

EW with Forward Folding

Martin Schimassek, Olivier Deligny, Rogerio Menezes de Almeida

Introduction

- main question: can we account for resolution effects, i.e. bin-to-bin migrations, in LSA analyses?

- necessary steps:

- obtain a valid description of the detector response in the range of interest

- re-formulate the analysis

Detector Response

- new response function derived from data: GAP-2024-022

Olivier Deligny^a, Martin Schimassek^a, Rogerio Menezes de Almeida^b

^aCNRS/IN2P3, **5**Ctob, Université Paris-Saclay, Orsay, France ^bInstituto de Física, Universidade Federal do Rio de Janeiro, Brazil

April 2024

Forward-Folding

- now written up in GAP-note:
 - outline of the method
 - derivation of the formulas used
 - tests on simple MC-set up
- \rightarrow we have OK for application to data (...)

GAP-2024-031

Accounting for the Detector Response in the East-West Method

Olivier Deligny^{*a*}, Martin Schimassek^{*a*}, Rogerio Menezes de Almeida^{*b*}

^{*a*}CNRS/IN2P3, **b**C₁₀₀, Université Paris-Saclay, Orsay, France ^{*b*}Instituto de Física, Universidade Federal do Rio de Janeiro, Brazil

May 2024

The math

- In theory: predicted count rate of events in given RA/energy/EW-bin: (under pure dipole assumption)

$$\nu_{\rm E/W}^{(k)}(\alpha_i) = \frac{\mathcal{E}}{2\pi} \int_{E'_k}^{E'_{k+1}} \mathrm{d}E' \int_0^\infty \mathrm{d}E \int \mathrm{d}\theta \sin\theta \cos\theta \varepsilon(E,\theta) r(E'|E,\theta) J(E) \int_{\rm E/W} \mathrm{d}\varphi (1 + \vec{d} \cdot \vec{n}_i)$$

- requires 5-dimensional integration, 4D if RA-is taken out

→ assume r and dn induce 'small' corrections:

$$r(1+\vec{d}\vec{n}) \approx (1+\Delta)(1+\vec{d}\vec{n}) = 1+\Delta+\vec{d}\vec{n}+\mathcal{O}(\epsilon^2)$$

 \rightarrow integral factorizes into transfer matrix like part and a dipole part

How to fit?

- forward fold to fit the 2D-data: n(E, RA)[East/West]
- likelihood: Skellam uses only differences → insensitive to spurious modulations

$$-2\log\mathcal{L} = \sum_{i,k} \left[\nu_{\rm E}^{(k)}(\alpha_i) + \nu_{\rm W}^{(k)}(\alpha_i) - \frac{n_{\rm E}^{(k)}(\alpha_i) - n_{\rm W}^{(k)}(\alpha_i)}{2} \log\left(\frac{\nu_{\rm E}^{(k)}(\alpha_i)}{\nu_{\rm W}^{(k)}(\alpha_i)}\right) - \log\left(\mathbf{I}_{\left|n_{\rm E}^{(k)}(i) - n_{\rm W}^{(k)}(i)\right|} \left(2\sqrt{\nu_{\rm E}^{(k)}(\alpha_i)\nu_{\rm W}^{(k)}(\alpha_i)}\right)\right) \right]$$

Example: Constant 10% Dipole

Bias and Resolution

- evaluate effects of resolution: compare distributions for 10 000 MC-samples

17.4 < lg E/eV < 17.7

17.4 < lg E/eV < 17.7

Bias and Resolution

- fit Rice distribution to evaluate 'mean' bias

Scenario 3: 'realistic'

In Data?

- application to data allowed by AD-task leadership
- first applied to scrambled data to be conservative
- \rightarrow bug found: double counting of efficiency

$$\mu_0 = \frac{\mathcal{E}\Delta\alpha_0}{2} \int_{\Delta E_i} dE J_0(E) \int d\theta \sin\theta \cos\theta \varepsilon(E,\theta),$$

$$R_{\mathrm{E},ij}^{(k)} = R_{\mathrm{W},ij}^{(k)} = R_{ij} = \frac{\int_{\Delta \hat{E}_i} \mathrm{d}\hat{E} \int_{\Delta E_j} \mathrm{d}E \int_{\Delta \theta} \mathrm{d}\theta \, \cos\theta \, r(\hat{E}|E;\theta) \, J_0(E)}{\int_{\Delta E_j} \mathrm{d}E \int_{\Delta \theta} \mathrm{d}\theta \, \cos\theta \, J_0(E)}$$

In Data: Bug-fix?

- remove efficiency from transfer matrix
- alternatives: remove from μ, renormalise R with efficiency yield (almost) identical results
- → still some ~20% energy dependent problem

In Data: Bug-fix?

- GAPs on EW-forward folding publish
- application to data pending due to bugs...
- unrelated: neutron paper finally submitted to PRD via arXiv:2406.11702

More Maths

- assuming $d \ll 1$, treat $\vec{d} \cdot \vec{n}$ as second order correction in (1)

ightarrow we can describe $u_{
m E/W}^{(k)}(lpha_i)$ with a (constant) transfer matrix R, such that

$$\nu_{ik}^{\mathrm{E,W}}(\mathbf{s}) = \sum_{j} R_{ij} \mu_{jk}^{\mathrm{E,W}}(\mathbf{s})$$

and the expected counts $\mu^{(k)}_{{\rm E/W}}(\alpha_i)$ for an ideal detector (r ightarrow delta function)

- fit likelihood ${\mathcal L}$ for model given observed counts, as Skellam distribution*

$$-2\log\mathcal{L} = \sum_{i,k} \left[\nu_{\rm E}^{(k)}(\alpha_i) + \nu_{\rm W}^{(k)}(\alpha_i) - \frac{n_{\rm E}^{(k)}(\alpha_i) - n_{\rm W}^{(k)}(\alpha_i)}{2} \log\left(\frac{\nu_{\rm E}^{(k)}(\alpha_i)}{\nu_{\rm W}^{(k)}(\alpha_i)}\right) - \log\left(\mathbf{I}_{\left|n_{\rm E}^{(k)}(i) - n_{\rm W}^{(k)}(i)\right|} \left(2\sqrt{\nu_{\rm E}^{(k)}(\alpha_i)\nu_{\rm W}^{(k)}(\alpha_i)}\right)\right) \right]$$

*pdf of the difference of two independent Poisson variables

Code and Reproduction

- LSA-MC-study: we are preparing a note

- reproduction: in same repository (in auger sandbox)

Running the Codes

There are two executables related to the anisotropy part.

For test purposes, there is one that fits a powerlaw d(E) ~ d0 x E^b, with the executable

./create_and_fit_simple_model -o powerlaw_d010_b00_c400_n1000 -d .1 --beta 0.0 -c 400 -n 10000

where the parameters -- apart from -o for the output name -- steer the MC-setup. -d indicates the dipole strength at 1 EeV, --beta the powerlaw index for generation, -c the possibility of a phase shift at given energy in EeV, setting it to 400 effectively removes it from the MC. -n is the number of MC-samples to generate and fit.

The 'standard' analysis, using free parameters of amplitude and phase per bin, can be run with very similar parameters:

./create_and_fit_mc_data -o realistic_d0006_b09_c2 -d .006 --beta 0.9 -c 2 -n 10000

there are more command line options than in the simple model case. They are fairly self-explanatory if -h is used to get the help output.

To fit the output distributions with a Rice distribution, you can use the utilities in the plotting directory. simply source root and run e.g.

root FitAmplitudeDistributions.C\(\"../realistic_d0006_b09_c2.root\"\)

It will produce a plot of the mean and width of the fitted Rice distribution as function of energy bins.

Scenario 3: d ~ E^{0.5}, sudden phase change

No Systematics: Constant 10% Dipole 🚺

No bias visible (might need more MC statistics though)

Constant 10% Dipole

- $d_{\perp}(E) = d_0 \times (E/1{
 m EeV})^{eta}$ with beta and d0 as free parameters
- starting values from observed amplitudes
- on average correct reconstruction of parameters, but inflexible

Constant 10% Dipole

- d(E), phi(E) pairs per bin \rightarrow 16 parameters
- starting values from observed amplitudes

Tests: Implementation

 use 'perturbation' assumption: transfer matrix pre-calculated binning 0.3 in lg E 8 energy bins highest one 'unbound' [, 400 EeV) 	17.55	3.4%	1.4%	.05%	0	0	0	0	0
	17.85	6.3%	31.4%	6.9%	0.03%	0	0	0	0
	18.15	0.01%	12.2%	72.1%	10.7%	0	0	0	0
	18.45	0	0	10.0%	82.8%	10.4%	0	0	0
	18.75	0	0	0	6.2%	84.4%	9.1%	0	0
	19.05	0	0	0	0	5.2%	86.9%	8.1%	0
	19.35	0	0	0	0	0	4.0%	89.1%	6.2%
	19.65	0	0	0	0	0	0	2.7%	93.8%

In Detail

- assuming $d\!\ll\!\mathbf{1}$, treat $\vec{d}\cdot\vec{n}$ as second order correction in (1)

→ we can describe $\nu_{E/W}^{(k)}(\alpha_i)$ with a (constant) transfer matrix R $\nu_{ik}^{E,W(s)} = \sum_{j} R_{ij} \mu_{jk}^{E,W(s)}$ and the expected counts $\mu_{E/W}^{(k)}(\alpha_i)$ for an ideal detector (r → delta function)

$$R_{ij} = \frac{\int_{E'_i}^{E'_i + \Delta E'_i} dE' \int_{E_j}^{E_j + \Delta E_j} dE \int d\theta \sin \theta \cos \theta \epsilon(E, \theta) J(E) r(E'|E; \theta)}{\int_{E_j}^{E_j + \Delta E_j} dE \int d\theta \sin \theta \cos \theta J(E)}$$

- fit likelihood ${\mathcal L}$ for model given observed counts, as Skellam distribution*

$$-2\log\mathcal{L} = \sum_{i,k} \left[\nu_{\rm E}^{(k)}(\alpha_i) + \nu_{\rm W}^{(k)}(\alpha_i) - \frac{n_{\rm E}^{(k)}(\alpha_i) - n_{\rm W}^{(k)}(\alpha_i)}{2} \log\left(\frac{\nu_{\rm E}^{(k)}(\alpha_i)}{\nu_{\rm W}^{(k)}(\alpha_i)}\right) - \log\left(\mathbf{I}_{\left|n_{\rm E}^{(k)}(i) - n_{\rm W}^{(k)}(i)\right|} \left(2\sqrt{\nu_{\rm E}^{(k)}(\alpha_i)\nu_{\rm W}^{(k)}(\alpha_i)}\right) \right) \right]$$