

The experience gained by IFJ PAN and its implementation into the projects

Dariusz Bocian Jacek Świerblewski



The Division of Scientific Equipment and Infrastructure Construction (DAI)

### **General Information about IFJ PAN**



- Personnel: 561; Prof. 30, Assoc. Prof. 61, Ph.D. 101, engineers 117
- Scientific Divisions:
  - Division of Particle and Astroparticle Physics
  - Division of Nuclear Physics and Strong Interactions
  - Division of Condensed Matter Physics
  - Division of Theoretical Physics
  - Division of Interdisciplinary Research
  - Division of Applications of Physics

### • Researcher Departments:

- Cyclotron Centre Bronowice
- Division of Scientific Equipment and Infrastructure Construction
- Four accredited laboratories
- Education:
  - International Ph.D. Studies
  - Interdisciplinary Doctoral Studies
  - Kraków Interdisciplinary Doctoral School
- Scientific output: > 650 publications annually







### **Genesis and History**



 1955 – foundation of the IFJ – as a branch of the Institute of Nuclear Research – Prof. Henryk Niewodniczański (1900-1968)



(Fot. Archiwum of the IFJ PAN)

- **1960** IFJ as a standalone unit
- 1970 Particle physics enters Prof. Marian Mięsowicz (1907-1992)
- 1988 IFJ gets the name of its patron Henryk Niewodniczański



• 2003 – IFJ gets the status of a Research Institute of Polish Academy of Sciences

20

### Scientific Activity (2017-2022)





International grants (EC, F4E, VF, SNF)



National grants (NCN, NCBiR, FNP, MEiN, NAWA)





## Integration of European Accelerator Research Infrastructures

<u>Participation of IFJ PAN in projects aimed at the Development of Innovation</u> <u>and Cooperation of European Technological Infrastructures for Accelerators and Magnets</u>



#### TIARA – Test Infrastructure and Accelerator Research Area (2 years, 2011-2013)

In Poland, the project was carried out by a consortium of 7 scientific institutions: the Henryk Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences, the AGH University of Science and Technology, the Cracow University of Technology, the Andrzej Sołtan Institute of Nuclear Problems, the Warsaw University of Technology, the Lodz University of Technology, the Wrocław University of Technology.



## **AMICI** – Accelerator and Magnet Infrastructure for Cooperation and Innovation (2017-2019)

In Poland, the project was carried out by the Henryk Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences



**i.FAST** – Innovation Fostering in Accelerator Science and Technology (2021-2025) WP13 activities are carried out by the Henryk Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences



**FuSuMaTech - Future Superconducting Magnet Technology (2017-2019, 2021-2025)** In Poland, the project is was carried out by the Henryk Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences



## **Proposed involvement into FAIR**





## FAIR: string test interconnection areas













courtesy GSI/FAIR Colleagues



## **IFJ PAN in-kind contribution to ESS – Technical Annexes**

#### SCHEDULE AIK 10.1-Cryomodule test

- Reception of Cryomodule units
- Preparation of Cryomodule units for the test bench
- Installation on the test bench
- Initial testing
- Cool down
- Heat load measurements
- Warm up
- Disconnection
- Preparation for the tunnel
- Participation in site activity coordination
- Final review



2017 - 2026

#### **SCHEDULE AIK 17.3 -PC Installation**

- Klystrons Modulators for RFQ and DTL
- Klystron Modulators for Medium / High Beta
- Magnet Power Converters



- Stub installation
- LLRF installation
- LPS installation
- Distribution system installation
- High Power Amplifier installation







CONTRIBUTION TO THE LOW AND HIGH-POWER TESTS OF RF EQUIPMENT AND TESTING AND INSTALLATION OF RFPS'S IN TS3 AND IN G02. 2022 - 2023



## IFJ PAN (DAI) at ESS





- Cryogenic experts,
- Mechanical and electrical specialists,
- RF engineers,
- Vacuum specialists,
- Skilled technicians,



















## IFJ PAN (DAI) at ESS

### Supported activities at ESS side

- Support with installation trial of elliptical CM05 & spoke CM02 in the tunel,
- Support with SPOKE CM10 CTS motor replacing,
- Replacing of the LG at all SPOKE CM's,
- Various leak tests for choosen SPOKE CM's,
- Support with MLI installation for ACCP-CTL interconnections,
- And ...



level gauge replacing at SPOKE CM









## IFJ PAN (DAI) at ESS

## **Documents**

- 10 procedures
- 47 reports
- 15 check lists •
- 13 NCR's

| Asset Documentation                | ESS Project  Accelerator  Accelerator Coll | aboratio   |   |
|------------------------------------|--------------------------------------------|------------|---|
| -                                  | Actions • 🖽 Table • 💋 🖬 • 🍞                | <b>m</b> - |   |
| Documentation<br>ate<br>rties<br>s | Name                                       |            |   |
|                                    | 1.                                         | •          |   |
|                                    | 2. 🔲 🗯 🗁 Medium Beta Cavities              | •          |   |
|                                    | 3. 📄 📲 🗁 Medium Beta CM Assembly           | ۹.         |   |
|                                    | 4. 🗆 🛏 🗁 Medium Beta CM Parts              | ۹.         |   |
| Ψ                                  | 5.   Medium Beta CM  Operation             | •          |   |
| <u> </u>                           | 6. 🗌 📲 🗁 CM01                              | •          |   |
| č                                  | 7. □ →⊞ 🗁 CM03                             | ۹.         |   |
| .=                                 | 8. 🗆 📲 🗁 CM04                              | <u>•</u>   |   |
| ts                                 | 9. 🗆 🕶 🗁 CM00                              | <b>N</b>   |   |
|                                    | 10. ••• / CM05                             | •          |   |
| le                                 | 11. 🗆 🔸 🗋 ESS-3730754                      | <b>N</b>   |   |
| cum                                | 12. □ → 🗋 ESS-3739897                      | <u>•</u>   |   |
|                                    | 13. □ → B ESS-3837787                      | s 🖸        | 1 |
| 0                                  | 14. □ → P ESS-3843954                      | s 🖸        | 1 |
|                                    |                                            | _          |   |





## Support for Low and High-Power test of the Klystrons



High Power test procedure includes:

- DC conditioning;
- RF conditioning;
- RF test to check the functionality of the klystron.



#### Low Power test includes:

- Checking the cables;
- Checking electronic devices installed in RACK's;
- Setting the interlocks thresholds;
- Checking the response in GUI.



## Support for Low and High-Power test of the Klystrons

Additional tasks done by IFJ PAN:

- Klystron preparation before LPT;
- Filling klystron with oil;
- Participation during cavity tuning in NCL klystron (together with Thales and ESS experts);
- Participation during swapping the vacuum tube for CPI klystron between two magnet





HENRYK NIEWODNICZAŃSKI

STITUTE OF NUCLEAR PHYSICS

POLISH ACADEMY OF SCIENCES









# IFJ PAN (DAI) at LHC

**LHC** - construction, commissioning, consolidation

Signing of the agreement in 2005-2010 between IFJ PAN



- ✓ Design and implementation of automatic measurement systems for testing superconducting LHC circuits
- ✓ Quality Control of superconducting electrical circuits
- ✓ Inspection of LHC superconducting magnet connections



Quality Control of superconducting electrical circuits ELQA TEAM

LHC during Long Shutdown





Damage disclosed during QC– ICIT TEAM



New measurement systems

 ✓ The work managing of the multinational team "Alpha-Omega"





## Measurements in the LHC during Long Shutdown 2



Standard ELQA measurements in the LHC during Long Shutdown 2.

Up to 25 engineers and technicians from IFJ PAN on CERN site



 Software development, design and fabrication of four dedicated diode lead measurement systems.



Number of ELQA measurements performed by IFJ PAN personnel during LS2 until the end of 2020.



## **Procedures at CERN**





- Co-authorship of 10 procedures related to electrical quality assurance of LHC and HL-LHC superconducting circuits
- Prototype crab cavity assembly procedure



## IFJ PAN (DAI) at XFEL



Acceptance tests of superconducting components of the <u>XFEL</u> accelerator IFJ PAN in-kind contribution to the XFEL 2010 – 2016











The Henryk Niewodniczański Institute of Nuclear Physics

#### Polish Academy of Sciences

#### **TEST - What does it mean ?**





### **TEST - What does it mean ?**





# AMTF Hall - Cryomodule





Unloading of the cryomodule after transport



Cryomodule preparation area



Cryomodule test stand



Cryomodule test stand – module inside





Cryomodule test stand – front view



## Preparation and assembling of cryomodules at AMTF hall



















- Unload the cryomodule from the truck
- Incoming checks
- Load the cryomodule to the movable support
- Assembling Cryomodule at the test stand
- Connecting Cryomodule beam line to the test stand under clean room conditions
- Leak check of beam line interconnections and mass spectroscopy of the beam line
- Connecting of the waveguides
- Connecting of all electrical cables
- Connect of all cryomodule process pipes to the test stands
- Leak check of cryomodule vessel (ISO-VAC)
- Leak check of cryomodule cryogenic lines
- Assembly and isolating thermal shields
- Pumping down of isolation vacuum





# AMTF Hall - Cavity





Vertical Cryostat



Radiation protection shielding



Cavity preparation area



Cavity storage area



Cavity incoming check area



Clean room



# 9

### The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

## Preparation and assembling of cavities at AMTF hall





#### Main tasks:

- Incoming checks
- Assembling Cavity to the Insert
- Connecting Cavity to the vacuum line (in cleanroom conditions)
- Tuning of Fundamental Mode Rejection Filters of both HOM couplers + Cables connection
- Leak check of the Cavity
- Transport of the Insert to the cryostat + vacuum connection











#### 09.09.2024, ZOOM



The Henryk Niewodniczański Institute of Nuclear Physics

Polish Academy of Sciences

## **XFEL Procedures**



| Activation and deactivation of Ion Pump                 | D0000006689411                         | 09.02.2016 |
|---------------------------------------------------------|----------------------------------------|------------|
| Activation of Titanium Sublimation Pump (TSP)           | D0000006689491                         | 09.02.2016 |
| Alignment_of_the_crymodule                              | D0000006678751                         | 26.01.2016 |
| Assembly final tightening and connection of GRP         |                                        |            |
| adapter                                                 | D0000006651881                         | 26.01.2016 |
| Cavities fine tuning and module calibration             | D0000006630821                         | 11.12.2015 |
| Closing of the sliding muff                             | D0000006650681                         | 20.01.2016 |
| Connection of all process pipes                         | D0000006651941                         | 26.01.2016 |
| Connection of the beamline                              | D0000006790331                         | 24.03.2016 |
| Connection_of_the_waveguides                            | D0000006853821                         | 25.04.2016 |
| COOL DOWN_XATB                                          | D0000006563271                         | 08.01.2016 |
| COOL DOWN_XATB_checklist                                | D0000006552401                         | 09.01.2016 |
| Coupler tuner bellow check at warm                      | D0000006637781                         | 18.12.2015 |
| Cryomodule Heat Loads measurements                      | D0000006710641                         | 23.03.2016 |
| Detune all cavities after cold test                     | D0000006632411                         | 14.12.2015 |
| Disconnection of all process pipes                      | D0000006652001                         | 21.01.2016 |
| Disconnection of the beamline                           | D0000006790571                         | 24.03.2016 |
| Disconnection_of_the_waveguides                         | D0000006853921                         | 25.04.2016 |
| Dismounting of GRP adapter                              | D0000006652061                         | 26.01.2016 |
| Flat - top measurement                                  | D0000006638681                         | 18.12.2015 |
| Heat Loads Measurements at 2K RF                        | D0000006637201                         | 18.12.2015 |
| Installation of the 80K thermal shield at End-cap and   |                                        |            |
| Feed-cap sides                                          | D0000006678511                         | 26.01.2016 |
| Installation of the 8K thermal shield at End-Cap and    |                                        |            |
| Feed-cap sides                                          | D0000006678461                         | 26.01.2016 |
| Integral leak check of the cryomodule                   | D0000006633341                         | 15.01.2016 |
| Isolating of all process pipes                          | D0000006652431                         | 20.01.2016 |
| Isolation of the 80K thermal shield using MLI at End-   |                                        |            |
| cap and Feed-cap sides                                  | D0000006678631                         | 26.01.2016 |
| Isolation of the 8K thermal shield using MLI at End-cap |                                        |            |
| and Feed-cap sides                                      | D0000006678571                         | 26.01.2016 |
| Leak check of the cryomodule                            | D0000006/11021                         | 15.02.2016 |
| LLRF measurements at AMTF                               | D0000006637721                         | 05.01.2016 |
| Low power RF measurement at 2K                          | D0000006630761                         | 11.12.2015 |
| Magnet test at 2K                                       | D0000006632351                         | 21.12.2015 |
| Opening and closing of the cold valve                   | D0000006/10831                         | 15.02.2016 |
| Opening of the sliding muff                             | D0000006651091                         | 20.01.2016 |
| Post caps installation                                  | D0000006651331                         | 20.01.2016 |
| Pumping down of the cryomodule insulation vacuum        | D0000006789801                         | 24.03.2016 |
| Removal of Post caps                                    | D0000006651391                         | 20.01.2016 |
| Removal of the transport-cap at downstream side         | D0000006651451                         | 21.01.2016 |
| Removal of the transport-cap at upstream side           | 00000006651501                         | 21.01.2016 |
| Unloading of the XFEL cryomodule from the trailer and   | D0000000000000000000000000000000000000 | 26.04.2046 |
| transfer to the preparation area                        | D0000006678691                         | 26.01.2016 |
| vacuum incoming inspection for crymodule                | D0000006632481                         | 15.01.2016 |
| warm coupler conditioning                               | 00000006637261                         | 18.12.2015 |
|                                                         |                                        |            |



Number of created procedures:

~50 for Cryomodule (AMTF) ~19 for Cavity (AMTF) ~146 for Cryomodule (CMTB) ~21 for Cavity (HALL 3)



## A small drop of our experience





## **Understanding of the Quality**

#### **Quality Assurance**

Quality assurance can be defined as <u>"part of quality</u> <u>management focused on providing confidence that quality</u> <u>requirements will be fulfilled.</u> The confidence provided by quality assurance is twofold—internally to management and externally to customers, government agencies, regulators, certifiers, and third parties. Quality Control



Quality control can be defined as <u>"part of quality management</u> <u>focused on fulfilling quality requirements.</u> While quality assurance relates to how a process is performed or how a product is made, quality control is more the inspection aspect of quality management.

QC focuses on the results of the work performed, whereas QA is concerned with the adequacy of the underlying processes, methodology, and standards in place to create the output.

Project Management Theory and Practice, Third Edition, 2019



**Quality Relationships.** ISO 9000 definitions from ISO 9000:2015: Quality management systems



This standard describes the fundamental concepts and principles of quality management which are universally applicable to the following:

- organizations seeking sustained success through the implementation of a quality management system;
- customers seeking confidence in an organization's ability to consistently provide products and services conforming to their requirements;
- organizations seeking confidence in their supply chain that product and service requirements will be met;
- organizations and interested parties seeking to improve communication through a common understanding of the vocabulary used in quality management;
- organizations performing conformity assessments against the requirements of ISO 9001;
- providers of training, assessment or advice in quality management;
- developers of related standards.









#### dedicated system for QC and QA support

Cryomodule tests

Loading area

## Data management - systems

- quality control
- problem analysis
- automatic report generation (in development)

Data Base – cryomodule tasks XFEL

• electronic logbook

#### Data Base - Cavity status at AMTF



