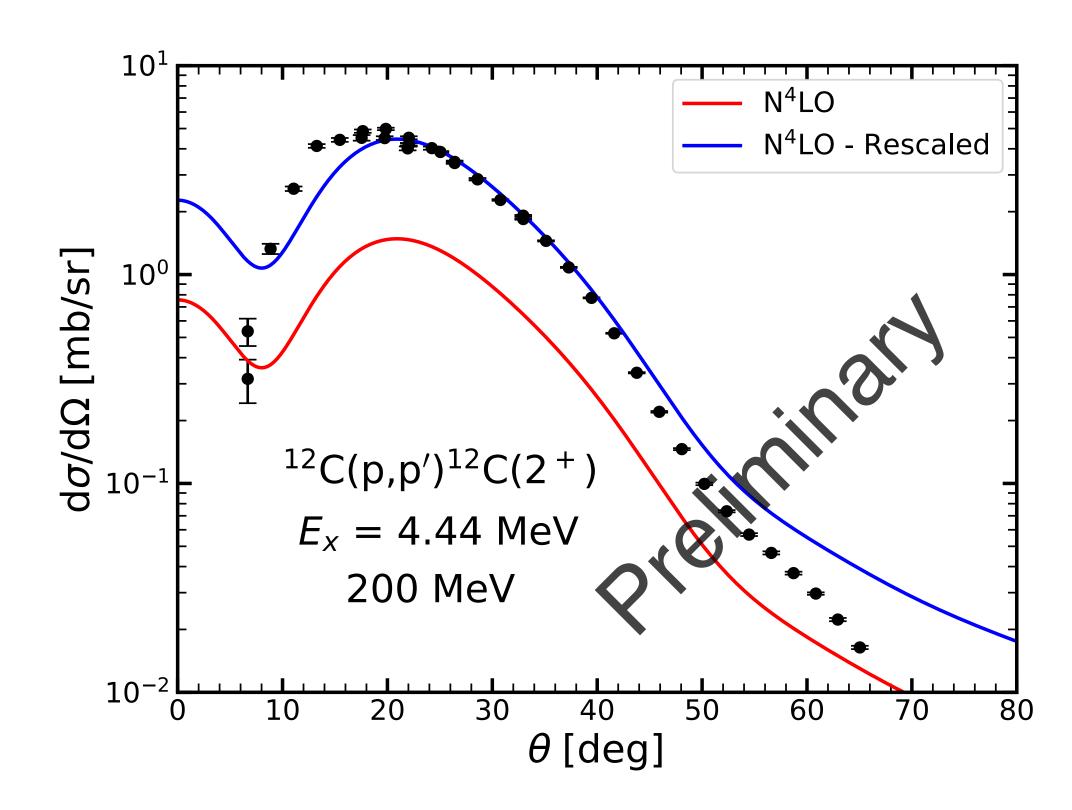
The inelastic transition amplitude

[Picklesimer, Tandy, Thaler, Phys. Rev. C **25**, 1215 (1982)] [Picklesimer, Tandy, Thaler, Phys. Rev. C **25**, 1233 (1982)]

$$T_{\mathrm{inel}}(\boldsymbol{k}_*, \boldsymbol{k}_0) = \int d\boldsymbol{r}' \int d\boldsymbol{r} \psi^{\dagger}(\boldsymbol{k}_*, \boldsymbol{r}') U_{\mathrm{tr}}(\boldsymbol{r}', \boldsymbol{r}) \psi(\boldsymbol{k}_0, \boldsymbol{r})$$

Required potentials





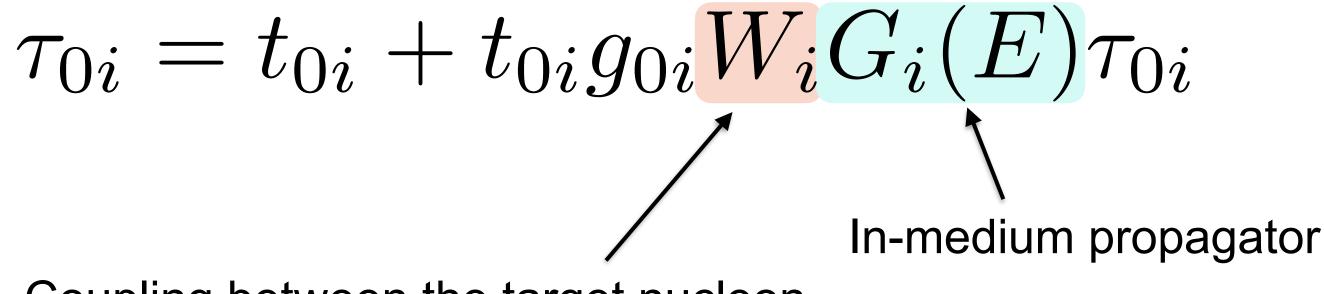
- The general shape of the data is reproduced, however the data is underestimated
- We applied a scaling factor to the transition potential to shift the differential cross section and compare it to the data
- The NN t matrix adopted for the calculation of the 3 potentials only contains two terms

$$A + i(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})C$$

Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

First-order term of the spectator expansion

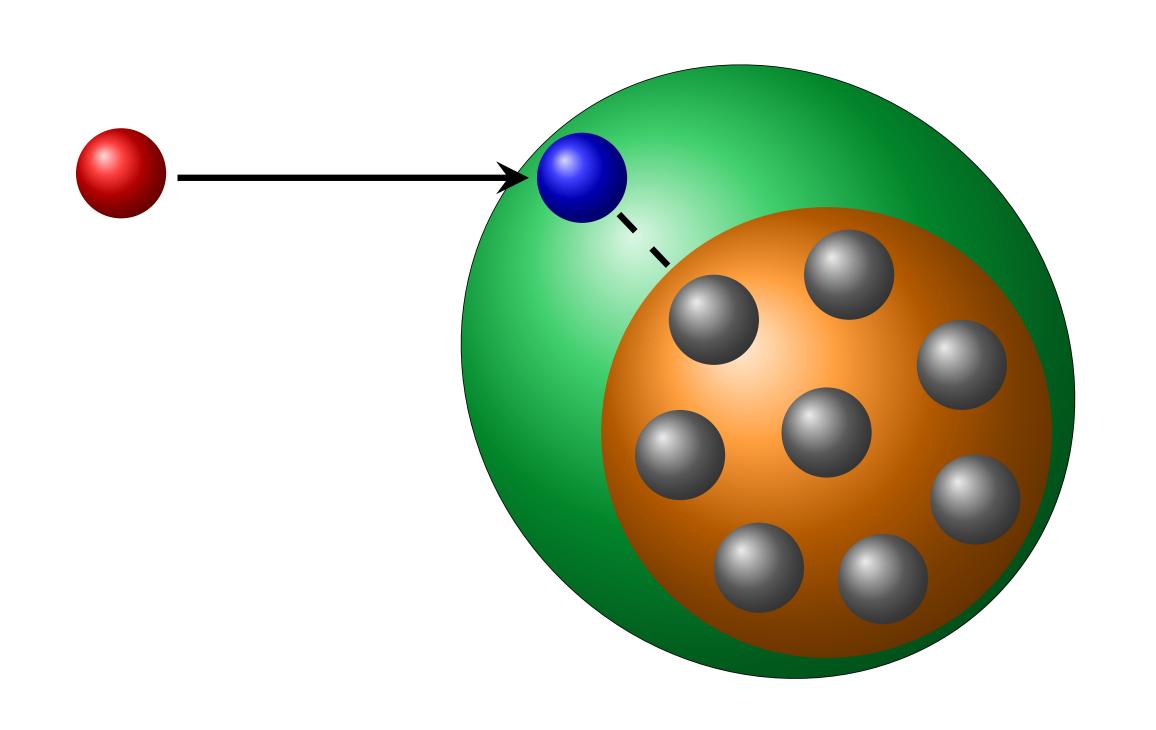


Coupling between the target nucleon and the residual nucleus

Inclusion of medium effects

- Work has been done to include these effects at a mean-field level [Chinn et al., PRC 52, 1992 (1995)]
- However, with an ab initio description of the target it is not clear how to extract the coupling potential consistently

The first-order term is a 3-body problem



Ansatz: approximate the medium effects with a scaling factor that suppresses the strength of the free propagator

$$g_{0i}W_iG_i(E) \approx -\lambda(E)g_{0i}$$

In-medium two-nucleon scattering matrix

$$\tau_{0i} \approx \sum_{n=0}^{N} (-1)^n \lambda^n(E) [t_{0i} g_{0i}]^n t_{0i}$$

$$\approx t_{0i} - \lambda(E)t_{0i}g_{0i}t_{0i} + \lambda^2(E)t_{0i}g_{0i}t_{0i}g_{0i}t_{0i} + \dots$$

Effectively equivalent to using

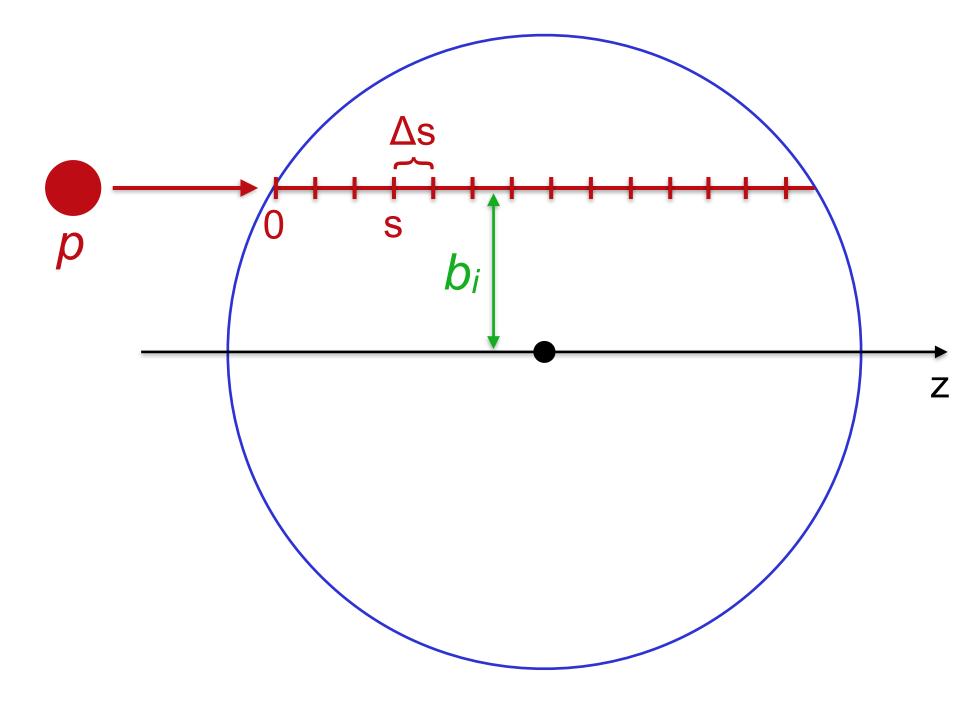
 $t_{0i}, t_{0i}g_{0i}t_{0i}, t_{0i}g_{0i}t_{0i}g_{0i}t_{0i}, \dots$

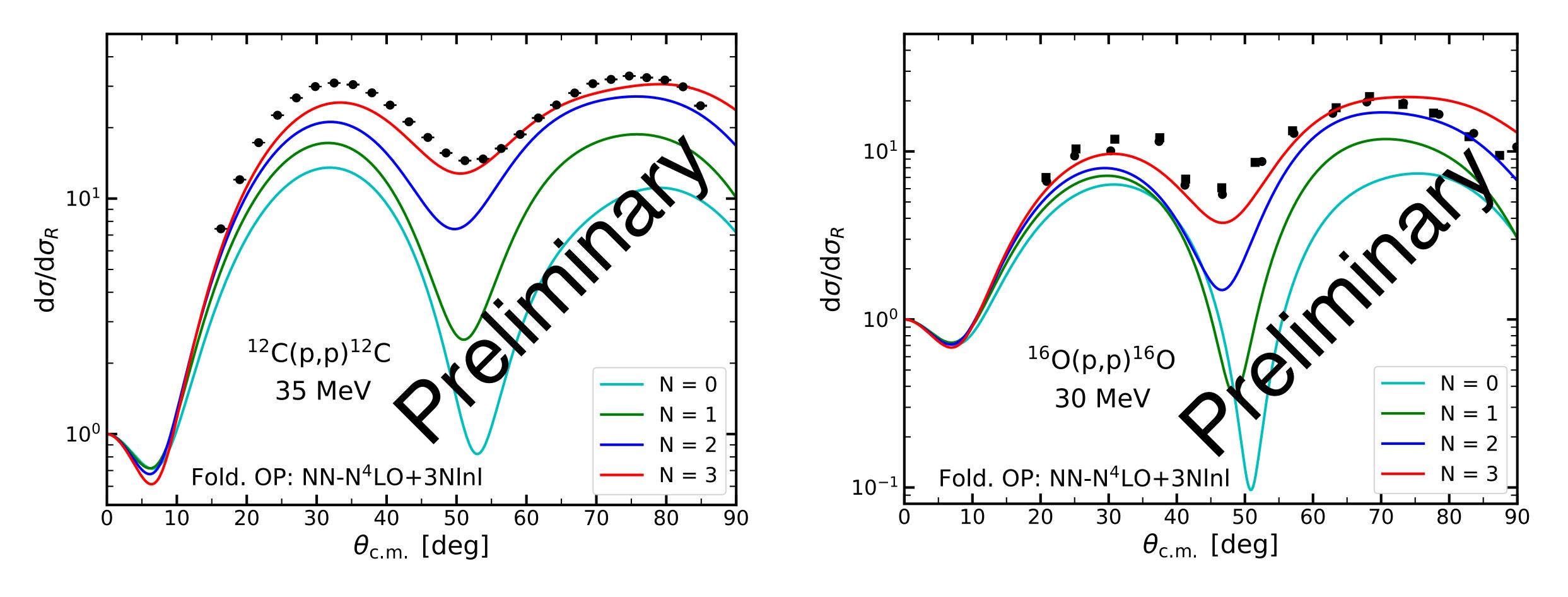
to expand the matrix au_{0i}

<u>Calculation of λ </u>: we interpret λ as the effective scattering probability of the projectile nucleon inside the target nucleus

Algorithm

- For each segment Δs we compute the probability P_{pN} of the projectile to interact with a nucleon as $P_{pN} = \sigma_{pN}(E) \rho_N(s) \Delta s$
- We generate a random number n between 0 and 1 and we compare it to P_{pN} .
 - If $n > P_{pN}$ no interaction occurred. We continue this process for the next step along the trajectory
 - If $n < P_{pN}$ an interaction occurred! We record the interaction in the variable I_i . We stop the algorithm and we restart it again considering a different impact parameter b_i .
- We repeat the procedure N_{trials} times sampling a different impact parameter b_i .
- The value of λ is obtained as $\lambda = rac{\sum_{i=1}^{N_{ ext{trials}}} b_i I}{\sum_{i=1}^{N_{ ext{trials}}} b_i}$





- Despite the simplicity of the model, calculations performed at different orders converge toward the experimental data
- Calculations performed so far indicate N=3 gives the best agreement with data

Outline

- O Motivations
- O The nucleon-nucleus optical potential within the multiple scattering theory
- O Application to light and medium-mass nuclei
- O Extension to inelastic scattering
- O Inclusion of medium effects
- O Extension to nucleus-nucleus optical potential
- O Summary & outlook

Optical potential for nucleus-nucleus elastic scattering

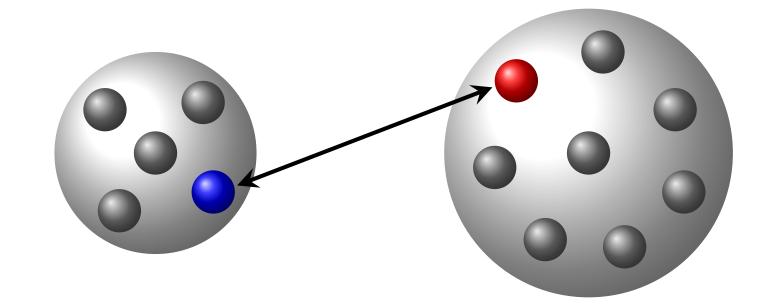
Transition amplitude for elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

The spectator expansion

[Chinn, Elster, Thaler, Weppner, PRC **52**, 1992 (1995)]

$$U\simeq\sum_{i=1}^{A}\sum_{j=A+1}^{A+B} au_{ij}$$
 $au_{ij}=v_{ij}+v_{ij}G_0(E) au_{ij}$ (A+B)-body propagator More complicated than the NA case



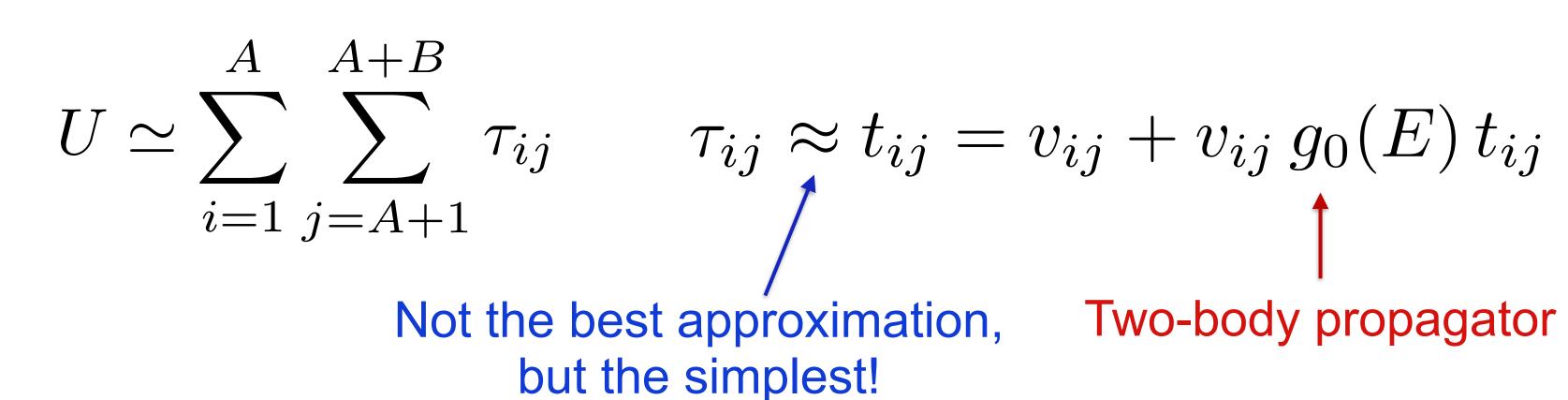
Optical potential for nucleus-nucleus elastic scattering

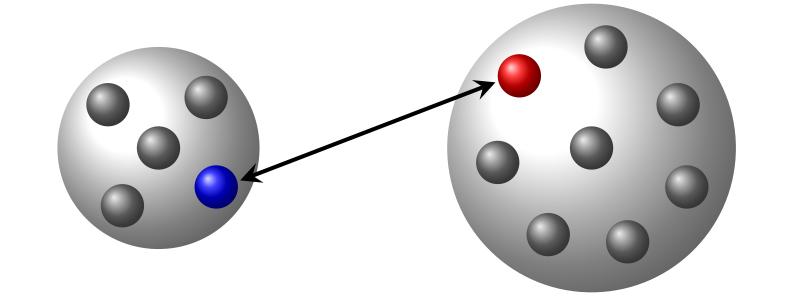
Transition amplitude for elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

The spectator expansion

[Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)]





Møller factor

$$t_{NN}^{(AB)} = \eta \, t_{NN}^{(NN)}$$

It imposes the Lorentz invariance of flux when we pass from the AB to the NN frame where the t matrices are evaluated

$$U(\boldsymbol{q},\boldsymbol{K}) = \sum_{\alpha = m} \sum_{m} \int d\boldsymbol{P} \int d\boldsymbol{Q} [\eta(\boldsymbol{q},\boldsymbol{K},\boldsymbol{P},\boldsymbol{Q})] t_{\alpha\beta}(\boldsymbol{q},\boldsymbol{K},\boldsymbol{P},\boldsymbol{Q};\mathcal{E}) [\rho_{\alpha}^{(\mathbb{P})}(\boldsymbol{q},\boldsymbol{P})] \rho_{\beta}^{(\mathbb{T})}(\boldsymbol{q},\boldsymbol{Q})]$$

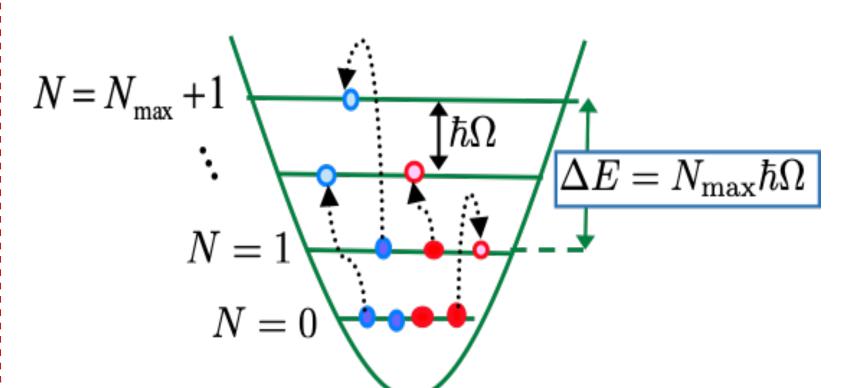
Free two-body scattering matrix

$$t_{0i} = v_{0i} + v_{0i} g_{0i} t_{0i}$$

$$g_{0i} = (E - h_0 - h_i + i\epsilon)^{-1}$$

- Simple one-body equation
- Can be solved easily
- Only NN interaction

Nonlocal one-body density



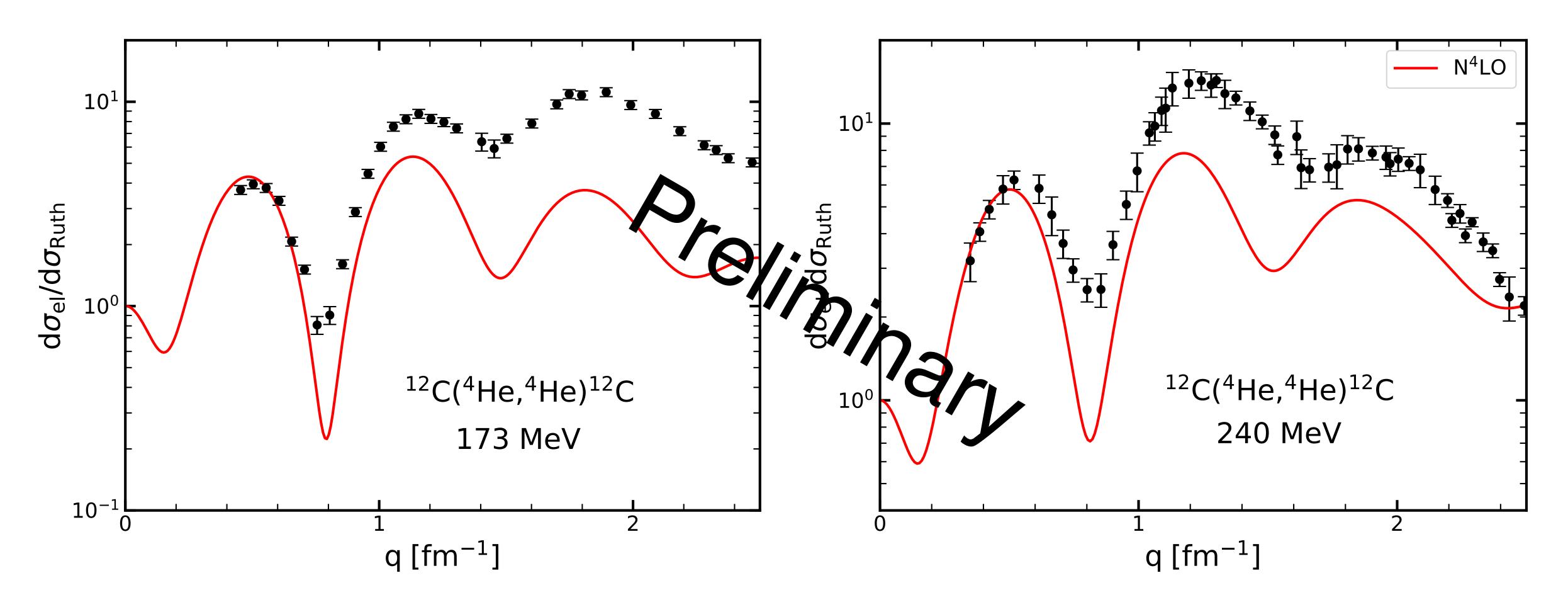
Computationally expensive

Projectile density

Target density

- Obtained from the No-Core Shell Model
- Calculation performed with NN and 3N interaction

Results for elastic α-12C scattering



- Interesting results despite the approximations!
- The potential seems to be too absorptive

How to reduce the absorption

A simple rescaling of the imaginary part seems to confirm that!

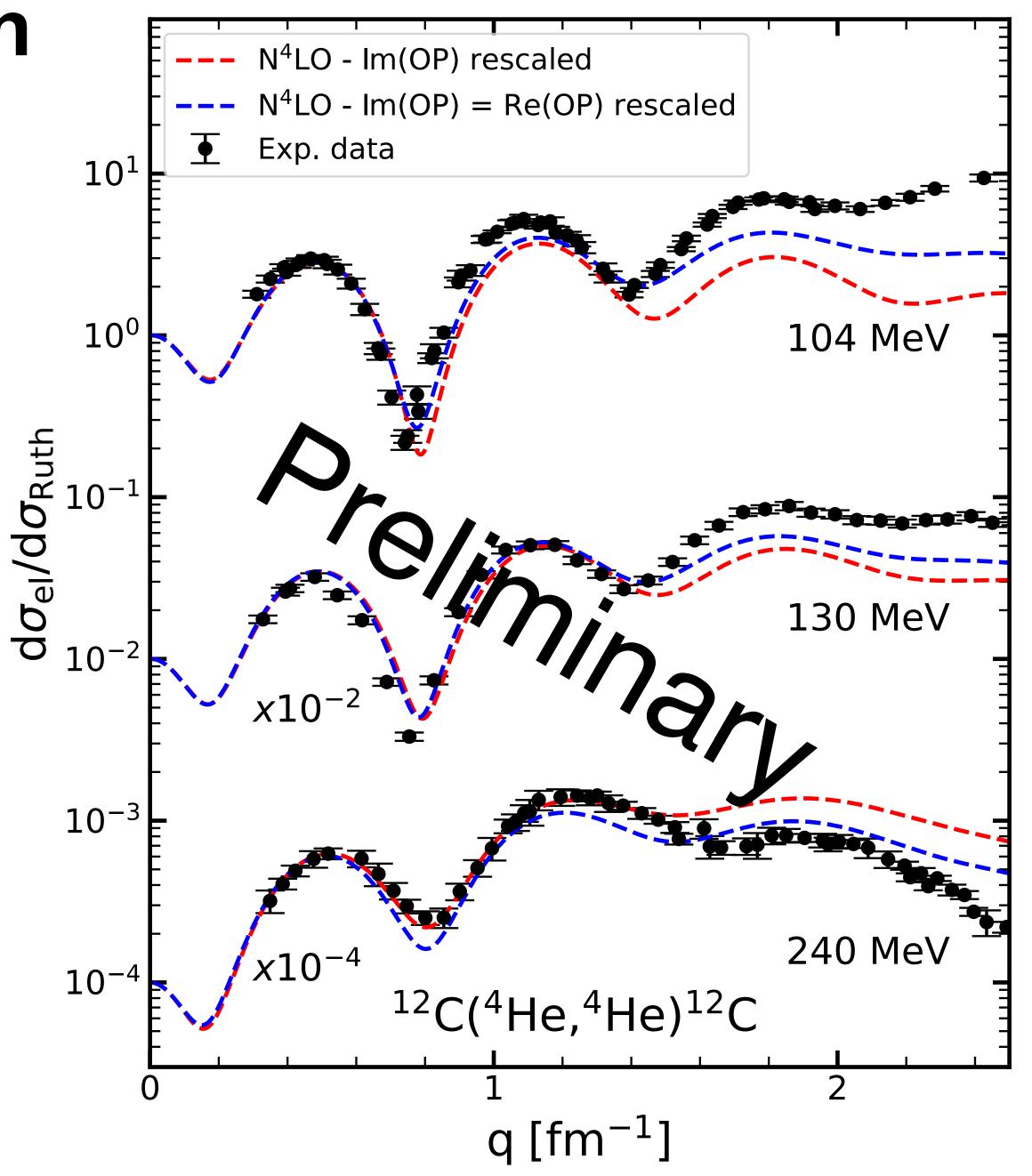
How can we decrease the absorption?

- Inclusion of medium effects
- Introducing the energy dependence of the t matrix in the double-folding integral

$$t_{NN}(oldsymbol{q},oldsymbol{K},oldsymbol{P},oldsymbol{Q},oldsymbol{\mathcal{E}})$$

Adding the double scattering term

[Crespo et al., PRC 46, 279 (1992)]



Summary & outlook

- Achieved a description of nucleon elastic scattering of light and medium-mass nuclei at the first order of the spectator expansion
- The choice of the NN interaction is crucial to define the energy limits of applicability of the optical potential
- **Extension** of the model to nucleon-nucleus inelastic scattering
- M Inclusion of medium effects in nucleon-nucleus elastic scattering
- Machieved a first step in the derivation of a nucleus-nucleus optical potential
- ☐ Extend the high-energy limits of applicability of the optical potential
- Inclusion of the second-order term of the spectator expansion
- ☐ Consistent treatment of the full 3N interaction
- Inclusion of medium effects in the nucleus-nucleus optical potential