

The DESIR facility at GANIL/SPIRAL2

Bertram Blank

L2Pi Bordeaux

Séminaire IJCLab, 13/12/2024

A new GANIL users facility

- Study of the fundamental properties of atomic nuclei and underlying forces
- With a high precision using ultra-pure samples of radioactive ions manipulated at very low energy
- Taking advantage of the various RIBs production methods
- In complementarity to S³(-LEB) and other GANIL installations

• • • **DESIR** at **GANIL**

• • DESIR physics programme

Beam production

• • • SPIRAL1 beams

Limitations:

- primary beam power
- fragmentation cross sections
- diffusion/effusions times (refractory elements, short half-lives)
- ionisation efficiency
- operational issues (stability, resilience etc.)

• S3-LEB beams

• • • S3-LEB beams: FRIENDS³

□ ANR JCJC project FRIENDS³ aimed at improving the S³-LEB gas cell:

Simulations

- Reduce extraction time
- Improve neutralization efficiency
- \circ Ideally both at the same time

Construction of test bench

Test-bench design study finalized, constructed in 2024

- Will be installed at GANIL for laser access
- Exploration of direct ion extraction by electrical field

8

• • DESIR beams: S1 & S3 (& S2)

9

Beam transport

• • Transport beam lines

SP1 -> DESIR beam line

Junction beam lines from SPIRAL1 and S3-LEB to the DESIR Hall: ~100 m

Installation starting by the end of 2025

• • • Transport beam lines

SPIRAL -> DESIR section

- Ongoing installation (mechanical assembly, supply integration tests, ...)
- Operation tests scheduled middle of 2025
- LP2IB/GANIL: process supplies, remote control systems...

Courtesy V. Watt-Morel, GANIL

Beam preparation and purification

• • Beam preparation and purification

• • Beam purification

• • • Beam purification: RFQ SHIRaC

R. Boussaid et al., PRCST 18 (2015) 072802

SHIRaC : Construction and test @ LPC Caen

Caen 6 m 6 m Beam 1,5 m

SHIRaC

RF: 2.1-4.9 MHz; V_{pp}: 8kV Emittence: ~3π mm.mrad ΔE ~eV

Transmission ~70 % for 1eµA beam

...presently refurbished at LPC (according to RFQ cooler of SPES)₁₆

• • Beam purification: Ion source, GPIB, PIPERADE and HRS at LP2i Bordeaux

• • Beam purification: High-resolution separator HRS

Configuration: MQ-MQ-FS-FQ-D-M-D-FQ-FS-MQ-MQ

T. Kurtukian Nieto et al., NIMB 317 (2013) 284

• • Beam purification: High-resolution separator HRS

• • High-resolution separator 2nd order correction measurements

P2i

• • High-resolution separator HRS: emittance meter

21

Pepperpot emittance-meter

Front view: tantal mask Side view: Phosphore screen + MCP

Front view: CCD camera

• • High-resolution separator HRS: emittance figures

Experimental measurements correspond to simulations

- 2nd order aberrations can be observed with the emittance-meter
- → Order 3: Not by eye, but a computer could
- ➔ Image analysis software under development (A. Balana)

J. Michaud et al., NIMB 541 (2023) 161

P2i

High-resolution separator 2nd order correction measurements

• High-resolution separator 3rd order correction measurements

P2i

• • High-resolution separator HRS: arbitrary waveform generator

 $Energy_{total} = 25000eV + custom distribution (\pm 5eV)$

The HRS can be commissioned in almost real operating conditions, with no radioactive beam and (relatively) high intensities

J. Michaud et al., NIMB 541 (2023) 243

• • High-resolution separator HRS: arbitrary waveform generator

 $Energy_{total} = 25000eV + custom distribution (\pm 5eV)$

26

• • High-resolution separator HRS: arbitrary waveform generator

27

• Minimum time dispersion currently down to pprox 250 ns (FWHM) at 3 keV

Beam purification: PIPERADE, 1st trap

First trap:

Resolving power:

$$\frac{\nu_c}{\Delta\nu_c} \propto \frac{m}{\Delta m} \approx 2 \times 10^5$$

P. Ascher, M. Flayol, D. Atanasov, E. Rey-herme, G. Guignard et al., LP2iB 29

P. Ascher et al., NIMA1019 (2021) 165857

Beam purification: PIPERADE, 2nd trap

• • • **PIPERADE:** Mass measurement of ⁴¹K with ToF-ICR

• ToF-ICR of 1 s

P. Ascher, M. Flayol, D. Atanasov, E. Rey-herme, G. Guignard et al., LP2iB 31

• • • **PIPERADE: PI-ICR**

• • • PIPERADE: PI-ICR

To-do list:

- January 2025: diaphragm change for a smaller diameter hole (reduction of gas leaking from PT to MT)
- before moving to DESIR:
 - systematic studies of ToF-ICR, impact of field imperfections (anharmonicities of E-field and fluctuations of B-field) on mass precision, mass-dependent errors, ion-ion interaction
 - PI-ICR mass measurement and systematic studies (imperfections E/B fields + image distortion + extraction optimisation)
 - PI-ICR cleaning: installation of an iris to select the ion of interest
 - Buffer gas cooling technique: limits in terms of trapping times and investigation vs number of ions
- > if AC not OK at DESIR: pressure/temp stabilisation system to implement
- commissioning at DESIR: all systematics to study again

Installation of experimental equipment

• • • Experimental equipment: time line

S2 - 2026: GPIB + PIPERADE + fluorescence laser line (LINO)

• • • Experimental equipment: time line

S1 - 2027: MORA cooler-buncher (RFQ)

• • Experimental equipment: time line

2029: collinear laser spectroscopy (LASAGN) completed, MLLTrap

• • • The DE_{sir}TRAP_{ping} facility

MORA

P. Delahaye, GANIL, L. Hayen, X. Fléchard, LPC Caen

- RFQ-CB associated with a Paul trap
- -> β-ν angular correlation coefficient
- -> D correlation with laser polarized beams

P. Delahaye et al., Hyperfine Interaction 240 (2019) 63
⇒ Fundamental interaction physics
■ exotic currents, CVC, V_{ud}, CP-violation

Commissioning at JYFL

MLLTrap

P. Thirolf, LMU Munich – E. Minaya Ramirez, IJClab

- Double Penning trap
- -> high precision mass measurements
- -> in-trap decay

E. Minaya-Ramires et al., NIM B 463 (2020) 315 P. Chauveau et al., NIMB 463 (2020) 371

- \Rightarrow Nuclear structure & Decay properties
 - shell evolution, deformation
 - (super-) heavy nuclei decay spectroscopy

Commissioning at ALTO (IJCLab)

• • • The LUMIERE facility

Laser Utilization for Measurement and Ionization of Exotic Radioactive Elements

LASAGN (L. Lalanne, IPHC)

- Collinear laser spectroscopy (CRIS like)
 - -> hyperfine structure (magnetic and quadrupole moments, mean square charge radii)
- LINO commissioned at ALTO, IJCLab, D. Yordanov et al.

• The BESTIOL facility

BEta decay STudies at the SPIRAL2 IsOL facilty

Beam cooling and purification using PIPERADE for (trap-assisted) decay spectroscopy

-> High-precision measurements with ultra-pure samples for fundamental interaction, nuclear structure, nuclear astrophysics etc

- β-γ decay stations (BEDO, …)
- total absorption spectrometers (DTAS)
- neutron detection arrays (BELEN, MONSTER, ...)
- electron and proton detection (COeCO, SiCube, b-STILED
- recoil detection (ASGARD)

for

- CVC, V_{ud}
- beta shapes
- lifetimes, P_{(2)n}
- exotic decays (β-2p, cluster emission)
- Gamow-Teller strength

DTAS

MONSTER

ASGARD

BELEN

SiCube

COeCO

b-STILED

BEDO

• • • DESIR C/C

• • • The DESIR building

- Building delivery: September 2025
- October 2025 to September 2026: Beam line & experiment installation
- June 2026 to January 2027: Cabling
- October 2026 to June 2027: Technical commissioning
- March to October 2027: Stable beam commissioning
- November 2027: Facility ready for radioactive beams

• **DESIR** construction

HRS room

DESIR hall

Soil refilling

• • • **DESIR** time line

Moyens communs

Thanks for your attention

