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Introduction

e LHC upgrade during the long shutdown starting 2026 leading to the HL-LHC
o Increase the instantaneous luminosity by a factor 5 to 7 with respect to the LHC design value
o 140 to 200 simultaneous proton-proton collisions (pileup)
e ATLAS will be upgraded to cope with the HL-LHC conditions
o Increase the level 1 trigger frequency from 100 kHz to 1 MHz
> New readout electronics for the liquid argon calorimeter
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The ATLAS Liquid Argon Calorimeter

e Measures the energy of electromagnetically interacting particles mainly electrons and photons
e Trigger capabilities at the first level of triggering (implemented in hardware)
o Fast processing of the data needed (at 40 MHz)
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e Electronic signal amplitude proportional
to the deposited energy in the calorimeter

e Shaped and sampled at 40 MHz
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LAr Phase-II Upgrade

e Full electronics of the readout path will be exchanged
o New on-detector electronics to digitize the signal at 40 MHz and send it to the backend

o New off-detector electronics to compute the energy at 40 MHz
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https://cds.cern.ch/record/2285584/

LASP Firmware

7
e LASP board containing 2 processing units based on INTEL FPGAs

o Demonstrator board available with Stratix 10 FPGAs
o Final board will be equipped with Agilex FPGAs
e One FPGA should process 384 channels

o  About 125 ns allocated latency for energy computation
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Energy reconstruction
- ]

e [egacy energy reconstruction using an optimal filtering

algorithm with maximum finder (OFMax)
o  Optimal filtering to reconstruct the pulse and determine
its amplitude (o< energy)
o Max finder to determine the correct time (bunch
crossing)
e Not robust in case of distorted shapes due to pileup
o Use NNs to recover performance at the HL-LHC
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Energy reconstruction at the HL-LHC

S
3
E |
< F
. . . 0.8 |
e Increased noise due to increased pileup ;
o Up to a factor of 2 with respect to Run 3 06
e About 30% degradation in m resolution a1 I
e Better energy reconstruction algorithms needed |
0.2
o Neural networks are obvious candidates '
0
-0‘2.‘. AP S B i
0 100 200 300 400 500 600
Time (ns)
ATL-COM-LARG-2017-030
= oo0E — | , | = = BEEEAE AL A P R
2 00f = EW1 7205 ATLAS Simulation E & 0.12f-ATLASSimuiation " FH-
= = 4 EM1;n=10 — 0 = - 2 LU
® 180 v EM2,n=05 = - B NN vertex selection
re] = Emg, n = ;8 3 EP‘ 0 1_— o o o HL-LHC, p=0
(56 160 O EM2,n=2. —— = > 5 o2 0 HL-LHC, u=200,
5 140 = ; 0.08— oo 9? optimistic
— 120;_ _— —.——; - B DO'O' o® Q e HL-LHC, u=200,
1005 : —3 0.06[— $°*° ’;'.' pessimistic
801 S — S = B * ¢ o Run2
60 o E 0.04- o* o %
I 3 0.02] Ys o e
— — — Ler o200 o 5%
20F —p——1 ] - 9080 o_"%
OPH=.=| | | 3 0l i T = -
OFQ,,,, OFCE, OF%J Opq O/:% 116 118 120 122 124 126 128 130 132 134
S0 v Hs 29 7 hsgg Whs gy T Hs 2, m,, [GeV]


https://cds.cern.ch/record/2280232/

Energy reconstruction with NNs
|

Two neural networks types tested:
Convolutional Neural Networks (CNNs) (Dresden)
and
Recursive Neural Networks (RNNs) (CPPM)

This talk will cover only RNNs
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e Single cell architecture
o  Full history learned

o Less robust against intermittent problems such as
noise bursts

o Need large cells to handle full history
e Sliding window architecture
o Learn only local effects (what we need)

o Intermittent problems have only short time effect H il » ‘., ..

£, [Ga')

o  Suitable for small cells
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https://link.springer.com/article/10.1007/s41781-021-00066-y
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e Sliding window architecture retained
e Sequence of RNN cells each taking as input an
ADC sample at a given BCID

o 4 samples on the pulse

o N samples prior to the pulse to correct for pileup
e Two general parameters control network size - e )

o  Sequence length (number of samples) j§ §7§ 7§ : [m%‘
F & |- 0> .o
© NN units (internal dimension of the NN cells) : _‘[ ' ? ? g
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RNN Performance

e Compare energy resolution between RNNs and OFMax

o RNNs with increased size

o Keep size under control to fit FPGAs

e Second peak in resolution due to overlapping events

e Use Std. Dev. as metric (although the shape is not very gaussian)
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RNN Performance
]

e Compare energy resolution between RNNs and OFMax
o RNNs with increased size

o Keep size under control to fit FPGAs

e Second peak in resolution due to overlapping events
e Use Std. Dev. as metric (although the shape is not very gaussian)
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Performance as Function of Ti
]

Lauri Laatu, PhD thesis (2023)

me Gap
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RNN Performance vs RNN Cell Type

|
e Checking performance of Vanilla-RNN, GRU and LSTM

o Increased NN size by increasing sequence length and number of units
e Network size probed by number of multiplications (MAC units)
o Dashed lines in the plots
e Vanilla-RNN can reach the same performance with much less required MACs
o Best adapted to fit in FPGAs
o However best performance still too big for FPGA (can fit NNs with O(1000) MACs)

StDev cross dependance to units number and sequence lenght
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RNN latency
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Limiting latency

e Minimum achievable latency for Vanilla RNN estimated as function of the NN size
o Additioning the number of clock cycles needed for fundamental blocks
e Two latencies are important:
o  Limiting latency: available time between 2 samples
o Output latency: time to finish the computation after the last sample
e RNN cells with up to 100 units possible (latency is not the limiting factor at high frequency)
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Lauri Laatu, PhD thesis (2023)

Optimisation of computational resources

|
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Dense layer : MAC o< SXN

e Long sequences needed to efficiently correct for pileup
o Significant computational resources needed for RNN cells
e Replace RNN cells in the past by a dense layer
o Dense to correct to pileup, RNN to compute the amplitude
o Reduce the number of needed multiplications by a factor 4
m For a network with dimension 30 and sequence length 20
o No effect on performance
e Reduce number of bits needed for arithmetic computation
o Replace floating point with fixed point operation
o Train the network directly with fixed point (QAT)

RMSE [GeV]

o Quantization aware training (QAT) can reduce the number of

needed bits by a factor 2

RNN layers : MAC oc SXN?

Simulation of the energie resolution in
firmware as function of the number of bits
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Lauri Laatu, PhD thesis (2023)

RNN performance (summary)
- ]

e Small RNNs (sequence length of 5 samples) can outperform OFMax overall
o Butnot in all regions
o Larger networks needed

e Several optimisation carried out to improve the performance
o Keeping the network suitable for FPGA processing
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Lauri Laatu, PhD thesis (2023)

Computing the deposit time
- ]

e (OFMax can also compute the time of the deposit
o Phase with respect to the time of training

e (an be done easily with the NN by adding one additional neuron at the output for the time
© Adds n MAC units (n is the internal dimension of the network)

e Achieved better resolution than OFMax
o But degradation of the energy resolution observed

Time resolution Energy resolution
(Plleup deposﬂs excluded) (Plleup dep051ts excluded)
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Computing the deposit time
- ]

e (OFMax can also compute the time of the deposit
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o Phase with respect to the time of training

Lauri Laatu, PhD thesis (2023)

Can be done easily with the NN by adding one additional neuron at the output for the time
© Adds n MAC units (n is the internal dimension of the network)

Achieved better resolution than OFMax

o But degradation of the energy resolution observed

o Can be mitigated by weighting the loss function

Time resolution
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Firmware Implementation

7
e [mplemented on Stratix 10 FPGA e (hallenges:
o Reference ISG280HUIF50E2VG o 384 channels per FPGA
o Implementation on Agilex ongoing o 125 ns latency

{

e Preliminary implementation in HLS (High [i% g =
Level Synthesis) shows that LSTM is too T Z
large to fit ! | ‘ i , '

e Focus on Vanilla RNN | B dill

e Start with small RNN . <L o e

o & units and sequence length of 5 1 : '
o 89 parameters / | -
o 368 multiplications/accumulations (MAC) | X ' ; .
needed !;“; = ig =
o ,“ L ‘ E = i 1 % 5
: i : 2 A 3 = : =
LASP demonstrator board / IR R N el .



Implementation in HLS

|
e Optimisation needed to fit RNNs within resource and latency limitations

o Impossible to fit 384 RNN instenses in the FPGAs

o Need to serialize (time multiplexing)

o Need to go to high frequency (multiple of 40 MHz)

e Optimisation of vector/matrix multiplications

o  Most elementary operation inside neural networks
o Naive C++: let HLS do it all
o ACC37: Accumulate (sum) in DSPs by chaining them
o ACCI19: Accumulate in general logic elements (ALUT)
Implementation | ALUTs | FF | DSP
C++ style 709 222 8
@100 MHz { ACC37 116 79 4
ACC19 137 78 4

e Best strategy depends on frequency

o  Accumulate in DSP at low frequency

o  Accumulate in ALUT at high frequency

e (Chaining DSPs at high frequency needs more logic than

what 1s gained by performing sums inside DSPs

-
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Etienne Fortin, PhD thesis (2022)
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Rounding vs Truncation
|
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important reduction of latency with small
impact on energy resolution
o  Weight type rounded in software
m  No impact on latency
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I m p I e m e n ta ti O n i n V H D L Etienne Fortin. PhD thesis (2022)
7 ~ HLS placement
e HLS did not allow to reach the target frequency and resource A a

1
LT I
uEY NRURN O

usage e
o Increase of the needed logic (per network) and the latency as e v
we add networks to the FPGA | gy |
e Move to VHDL for the final fine tuning i |
e Force placement of the RNN components el

o Allow to better tackle timing violations and improve the i Ll SRR

maximum reachable latency (FMax)
e Use incremental compilation |
o  Freeze networks with no timing violations and recompile only

=
il

VHDL forced placement
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RNN firmware results

|
*based on experience with the phase-I upgrade
N networks x ALM DSP FMax latency
multiplexing
Target 384 channels 30%* 70%* Multiplexing x 40 MHz 125 ns
“Naive” HLS 384x1 226% 529% - 322 ns
HLS optimized 37x10 90% 100% 393 MHz 277 ns
VHDL optimized 28x14 18% 66% 561 MHz 116 ns

e HLS allows fast development and optimisation
o However less control on hardware specific implementation
e VHDL is needed to fine tune the design and fit the LAr requirements

e Vanilla RNN firmware produced and fits the requirements
o Better performance expected with the Agilex FPGA
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https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017

Testing on hardware

VHDL implementation tested on Startix 10

DevKit

Events

Test firmware to inject input and weights and

collect the output is built

o Data extraction using a JTAG-UART

connection with a NIOS

Data match firmware simulation bit-by-bit

Firmware resolution < 0.1% as expected from

simulation
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Nemer Chiedde, PhD thesis (2023)
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https://cds.cern.ch/record/2884186?ln=en

From single cell to the full detector

e Training 180000 NNs is not a raisonnable task
o Not just CPU/GPU but also need to validate then

Normalized Amplitude

Lauri Laatu, PhD thesis (2023)

t-SNE to reduce the dimensionality: from n samples of the pulse to 2 dimensions

Cluster ID

Group cells with “similar” pulse shape into a single NN
Cells are grouped using an unsupervised clustering method
O
o DBSCAN to cluster in two dimensions
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https://cds.cern.ch/record/2875588?ln=en

Lauri Laatu, PhD thesis (2023)

From single cell to the full detector
|

e (lusters manage to catch the geometric symmetries in the detector
o  Symmetry in phi
o Changing cell size (capacitance) and thus pulse shape in eta
e Confirmed clustering does not degrade RNN performance
o  Same resolution training on cells from the same clusters
o Dramatic degradation of resolution if training on a random cell outside the cluster
m Training on all clusters at once does not recover the performance

||||| [rrrrprrrrrrrr[rrrr[rrrrrrrrprrrrrrrr4

T g’ T T T T l: 10
EMB La er 3 1 2 . EMB Layer 3 D Same cluster
3F A F:', g 9 :>J’ 5000 - 0.24 GeV < E¥“¢ < 5GeV - i S‘ame cell N
- ":é - 1 8 i [ Different cluster
2F ‘ol =l - [ Mixing cluster data -
C iy 7 4000 - ]
C Y N -
1 — Y | gf - 6 o E
| | | 5 _
z [ I ] 5 i
I I N I 000
U o | A ] =
- B8 E: ] 4 O L
o " | & . L
-1F B ] - 3 2000
. P il
2 8 1 IE 1000
. i ] 1
3F 1 3 0 i
—1 0 —0 5 90.6 -0.5 —0 4 —0 3 -02 -0.1 0.0 0.1 0.2 0.3
ETA EPred — glrue [GeV]

27


https://cds.cern.ch/record/2875588?ln=en

Conclusions
e

e Neural networks can outperform the optimal filtering algorithm for the energy reconstruction
in the ATLAS LAr Calorimeter
o Particularly in the region with overlap between multiple pulses (high pileup)
e Several optimisations carried out to improve the RNN performance while keeping minimal
resource usage
o  Assessing the improvement on object reconstruction (electrons, photons) is ongoing
o Implementation in athena (ATLAS simulation and reconstruction software) in advanced stage
m  Using the clustering technique to group cells for the training

Small Vanilla RNN implemented on Stratix 10 FPGAs

HLS implementation allows very fast prototyping
o  Added support for both Vanilla RNNs and LSTMs on INTEL FPGAs to HLS4ML
o HLS design did not fit the stringent resource and latency requirements
e Final implementation done in VHDL
o  Fits requirements and successfully tested on hardware
e Next steps is to implement larger networks in Agilex FPGAs
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https://github.com/fastmachinelearning/hls4ml/pull/575
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RNN configuration
|

Table 2 Configurable key parameters of the single-cell and sliding-
window algorithms.

Single-cell Sliding-window
LSTM LSTM Vanilla RNN
Receptive " 5 5
Time inference  Field
Samples
after deposit 2 4 %
Dimension 10 10 8
RNN layer Activation tanh tanh RelLU
Recurrent - - N/A
Activation e SOl
DienseTyer Dimension | | |
Activation RelLU RelLU RelLLU
Number of 491 491 89
Parameters
MAC units 480 2360 368




Dot product implementations
IR,  Naive C++ implementation

}

for (int i=0; i < 8; i++){
acc += al[i] * b[i];

ACC37 implementation

for (int
tmp [i]

}

for (int
ace +=

}

i=0; i1 < 4; i++){
= al[i]*b[i] + a[7-il*b[7-i];

i=0; 1 < 4; i++){
tmp [1] ;

ACC19 implementation

for (int
tmp [1]

+

for (int
acc +=

g

i=0; 1 < 4; i++){
= hls_fpga_reg(alil*b[i] + al[7-i]l*b[7-1i]);

i=0; i < 4; i++){
tmp [i] ;
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Stratix10 DSP
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