

WP2: Low Level RF controls DESY, HZB, CNRS Convener: Holger Schlarb (DESY)/ Julien Branlard (DESY) Main contacts with other partners: Axel Neumann (HZB), Christophe Joly (CNRS)

Task 2.1: Coordination of R&D on LLRF – M1-M48

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners– M13-M48

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

Task 2.2: Efficient field control for high loaded-quality factor cavities – M1-M48

• Identify optimal loaded-quality factor (QL) to achieve efficient field control for various operation scenarios.

- → Can be carried out using numerical simulation (achievable stability vs. power)
- → Test at CMTB/AMTF/HoBiCaT (without beam)
- → Test at SRF guns, Ts4i & BerLinPro (with beam), other options?
- Evaluate methods for changing QL (at the cavity coupler and waveguide level).
- → Test and simulations are ongoing at HoBiCaT & AMTF / (3-stub tuner or phase shifter design)
- Investigate benefits of advanced ML-based combined RF and mechanical feedback controllers.
 → Started investigation to model transfer function PZT → RF (Max Herrmann @ DESY)
 → New position will be open at HZB.
- Demonstrate RF-efficient control in continuous wave (CW) and long pulse (LP) operation.
 → depends on results 2.2.1-3, but is already regular investigated e.g. at CMTB

WP2 – LLRF: status/evolution of Task 2.3

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

- Characterize microphonics and detuning during cavity operation.
- → Measurements and characterization at several facilities feasible
- \rightarrow Strongly depending on the facility, vary over time and operation setups
- → Long term microphonics at XFEL/FLASH (Yue Sun & A. Bellandi & H.S. @DESY)
- → Evaluation at HoBiCaT & future SRF gun test stands
- Characterize environmental disturbances and transfer to the cavity perturbation.
- → Test using ext. geophones at CMTB (PhD thesis Uni. Lodz)
- → More sophisticated sensor techniques envisioned (Distributed Fiber Optic Sensing)
- Investigate and develop detuning counter measures based on advanced feedforward, feedback and active noise cancellation including AI methods.
- → Improve LLRF diagnostics on detuning (e.g. Lueneberger Observer, PhD, B. Richter)
- \rightarrow Advanced feedforward technique is worked on (A. Bellandi)
- \rightarrow Surrogated models will be tested

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners– M13-M48

- Integrate a ferro-electric fast reactive tuner (FE-FRT) with a digital LLRF system
- → Hardware development 2026/27 within WP1
- → Simulation on effect and operation range can be carried out
- \rightarrow When type and actuation is defined, digital interface can be defined
- Demonstrate microphonics compensation using a FE-FRT at a horizontal test stand
 Depends on WP1 outcome
- → Depends on WP1 outcome

Task 2.5: Energy efficient supervisory control and fault diagnosis– M1-M48

- Develop schemes to adjust solid state amplifier (SSA) parameters for efficient RF generation.
- → Cryoelectra GmbH presentation last year at DESY/ Continue discussion on digital interface
- → Achievable drain voltage slew rate to be determined/update rates ... level of few tens of ms
- Investigate RF control parameters for energy-efficiency optimization using ML methods
 Started...e.g. Bayesian optimization of LFT compensation in LP operation (PhD student)
- Develop fault diagnosis and anomaly detection of LLRF systems using ML approaches
- → Started...e.g. Quench Detection, Microphonics Detuning Anomalies, ...
- → StartedFault diagnostics on digital HW e.g. PCIe failure & restarts, SEU on FPGAs....
- → Implementation of real-time Quench Detection on FPGA (N. Omidsajedi)
- Develop fault counter measures (i.e., fast detection and reaction) for sustainable cavity operation
 On HW level some are implements/ wait for fast algorithm to be developed
- Develop a digital twin and surrogate models of LLRF systems to improve energy efficiency.
- → Modelling of entire system/software, combine achievements from other sub-WP2 packages
- \rightarrow hardware in the loop first test ongoing (B. Dursum)

WP2 – LLRF: points of attention

- Personnel setback
 - since kick-off meeting in April, key person for R&D announced that he will leave DESY in Fall 2024
 - → mitigation: open replacement position
- Changes in laboratory
 - Delay: SRF gun test stand Ts4i likely not be available before 2026 (DESY)
 - Risk: CMTB may not be operable during FLASH202+ shutdown 14 month (DESY)
 - → LLRF tests for LP and CP operation delayed
 - → Mitigation: prepare AMTF test stands with SSA operation
 - Additional loads: FALCO NRF gun test stand pulls resources (DESY)
- Risks:
 - Finding qualified personnel HZB (1 open position) / DESY (1 open position)
 - Other projects pulls resources, QL test slowed down (DESY)
 - Heavy load on SW and FW developers may delay development
- New opportunities:
 - New LLRF field detection hardware improve detection possibilities
 - e.g. important collaborations with other WPs and/or the broader accelerator R&D landscape
 - e.g. new challenges for the implementation of the tasks
 - e.g. new opportunities potentially leading to revisited tasks/milestones/deliverables
 - •••

WP2 – LLRF: plans to achieve milestones & deliverables

WP2 Low Level RF Controls									
2.1 Coordination of R&D on LLRF									
2.2 Efficient field control for high loaded-quality factor cavities						м		D	
2.3 Vibration analysis and detuning control of cavities						1 D			
2.4 Integrated LLRF control using Ferro-Electric Fast Reactive Tuners								MD	
2.5 Energy efficient supervisory control and fault diagnosis					м	D	м	D	
		4		DEGI	D	DII	2.6		
D2.1 ML based MC	Report on microphonics study &	2	DESY	R	PU	36			
D2.2 SSA	Report on interface study of LL	2	DESY	R	PU	36			
D2.3 LLRF control	Report on LLRF RF control stu	2	DESY	R	PU	48			
D2.4 FRT based MC	Report on integration of FE-FR		2	HZB	R	PU	48		
D2.5 Anomaly det.	imization	2	DESY	R	PU	48			
M2.1 Demonstrati	on of energy-efficient SSA oper	WP2	30	Test report/publication					
M2.2 Demonstrati	on of detuning control technique	WP2	33	Test report/publication					
M2.3 Demonstrati	Demonstration of RF control for CW/LP ops				Test report/publication				
M2.4 Demonstrati	n	WP2	42	Test report/publication					
M2.5 Demonstrati	on of FE-FRT Microphonics con	mpensation	WP2	45	Test report/publication				

 \rightarrow Deliverables and Milestones are still fine and in reach

→ To support the WP2 program additional position will be open: 1) at DESY ~Q4/24 2) HZB soon

Position prepared, about to be released

WP2 – LLRF: budget plans

WP	WP Subject	CNRS	CERN	ESS	DESY	VUB	CEA	HZB	INFN	UKRI	UL	EPFL	EU- budget kEUR	Matching personnel kEUR	Matching materials kEUR	Total budget kEUR
	Technology Areas															
WP.1	Ferro-Electric Fast Reactive Tuners							LEAD					989,3	784,0	277,8	2051,1
WP.2	Low-Level RF Controls				LEAD								498,9	612,0	204,0	1314,9
WP.3	Nb3Sn-on-Cu films for 4.2-K cavity operation								LEAD				871,4	616,0	232,0	1719,4
WP.4	HOM Dampers & Fundamental Power Couplers	LEAD											572,2	620,0	296,0	1488,2
	TOTAL FOR iSAS Technology R&D												2931,8	2632	1009,8	6573,6

 \rightarrow No deviations