

Functional methods for Effective Field Theory calculations

Javier Fuentes-Martín

University of Granada

Université Paris-Saclay, HEP seminar, 12/12/2024

Email: javier.fuentes@ugr.es

Don't hesitate to write if you want to discuss about these topics!

Effective Theories Introduction and state-of-the-art

Why Effective (Field) Theories?

The concept is very general: consider an apple falling from a tree. If you want to know its falling velocity, you will probably use

But

 \dots the gravitational potential is not linear in h

... Newtonian gravity is itself an effective theory of General Relativity

Physics decouples! No need to know all details to describe a system at a given precision

$$mgh = \frac{mv^2}{2} \implies v = \sqrt{2gh}$$

[Corrections of $\mathcal{O}(h/R) \sim 10^{-6}$]

Why Effective (Field) Theories?

Effective Theories (ET) are ubiquitous in Physics:

- GR \rightarrow Newtonian gravity
- Charge distribution \rightarrow Multipolar expansion
- QED \rightarrow Hidrogen atom
- QCD \rightarrow Nuclear Physics

• . . .

They efficiently separate energy scales:

- ETs are simpler (and more powerful)
- Can be formulated without knowing the full theory
- All theories break down eventually, so they can all be regarded as ETs

What is experiment telling us?

	alus. March 2025							$\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$,
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	¹] Li	mit	~ 	R
Extra dimen.	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 – 4 j 2 j ≥3 j ≥1 b, ≥1J/2j ≥2 b, ≥3 j	Yes – – – j Yes Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	M _D M _S M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass KK mass	2.3 TeV	11.2 Te $n = 2$ 8.6 TeV $n = 3$ HLZ NLO9.4 TeV $n = 6$ 9.55 TeV $n = 6, M_D = 3$ TeV, rot BH4.5 TeV $k/\overline{M}_{Pl} = 0.1$ 8.6 TeV $k/\overline{M}_{Pl} = 1.0$ 7.7 TeV $K/\overline{M}_{Pl} = 1.0$ 7.8 TeVTier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$	
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{SSM} W' \to tb \\ \operatorname{HVT} W' \to WZ \ \operatorname{model} B \\ \operatorname{HVT} W' \to WZ \to \ell\nu \ell'\ell' \ \operatorname{model} B \\ \operatorname{HVT} Z' \to WW \ \operatorname{model} B \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ - \\ 2 \ b \\ \geq 1 \ b, \geq 2 \ J \\ - \\ - \\ \geq 1 \ b, \geq 1 \ J \\ 2 \ j \ / \ 1 \ J \\ 2 \ j \ (VBF) \\ 2 \ j \ / \ 1 \ J \\ 1 \ J \end{array}$	- - Yes Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass Z' mass W' mass W' mass W' mass	2.42 Te 2.1 TeV	5.1 TeV V 4.1 TeV 6.0 TeV 6.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $g_V = 3$ $f_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	ATL
CI	CI qqqq CI ℓℓqq CI eebs CI μμbs CI tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j _ 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ Λ	1.8 TeV 2.0 TeV 2.57 Te	21.8 TeV η_{LL}^- 35.8 TeV $g_* = 1$ $g_* = 1$ $ C_{4t} = 4\pi$	Υ <u>Γ</u> L
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac D Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a	M) 0 e, μ, τ, γ DM) 0 e, μ a multi-channe	2 j 1 – 4 j 2 b	– Yes Yes	139 139 139 139	m _{med} 376 GeV m _{Z'} m _a	3.0 800 GeV	3.8 TeV $g_q=0.25, g_{\chi}=1, m(\chi)=10 \text{ TeV}$ $g_q=1, g_{\chi}=1, m(\chi)=1 \text{ GeV}$ $\tan \beta=1, g_{\chi}=0.8, m(\chi)=100 \text{ GeV}$ $\tan \beta=1, g_{\chi}=1, m(\chi)=10 \text{ GeV}$	eV ATL
ТО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ mix gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ \text{multi-channe} \\ 2 \ e, \mu, \tau \end{array}$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \tau \geq 1 \ j, \geq 1 \ b \\ \tau 0 - 2 \ j, \ 2 \ b \\ \geq 1 \ j, \geq 1 \ b \\ \geq 1 \ b \end{array} $	Yes Yes Yes - Yes Yes Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ^u mass LQ ^u mass LQ ^d mass LQ ^d mass LQ ^d mass LQ ^v mass LQ ^v mass	1.8 TeV 1.7 TeV 1.4) TeV 1.24 T V 1.4 TeV 1.26 V 2.0 TeV 1.96 TeV	$egin{aligned} eta &= 1\ eta &= 1\ eta &= 1\ \mathcal{B}(\mathrm{LQ}_3^u o b au) &= 1\ \mathcal{B}(\mathrm{LQ}_3^u o t u) &= 1\ \mathcal{B}(\mathrm{LQ}_3^d o t au) &= 1\ \mathcal{B}(\mathrm{LQ}_3^d o t au) &= 1\ \mathcal{B}(\mathrm{LQ}_3^d o b u) &= 1\ \mathcal{B}(\widetilde{U}_1 o t\mu) &= 1, ext{ Y-M coupl.}\ \mathcal{B}(\mathrm{LQ}_3^V o b au) &= 1, ext{ Y-M coupl.} \end{aligned}$	ATL
Vector-like fermions	$\begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ T \rightarrow Wb \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \\ VLL \ \tau' \rightarrow Z\tau/H\tau \end{array}$	2e/2µ/≥3e,µ multi-channe X 2(SS)/≥3 e,µ 1 e, µ 1 e, µ 0 e,µ multi-channe	$\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ el $\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 3 \text{ j}$ $\ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 2\text{ b}, \ge 1\text{ j}, \ge 1\text{ j}$ el $\ge 1 \text{ j}$	– Yes Yes J – Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass	1.4 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV 898 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt)$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet)= 1 ATL ATL
Exctd ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	- 1 γ - 2 τ	2 j 1 j 1 b, 1 j ≥2 j	_ _ _	139 36.7 139 139	 q* mass q* mass b* mass τ* mass 	3	6.7 TeV Sonly u^* and d^* , $\Lambda = m(q^*)$ 5.3 TeV Sonly u^* and d^* , $\Lambda = m(q^*)$.2 TeV $\Lambda = 4.6$ TeV	
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2 µ 2,3,4 e, µ (SS 2,3,4 e, µ (SS - -	≥2 j 2 j S) various S) – – –	Yes Yes 	139 36.1 139 139 139 34.4	N ⁰ mass N _R mass H ^{±±} mass 350 GeV H ^{±±} mass multi-charged particle mass monopole mass	910 GeV 3 1.08 TeV 1 59 TeV 2.37 TeV	.2 TeV $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production DY production, $ q = 5e$ DY production, $ g = 1g_D$, spir	ATL

No direct evidence for NP despite the many reasons for it [presence of a mass gap?]

Indirect NP searches?

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

= 13 TeV

erence

A new precision era

LHC Run 1 Run 2 LS1 LS2 EYETS 13 TeV **Diodes Consolidation** splice consolidation LIU Installation cryolimit interaction 7 TeV 8 TeV button collimators Civil Eng. P1-P5 regions **R2E project** 2012 2016 2017 2019 2013 2014 2015 2011 2018 experiment beam pipes 2 x nominal Lumi **ALICE - LHCb** nominal Lumi upgrade 75% nominal Lumi 190 fb⁻¹ 30 fb⁻¹ **HL-LHC TECHNICAL EQUIPMENT:** C DESIGN STUDY PROTOTYPES

Marginal increase in energy, but $\sim 20 \times$ more luminosity!

HL-LHC

Effective Field Theories (EFT): bottom-up

EFTs are great for parametrizing the unknown:

- Can be formulated without knowing the full theory
- Systematically improvable by adding extra terms in a double expansion in quantum corrections and E/Λ

$$\mathscr{L}_{\text{EFT}}(\eta_L) = \mathscr{L}_{d=4}(\eta_L) \qquad \qquad \text{UV physic}$$
$$+ \sum_{\ell=0}^{\infty} \sum_{n=5}^{\infty} \sum_{k} \frac{C_{n,k}^{(\ell)}}{(16\pi^2)^{\ell} \Lambda^{n-4}} O_{n,k}(\eta_L)$$

S:

Effective Field Theories (EFT): bottom-up

EFTs are great for parametrizing the unknown:

- Can be formulated without knowing the full theory
- Systematically improvable by adding extra terms in a double expansion in quantum corrections and E/Λ

$$\begin{aligned} \mathscr{L}_{\text{EFT}}(\eta_L) &= \mathscr{L}_{d=4}(\eta_L) & \qquad \text{UV physics} \\ &+ \sum_{\ell=0}^{\infty} \sum_{n=5}^{\infty} \sum_{k} \frac{C_{n,k}^{(\ell)}}{(16\pi^2)^{\ell} \Lambda^{n-4}} O_{n,k}(\eta_L) \\ \\ \text{LEFT} : \frac{p}{\Lambda_{\text{EW}}} \sim \frac{1}{100} & \qquad \text{SMEFT} : \frac{p}{\Lambda} \sim ? \end{aligned}$$

Effective Field Theories (EFT): bottom-up

EFTs are great for parametrizing the unknown:

- Can be formulated without knowing the full theory
- Systematically improvable by adding extra terms in a double expansion in quantum corrections and E/Λ

They give an indication on new-physics scales where a new fundamental theory has to be formulated

For example,

_EFT \rightarrow Electroweak scale \rightarrow Standard Model (SM) [Fermi Theory]

Effective Field Theories (EFT): top-down

Given a specific new-physics idea:

- Many models share the same EFT, providing a universal framework to connect models with data
- Precision necessitates EFTs : summation of (large) logarithms of E/Λ arising from the quantum corrections

The step to build an EFT from a model is called **matching**

extremely repetitive and time-consuming task

Entire journal publications for the (one-loop) matching of *simple* NP models

The case for automation

Wim Klein, CERN "human computer"

jundi 7 mai 1936 26 oct. 1966 11/29 jours 115 267096 heures 16025760 minute 9617 secondez

The case for automation

Upgrading from "human computers" to computers

CERN first electronic computer

The (SM)EFT software project:

wilson

"Hard-coded" one-loop results based on:

SMEFT running: Jenkins et al. '13, '14; Alonso et al. '14

LEFT basis: Jenkins et al. '18

SMEFT-LEFT matching: Jenkins et al. '17 Dekens, Stoffer '19

LEFT running: Jenkins et al. '18

Automated one-loop matching of *many* models

"Breaking SMEFT operators" UV-to-SMEFT mapping

Cepedello et al. '23

Present limitations

Some steps/approaches require prior knowledge of the target EFT

Full automation only for simpler scenarios (no heavy vectors yet!)

(Automated) inclusion of two-loop effects is (so far) non-trivial

EFT matching

The path-integral approach in a nutshell

Diagrammatic matching: off-shell and on-shell

[Figure from Cohen, Lu, Zhang, 2011.02484]

Traditional, well-established procedure

Requires a priori knowledge of the EFT Lagrangian

- **Off-shell amplitudes:** only 1PI diagrams but EFT Lagrangian contains many operators off-shell d-dimensional Lagrangian)
- **On-shell matching**: only need to know on-shell EFT Lagrangian but, a priori, more complicated calculations. See Chala et al., 2411.12798 for a numerical approach using rational kinematics

Breaks gauge invariance in intermediate steps

Simplified diagrammatic matching: method of regions

We can separate loop integrals in two regions (for $q^2, m^2 \ll M^2$): hard ($p^2 \sim M^2$) & soft ($p^2 \sim m^2$)

If only the hard part of the loop is considered, we get the EFT Lagrangian directly

Method of regions: Beneke, Smirnov '97, Jantzen '11

JFM, Portolés, Ruiz-Femenía, '16 Zhang, '16

$$\int \int d^4x \, \mathcal{L}_{EFT}^{(1)} = \Gamma_{UV}^{(1)} |_{hard}$$

$$\int \int \int \Gamma_{EFT}^{(1)} = \Gamma_{UV}^{(1)} |_{soft}$$

The functional approach to EFT matching

Functional matching (path-integral methods)

Method of regions

 $\mathscr{L}_{\mathrm{EFT}}(\eta_L)$ Not in a basis

Based on the Wilsonian approach : split vibrating fields into fast (η_H) and slow (η_L) vibrations and "integrate out" the fast ones [Wilson, 1965]

More systematic and efficient approach

Manifestly gauge invariant at every step

Final results need to be reduced to a basis off-shell matching)

• Lagrangian: \mathscr{L}_{UV} with fields $\eta = (\eta_H \eta_L)$ and hierarchy $m_H \gg m_L$

• **Background field method:** shift *all* fields $\eta \rightarrow \hat{\eta} + \eta$

- $\hat{\eta}$: background fields (satisfy the quantum EOM)
- $\hat{\eta}$: quantum fluctuations
- **Quantum effective action:**

$$e^{i\Gamma_{\rm UV}[\hat{\eta}]} = \int \mathcal{D}\eta \, \exp\left(i\int \mathrm{d}^d x \, \mathscr{L}_{\rm UV}(\eta + \hat{\eta})\right)$$

[Tree lines in Feynman graphs] [Loop lines in Feynman graphs]

Goal: Evaluate the path integral ("integrate out" the quantum fluctuations) and isolate the EFT contribution

General EFT matching formula

The EFT action is given by

$$S_{\rm EFT}[\phi] = \Gamma_{\rm UV}[\hat{\Phi}, \phi] \Big|_{\rm hard}$$

"hard" denotes the loop region where all loop momenta are $p\gtrsim \Lambda$ (incl. tree-level contributions) ($^{(*)}$

- Explicit proof to two-loop order and (constructive) proof to any loop order in progress [JFM, Palavrić, Thomsen, <u>2311.13630</u>]
- The hard region is by far the <u>easiest to compute</u> (only vacuum integrals at zero external momenta)
- The method can be trivially adapted to extract UV divergences needed for RG running
- Enables functional matching and RG running at any loop order

[JFM, Moreno, Palavrić, Thomsen, coming soon!]

(*) Method of regions: Beneke, Smirnov, '97; Jantzen, '11

• Expanding the Lagrangian in η :

$$\mathscr{L}_{\rm UV}(\hat{\eta} + \eta) = \mathscr{L}_{\rm UV}(\hat{\eta}) + \frac{\delta \mathscr{L}_{\rm UV}}{\delta \eta_a} \bigg|_{\eta = \hat{\eta}} \eta$$

 $\eta_a + \frac{1}{2} \eta_a(\mathbf{x}) \frac{\delta^2 \mathscr{L}_{\text{UV}}}{\delta \eta_b(\mathbf{x}') \,\delta \eta_a(\mathbf{x})} \bigg|_{\eta = \hat{\eta}} \eta_b(\mathbf{x}') + \mathcal{O}(\eta^3)$

• Expanding the Lagrangian in η :

$$\mathscr{L}_{\mathrm{UV}}(\hat{\eta} + \eta) = \mathscr{L}_{\mathrm{UV}}(\hat{\eta}) + \frac{\delta \mathscr{L}_{\mathrm{UV}}}{\delta \eta_a} \bigg|_{\eta = \hat{\eta}} \eta_a + \frac{1}{2} \eta_a(x) \frac{\delta^2 \mathscr{L}_{\mathrm{UV}}}{\delta \eta_b(x') \,\delta \eta_a(x)} \bigg|_{\eta = \hat{\eta}} \eta_b(x') + \mathcal{O}(\eta^3)$$

• Tree-level: $\mathscr{L}_{\mathrm{EFT}}^{(0)} = \mathscr{L}_{\mathrm{UV}}(\hat{\eta}_L, \hat{\eta}_H(\hat{\eta}_L))$

– Substitute $\hat{\eta}_H$ by its EOM expanded in m_H^{-1}

$$\frac{\delta \mathscr{L}_{\mathrm{UV}}}{\delta \eta_H} \bigg|_{\eta = \hat{\eta}} = 0$$

[Simpler than computing Feynman graphs]

• Expanding the Lagrangian in η :

$$\mathscr{L}_{\mathrm{UV}}(\hat{\eta} + \eta) = \mathscr{L}_{\mathrm{UV}}(\hat{\eta}) + \frac{\delta \mathscr{L}_{\mathrm{UV}}}{\delta \eta_a} \Big|_{\eta = \hat{\eta}}^{0} \eta$$

 $\eta_a + \frac{1}{2} \eta_a(x) \frac{\delta^2 \mathscr{L}_{\text{UV}}}{\delta \eta_b(x') \, \delta \eta_a(x)} \bigg|_{\eta = \hat{\eta}} \eta_b(x') + \mathcal{O}(\eta^3)$

• Expanding

g the Lagrangian in
$$\eta$$
:

$$\int_{x'} \mathcal{Q}_{ab}(x, x') \\ \parallel \\
\mathcal{L}_{UV}(\hat{\eta} + \eta) = \mathcal{L}_{UV}(\hat{\eta}) + \frac{\delta \mathcal{L}_{UV}}{\delta \eta_a} \Big|_{\eta = \hat{\eta}} \eta_a + \frac{1}{2} \eta_a(x) \frac{\delta^2 \mathcal{L}_{UV}}{\delta \eta_b(x') \delta \eta_a(x)} \Big|_{\eta = \hat{\eta}} \eta_b(x') + \mathcal{O}(\eta^3)$$

• Inverse quantum-field propagator:

 $\mathcal{Q}_{ab}(x,x') = Q_{ac}(\hat{\eta}(x), \hat{D}_x^{\mu_1} \cdots \hat{D}_x^{\mu_n} \hat{\eta}(x), \hat{D}_x^{\mu}) U_{cb}(x,x') \delta(x-x')$

Wilson line

New!!

[parallel transport $x \leftrightarrow x'$]

$$\hat{D}_{x}^{\mu_{1}}\cdots\hat{D}_{x}^{\mu_{n}}U(x,x')\Big|_{x=x'}=p_{n}(G^{\mu\nu},D^{\mu}G^{\nu\rho},$$

[Kuzenko, McArthur, '03] [JFM, Moreno, Palavrić, Thomsen, coming soon!]

• Expanding the Lagrangian in η :

$$\mathscr{L}_{\mathrm{UV}}(\hat{\eta} + \eta) = \mathscr{L}_{\mathrm{UV}}(\hat{\eta}) + \frac{\delta \mathscr{L}_{\mathrm{UV}}}{\delta \eta_a} \Big|_{\eta = \hat{\eta}} \eta$$

Inverse quantum-field propagator:

 $Q_{ab}(x,x') = Q_{ac}(\hat{\eta}(x), \hat{D}_{x}^{\mu_{1}} \cdots \hat{D}_{x}^{\mu_{n}} \hat{\eta}(x), \hat{D}_{x}^{\mu}) U_{cb}(x,x') \delta(x-x')$

Wilson line

[parallel transport $x \leftrightarrow x'$]

New!!

$$\left. \hat{D}_{x}^{\mu_{1}} \cdots \hat{D}_{x}^{\mu_{n}} U(x, x') \right|_{x=x'} = p_{n} (G^{\mu\nu}, D^{\mu} G^{\nu\rho},$$

[Kuzenko, McArthur, '03] [JFM, Moreno, Palavrić, Thomsen, coming soon!]

• Expanding

• 1-loop effective action:

$$e^{i\Gamma_{UV}^{(1)}[\hat{\eta}]} = \int \mathcal{D}\eta \, \exp\left(i\int_{x,x'} \eta_a(x) \, \mathcal{Q}_{ab}(x,x') \, \eta_b(x')\right) \implies \Gamma_{UV}^{(1)}[\hat{\eta}] = -i\ln \operatorname{SDet} \mathcal{Q}^{-1/2} = \frac{i}{2}\operatorname{STr}$$

Gaussian integration

$$\Gamma_{\rm UV}^{(1)}\left[\hat{\eta}\right] = \frac{i}{2} \operatorname{STr} \ln \mathcal{Q} = \pm \frac{i}{2} \int_{x,x'} \delta(x - x')$$

 $\left[\ln \mathcal{Q}(x, x')\right]_{aa}$

) $[\ln Q(x, iD_x^{\mu})]_{ab} U_{ba}(x, x') \delta(x - x')$

$$\Gamma_{\text{UV}}^{(1)}\left[\hat{\eta}\right] = \frac{i}{2} \operatorname{STr} \ln \mathcal{Q} = \pm \frac{i}{2} \int_{x,x'} \delta(x - x')$$
$$= \pm \frac{i}{2} \int_{x,k'} \left[\ln Q(x, t)\right]$$

 $\left[\ln \mathcal{Q}(x, x')\right]_{aa}$ ') $[\ln Q(x, iD_x^{\mu})]_{ab} U_{ba}(x, x') \delta(x - x')$

 $i\hat{D}_x^{\mu}-k$]_{ab} $U_{ba}(x,x')$

$$\Gamma_{\rm UV}^{(1)}\left[\hat{\eta}\right] = \frac{i}{2} \operatorname{STr} \ln \mathcal{Q} = \pm \frac{i}{2} \int_{x,x'} \delta(x - x')$$
$$= \frac{i}{2} \int_{x,x'} \delta(x - x') \left[\int_{x,x'} \delta(x - x') + \int_{x,x'} \delta(x - x') \right]_{x,x'}$$

$$=\pm\frac{i}{2}\int_{x,\mathbf{k}}[\ln Q(x,\mathbf{i}$$

 $\left[\ln \mathcal{Q}(x, x')\right]_{aa}$ ') $\left[\ln Q(x, iD_x^{\mu}) \right]_{ab} U_{ba}(x, x') \,\delta(x - x')$

 $i\hat{D}_x^{\mu}-k$]_{ab} $U_{ba}(x,x')$

$$\Gamma_{\text{UV}}^{(1)}[\hat{\eta}] = \frac{i}{2} \operatorname{STr} \ln \mathcal{Q} = \pm \frac{i}{2} \int_{x,x'} \delta(x - x') \left[\ln \mathcal{Q}(x, iD_x^{\mu}) \right]_{ab} U_{ba}(x, x') \delta(x - x') \int_{k}^{k} e^{ik(x - x')} \int_{k}^{k} e^{ik(x - x')} e^{ik(x - x')} \int_{k}^{k} e^{ik(x - x')} e^{ik(x$$

The EFT action (to arbitrary EFT order) is obtained *directly* from the hard-momentum expansion: $k\gtrsim m_H$

[JFM, Portolés, Ruiz-Femenía, <u>1607.02142</u>; Z. Zhang <u>1610.00710</u>]

Going beyond one loop

$$\Gamma_{\rm UV}[\hat{\eta}] = S_{\rm UV}[\hat{\eta}] - i \ln \int \mathcal{D}\eta \exp \left[i \left(\frac{1}{2} \eta_I \mathcal{Q}_{IJ} \eta_J + \frac{1}{3!} \eta_K \eta_J \eta_I \mathcal{V}_{KJI} + \frac{1}{4!} \eta_L \eta_K \eta_J \eta_I \mathcal{V}_{IJKL} + \dots \right) \right]$$

$$\mathcal{V}_{IJK} \equiv \frac{\delta^3 \mathcal{L}_{\text{UV}}}{\delta \eta_I \delta \eta_J \delta \eta_K} \bigg|_{\eta = \hat{\eta}}$$

N.B.:
$$\mathscr{V}_{IJK} = \sum_{m,n} V_{ade}^{(\underline{m},\underline{n})}(x) P_{\underline{y}}^{\underline{m}} P_{\underline{z}}^{\underline{n}} U(x,y)_{db} U(x,z)_{ec} \,\delta(x-y) \delta(x-z)$$

[JFM, Palavrić, Thomsen, <u>2311.13630</u>]

[JFM, Moreno, Palavrić, Thomsen, coming soon!]

$$\mathcal{V}_{IJKL} \equiv \frac{\delta^4 \mathscr{L}_{\text{UV}}}{\delta \eta_I \delta \eta_J \delta \eta_K \delta \eta_L} \bigg|_{\eta = \hat{\eta}}$$

Going beyond one loop

$$\Gamma_{\rm UV}[\hat{\eta}] = S_{\rm UV}[\hat{\eta}] - i \ln \int \mathcal{D}\eta \exp \left[i \left(\frac{1}{2} \eta_I \mathcal{Q}_{IJ} \eta_J + \frac{1}{2} \eta_I \mathcal{Q}_{IJ} \eta_J \right) \right]$$

$$= S_{\rm UV}[\hat{\eta}] + \frac{i\hbar}{2} \operatorname{STr} \ln \mathcal{Q} + \frac{i\hbar^2}{2} \mathcal{Q}_{IJ}^{-1} \mathcal{V}_{JI}^{(1)} + \frac{i\hbar^2}{2} \mathcal{Q}_{IJ}^{-1} \mathcal{V}_{JI}^{(1)} + \frac{i\hbar^2}{2} \mathcal{Q}_{IJ}^{-1} \mathcal{V}_{JI}^{(1)} + \frac{i\hbar^2}{2} \mathcal{Q}_{IJ}^{-1} \mathcal{V}_{II}^{(1)} + \frac{i\hbar^2}{2} \mathcal{Q}_{IJ}^{-1} \mathcal{V}_{II}^{-1} + \frac{i\hbar^2}{2} \mathcal{Q}_{IJ}^{-1} + \frac{i\hbar^2}{2}$$

One loop

Tree level

[JFM, Palavrić, Thomsen, <u>2311.13630</u>]

[JFM, Moreno, Palavrić, Thomsen, coming soon!]

 $\frac{1}{3!}\eta_I\eta_J\eta_K \mathcal{V}_{IJK} + \frac{1}{4!}\eta_I\eta_J\eta_K\eta_L \mathcal{V}_{IJKL} + \dots \right)$

 $\frac{\hbar^2}{12} \mathcal{V}_{IJK} \mathcal{Q}_{IL}^{-1} \mathcal{Q}_{JM}^{-1} \mathcal{Q}_{KN}^{-1} \mathcal{V}_{LMN} - \frac{\hbar^2}{8} \mathcal{Q}_{IJ}^{-1} \mathcal{V}_{IJKL} \mathcal{Q}_{KL}^{-1} + \mathcal{O}(\hbar^3)$

Two loops

Every two-loop contribution is included here!

Two-loop functional evaluation

How to evaluate f - - - ??

[JFM, Palavrić, Thomsen, <u>2311.13630</u>]

[JFM, Moreno, Palavrić, Thomsen, coming soon!]

Two-loop functional evaluation

How to evaluate $\mathbf{f} - - \mathbf{r}$?

Every (non-factorizable) two-loop contribution is included here!

[JFM, Palavrić, Thomsen, 2311.13630]

[JFM, Moreno, Palavrić, Thomsen, coming soon!]

Two-loop functional evaluation

 $G_{\Theta} = \int_{x} \int_{kl} V_{abc}(x) Q_{aa'}^{-1}(x', iD_{x'} + k + l) V_{a'b'c'}(x') \left[Q_{bd}^{-1}(x, iD_{x} - k) U_{db'}(x, x') \right] \left[Q_{ce}^{-1}(x, iD_{x} - l) U_{ec'}(x, x') \right]$ Valid to *all orders* in the EFT expansion!

[JFM, Palavrić, Thomsen, <u>2311.13630</u>]

[JFM, Moreno, Palavrić, Thomsen, coming soon!]

To make your way through the BSM jungle

The Matchete package

MATCHEETE (1) is a Mathematica package aimed at fully automating EFT matching and RG evolution of arbitrary weakly-coupled UV theories using functional methods

[JFM, König, Pagès, Thomsen, Wilsch, 2212.04510]

Work in progress and future plans

Input

running and **Automated matching**

Upcoming!

Interface with other EFT tools

Coming "soon"

One-loop RG computations

Longer term

RG and matching beyond one loop

2-loop RG in the bosonic SMEFT

Born, JFM, Kvedaraitė, Thomsen, <u>2410.07320</u>

Heavy vectors and symmetry breaking

Example: SM + vector-like lepton

	Setup								
	SM Lagrangian								
In[3]:-	LSM = LoadModel["SM"];								
	Define new field								
In[4]:	DefineField[EE, Fermion, Charges → { <mark>U1Y</mark> [-1]}, Ma								
	Define new coupling								
In[5]:	DefineCoupling[yE, EFTOrder $\rightarrow 0$, Indices $\rightarrow \{Flavor)$								
	Write interactions								
In[6]:	Lint = -yE[p] × Bar@l[i, p] ** PR ** EE[] × H[i] // P Lint // NiceForm								
Out[7]//N	- JE ^P H _i (EE · P _L · l ^{ip}) - yE ^P H ⁱ (l ^p · P _R · EE)								
	Define full UV Lagrangian								
In[8]::	LUV = LSM + FreeLag[EE] + Lint; LUV // NiceForm								
Out[A]//W	$ \begin{aligned} &-\frac{1}{4} B^{\mu\nu2} - \frac{1}{4} G^{\mu\nuA2} - \frac{1}{4} W^{\mu\nuI2} + D_{\mu}H_{i} D_{\mu}H^{i} + \mu^{2} H_{i} H^{i} + i \left(\overline{d}_{a}^{p}\right) \\ &i \left(\overline{EE} \cdot \gamma_{\mu} \cdot D_{\mu}EE\right) - ME \left(\overline{EE} \cdot EE\right) + i \left(\overline{L}_{i}^{p} \cdot \gamma_{\mu} P_{L} \cdot D_{\mu}L^{ip}\right) \\ &\frac{1}{2} \lambda H_{i} H_{j} H^{i} H^{j} - \overline{Yd}^{pr} H_{i} \left(\overline{d}_{a}^{r} \cdot P_{L} \cdot q^{aip}\right) - \overline{Ye}^{pr} H_{i} \left(\overline{e}^{r} \cdot P_{L} \cdot Q^{aip}\right) \\ &Yu^{pr} H_{i} \left(\overline{q}_{aj}^{p} \cdot P_{R} \cdot u^{ar}\right) \varepsilon^{ji} - \overline{Yu}^{pr} H^{j} \left(\overline{u}_{a}^{r} \cdot P_{L} \cdot q^{aip}\right) \overline{\varepsilon}_{ij} \end{aligned} $								

Example: SM + vector-like lepton

$$Q_{He}^{pr} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$$

$$\left(-2 y E^{s} g Y^{2} \left(13 + 6 Log \left[\frac{\overline{\mu}^{2}}{M E^{2}} \right] \right) \delta^{pr} \right) \right)$$

Example: SM + vector-like lepton

LEFTOnShell // NiceForm $-\frac{1}{4}G^{\mu\nu A2} - \frac{1}{4}W^{\mu\nu I2} + \left(-\frac{1}{4} - \frac{1}{3}\hbar gY^{2} Log\left[\frac{\overline{\mu}^{2}}{Mr^{2}}\right]\right)B^{\mu\nu 2} + D_{\mu}H_{1}D_{\mu}H^{1} + \left(C_{H^{2}} + \frac{1}{6}\hbar \overline{y}\overline{E}^{p} yE^{p}C_{H^{2}}\frac{1}{Mr^{2}}\right) \left(2\frac{1}{4}\frac{1}$ $i\left(\overline{l}_{i}^{r}\cdot\gamma_{\mu}P_{L}\cdot D_{\mu}l^{ip}\right)\delta^{pr}+i\left(\overline{q}_{ai}^{r}\cdot\gamma_{\mu}P_{L}\cdot D_{\mu}q^{aip}\right)\delta^{pr}+i\left(\overline{u}_{a}^{r}\cdot\gamma_{\mu}P_{R}\cdot D_{\mu}u^{ap}\right)\delta^{pr}+\left(-\frac{1}{2}\lambda+\hbar\left(-\frac{1}{2}\lambda+\hbar\right)\left(-\frac{1}{2}$ $\frac{1}{180} C_{H^2} \frac{1}{ME^2} \left[12 gY^4 - 5 \overline{y}\overline{E}^p yE^p gY^2 \left[13 + 6 Log \left[\frac{\overline{\mu}^2}{ME^2} \right] \right] + 5 \overline{y}\overline{E}^p \left[-12 \left(\overline{y}\overline{E}^r yE^p yE^r + 6 yE^2 \right) \right] \right]$ $H_{i}H_{j}H^{i}H^{j} + \left(-\overline{Yd}^{pr} + \frac{1}{12}\hbar\overline{yE}^{s}yE^{s}\overline{Yd}^{pr}\frac{1}{Mr^{2}}\left(-4C_{H^{2}} + 3ME^{2}\left(1 + 2Log\left[\frac{\overline{\mu}^{2}}{Mr^{2}}\right]\right)\right)\right)H_{i}\left(\overline{d}_{a}^{r}\cdot P_{L}\cdot\right)$ $\left(-\overline{Ye}^{pr} + \frac{1}{24} \hbar y E^{s} \frac{1}{ME^{2}} \left(-3 \overline{yE}^{p} \overline{Ye}^{sr} \left(2 C_{H^{2}} - ME^{2}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + 2 \overline{yE}^{s} \overline{Ye}^{pr} \left(-4 C_{H^{2}} + 3 ME^{s}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + 2 \overline{yE}^{s} \overline{Ye}^{pr} \left(-4 C_{H^{2}} + 3 ME^{s}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + 2 \overline{yE}^{s} \overline{Ye}^{pr} \left(-4 C_{H^{2}} + 3 ME^{s}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + 2 \overline{yE}^{s} \overline{Ye}^{pr} \left(-4 C_{H^{2}} + 3 ME^{s}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + 2 \overline{yE}^{s} \overline{Ye}^{pr} \left(-4 C_{H^{2}} + 3 ME^{s}\right) \left(-4 C_{H^{2}} + 3 ME^{s}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) \left(-3 \overline{yE}^{s}\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right)$ $\left(-Ye^{rp} + \frac{1}{24}\hbar\overline{yE}^{s}\frac{1}{ME^{2}}\left(3ME^{2}\left(2yE^{s}Ye^{rp}\left(1+2Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + yE^{r}Ye^{sp}\left(3+2Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right)\right) - 2$ $\left(-Yd^{rp} + \frac{1}{12}\hbar \overline{y}\overline{E}^{s} yE^{s} Yd^{rp} \frac{1}{4r^{2}} \left(-4C_{H^{2}} + 3ME^{2} \left(1 + 2Log\left[\frac{\overline{\mu}^{2}}{4r^{2}}\right]\right)\right)\right)H^{i}\left(\overline{q}_{ai}^{r} \cdot P_{R} \cdot d^{ap}\right) + \frac{1}{4r^{2}}\left(\frac{1}{4}+\frac{1}{4r^{2}}\right)H^{i}\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)H^{i}\left(\frac{1}{4}+$ $\left(-Yu^{rp} + \frac{1}{12}\hbar\overline{y}E^{s}yE^{s}Yu^{rp}\frac{1}{ur^{2}}\left(-4C_{H^{2}} + 3ME^{2}\left(1 + 2Log\left[\frac{\overline{\mu}^{2}}{ur^{2}}\right]\right)\right)\right)H_{i}\left(\overline{q}_{aj}^{r} \cdot P_{R} \cdot u^{ap}\right)\varepsilon^{ji} + \frac{1}{2}H_{i}\left(\overline{q}_{aj}^{r} \cdot P_{R} \cdot u^{ap}\right)\varepsilon^{ji}$ $\left(-\overline{Yu}^{pr} + \frac{1}{12}\hbar\overline{yE}^{s}yE^{s}\overline{Yu}^{pr}\frac{1}{\mu\tau^{2}}\left(-4C_{H^{2}} + 3ME^{2}\left(1 + 2Log\left[\frac{\overline{\mu}^{2}}{\mu\tau^{2}}\right]\right)\right)\right)H^{j}\left(\overline{u}_{a}^{r}\cdot P_{L}\cdot q^{aip}\right)\overline{\varepsilon}_{ij} + \frac{1}{2}\left(\frac{1}{\mu\tau^{2}}\right)H^{j}\left(\overline{u}_{a}^{r}\cdot P_{L}\cdot q^{aip}\right)\overline{\varepsilon}_{ij} + \frac{1}{2}\left(\frac{1}{\mu\tau^{2}}\right)H^{j}\left(\frac{1}{\mu\tau^{2}}\right)\overline{\varepsilon}_{ij} + \frac{1}{2}\left(\frac{1}{\mu\tau^{2}}\right)H^{j}\left(\frac{1}{\mu\tau^{2}}\right)\overline{\varepsilon}_{ij} + \frac{1}{2}\left(\frac{1}{\mu\tau^{2}}\right)H^{j}\left(\frac{1}{\mu\tau^{2}}\right)\overline{\varepsilon}_{ij} + \frac{1}{2}\left(\frac{1}{\mu\tau^{2}}\right)\overline{\varepsilon}_{ij} + \frac{1}{2}\left(\frac{1}{\mu\tau^{2}}\right)\overline{\varepsilon}_$ $\frac{1}{180}\hbar\frac{1}{ME^{2}}\left(12\lambda gY^{4}+5\overline{y}\overline{E}^{p}\left(12\overline{y}\overline{E}^{r} yE^{p}\left(\overline{y}\overline{E}^{s} yE^{r} yE^{s}+6yE^{s}\overline{Y}\overline{e}^{st}Ye^{rt}-yE^{r}\lambda\right)-72yE^{r}\overline{Y}\overline{e}^{rs}\right)$ $H_{i}H_{j}H_{k}H^{i}H^{j}H^{k} + \frac{1}{90}\hbar\frac{1}{ME^{2}}\left(-12 gY^{4} + 5 \overline{y}\overline{E}^{p} yE^{p} gY^{2} \left(13 + 6 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right]\right) + 45 \overline{y}\overline{E}^{p} yE^{r} \left(-\overline{y}\overline{E}^{r} yE^{r}\right)$ $\frac{1}{180} \hbar \frac{1}{ME^2} \left[-12 \text{ gV}^4 + 5 \overline{y}\overline{E}^p \text{ yE}^p \text{ gY}^2 \left[13 + 6 \text{ Log} \left[\frac{\overline{\mu}^2}{ME^2} \right] \right] - 15 \overline{y}\overline{E}^p \left[y\overline{E}^p \text{ gL}^2 \left[5 + 6 \text{ Log} \left[\frac{\overline{\mu}^2}{ME^2} \right] \right] + 4 \text{ Log} \left[\frac{\overline{\mu}^2}{ME^2} \right] \right] \right]$ $\frac{1}{8}\hbar\overline{y}\overline{E}^{p} yE^{p} gY^{2} \frac{1}{ME^{2}}\overline{H_{i}}H^{i}B^{\mu\nu2} - \frac{1}{3}\hbar gL gY \overline{y}\overline{E}^{p} yE^{p} \frac{1}{ME^{2}}\overline{H_{i}}H^{j}B^{\mu\nu}W^{\mu\nuI}T^{Ii}_{j} + \frac{1}{24}\hbar\overline{y}\overline{E}^{p} yE^{p} gL^{2} \frac{1}{ME^{2}}$ $\frac{1}{360} \hbar \overline{Yd}^{pr} \frac{1}{ME^2} \left[12 gY^4 - 5 \overline{yE}^s yE^s gY^2 \left[13 + 6 Log \left[\frac{\overline{\mu}^2}{ME^2} \right] \right] + 5 \overline{yE}^s \left[-12 \left(\overline{yE}^t yE^s yE^t + 6 yE^t \overline{Ye} \right) \right] \right]$ $\left(\frac{1}{2}\overline{y}\overline{E}^{p} y \overline{E}^{s} \overline{Y}\overline{e}^{sr} \frac{1}{MF^{2}} + \frac{1}{720}\hbar \frac{1}{MF^{2}} \left(30\overline{y}\overline{E}^{s} y \overline{E}^{u} \overline{Y}\overline{e}^{pt} \overline{Y}\overline{e}^{ur} Y e^{st} \left(37 + 18 \text{Log}\left[\frac{\overline{\mu}^{2}}{MF^{2}}\right]\right) - 45\overline{y}\overline{E}^{p} \left(\overline{y}\overline{E}^{s} \overline{Y}\overline{e}^{st} + \frac{1}{720}\overline{\mu}\overline{E}^{st} \overline{Y}\overline{E}^{st} + \frac{1}{720}\overline{\mu}\overline{E}^{st} \overline{Y}\overline{E}^{st} \overline{Y}\overline{E}^{st} + \frac{1}{720}\overline{\mu}\overline{E}^{st} \overline{Y}\overline{E}^{st} \overline{Y}\overline{E}^{st} \overline{Y}\overline{E}^{st} + \frac{1}{720}\overline{\mu}\overline{E}^{st} \overline{Y}\overline{E}^{st} \overline{Y}\overline{E}^{st} \overline{Y}\overline{E}^{st} + \frac{1}{720}\overline{\mu}\overline{E}^{st} \overline{Y}\overline{E}^{st} \overline{Y}\overline{E}^{st}$ $2 \overline{Ye}^{pr} \left(12 gY^4 - 5 \overline{yE}^s yE^s gY^2 \left(13 + 6 Log \left[\frac{\overline{\mu}^2}{ME^2} \right] \right) + 5 \overline{yE}^s \left(-12 \left(\overline{yE}^t yE^s yE^t + 6 yE^t \overline{Ye}^t \right) \right) \right)$ $6 \left[4\lambda \left[2yE^{s}Ye^{rp} + 3yE^{r}Ye^{sp} \left[5 + 4Log \left[\frac{\overline{\mu}^{2}}{2} \right] \right] \right] + \overline{Ye}^{tu} \left[-6yE^{r}Ye^{su}Ye^{tp} + yE^{t} \right] \right]$

$$\begin{split} y \mathsf{F}^{\mathsf{r}} & \left(2 \ \overline{\mathsf{y}} \mathsf{E}^{\mathsf{r}} \ \mathsf{y} \mathsf{E}^{\mathsf{p}} - 3 \ \overline{\mathsf{Ye}}^{\mathsf{rs}} \ \mathsf{Ye}^{\mathsf{ps}} \ \left(3 + 2 \ \mathsf{Log} \left[\frac{\overline{\mu}^{2}}{\mathsf{ME}^{2}} \right] \right) \right) \right) \mathsf{H}_{i} \ \mathsf{D}_{\mu} \mathsf{H}_{j} \ \mathsf{H}^{i} \ \mathsf{D}_{\mu} \ \mathsf{H}^{j} \ \mathsf{H}$$

$$\left\{ Ye^{ps} \lambda + \overline{Ye}^{tu} Ye^{pu} Ye^{ts} \left(1 + Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right\} + yE^{p} \lambda \left(12 \lambda + gL^{2} \left(5 + 6 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) - gY^{2} \left(13 + 6 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) \right)$$

$$E^{p} + \overline{Ye}^{rs} Ye^{ps} \left(1 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) H_{i} D_{\mu}H_{j} D_{\mu} H^{i} H^{j} + yE^{r} \left(2 \overline{yE}^{r} yE^{p} - 3 \overline{Ye}^{rs} Ye^{ps} \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) \right) H_{i} D_{\mu}H_{j} H^{i} D_{\mu}H^{j} + yE^{r} \left(2 \overline{yE}^{r} yE^{p} - 3 \overline{Ye}^{rs} Ye^{ps} \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) \right) H_{i} D_{\mu}H_{j} H^{i} D_{\mu}H^{j} + yE^{r} \left(2 \overline{yE}^{r} yE^{p} - 3 \overline{Ye}^{rs} Ye^{ps} \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) \right) H_{i} D_{\mu}H_{j} H^{i} D_{\mu}H^{j} + yE^{r} \left(2 \overline{yE}^{r} yE^{p} - 3 \overline{Ye}^{rs} Ye^{ps} \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) \right) H_{i} D_{\mu}H_{j} H^{i} D_{\mu}H^{j} + yE^{r} \left(2 \overline{yE}^{r} yE^{p} - 3 \overline{Ye}^{rs} Ye^{ps} \left(3 + 2 Log\left[\frac{\overline{\mu}^{2}}{ME^{2}}\right] \right) \right) \right) H_{i} D_{\mu}H^{j} H^{i} D_{\mu}H^{j} H^{j} H^{j$$

$$\begin{array}{l} q^{aip} \end{pmatrix} + \\ E^{2} \left(1 + 2 \log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] \right) \right) \right) H_{i} \left(\overline{e}^{r} \cdot P_{L} \cdot l^{ip} \right) + \\ C_{H^{2}} \left(4 \, yE^{s} \, Ye^{rp} + 3 \, yE^{r} \, Ye^{sp} \left(3 + 2 \log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] \right) \right) \right) H^{i} \left(\overline{l}_{i}^{r} \cdot P_{R} \cdot e^{p} \right) + \end{array}$$

$$\frac{1}{2} C_{H^{2}} - 3 ME^{2} \left(1 + 2 Log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] \right) \right) \overline{H_{i} H^{i}} + i \left(\overline{d}_{a}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} d^{ap} \right) \delta^{pr} + i \left(\overline{e}^{r} \cdot \gamma_{\mu} P_{R} \cdot D_{\mu} e^{p} \right) \delta^{pr} + \frac{1}{2} \overline{\gamma} \overline{E}^{p} \left(4 yE^{r} \overline{\gamma} \overline{e}^{rs} Ye^{ps} \left(1 + Log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] \right) - yE^{p} \left(-2 \overline{y} \overline{E}^{r} yE^{r} Log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] + \lambda \left(1 + 2 Log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] \right) \right) \right)$$

$$\overline{e}^{r} \overline{\gamma} \overline{e}^{rs} Ye^{ps} - 2 yE^{p} \lambda + yE^{p} gL^{2} \left(5 + 6 Log \left[\frac{\overline{\mu}^{2}}{ME^{2}} \right] \right) \right) \right)$$

Example: neutral triple-gauge interactions

New physics in $Z(\gamma, Z)(\gamma^*, Z^*)$?

22 BSM models with dimension-8 SMEFT contributions to NTG analyzed using Matchete by Cepedello, Esser, Hirsch, and Sanz [2402.04306]

Summary and conclusions

- (Automated) EFT matching and RG evolution is crucial to BSM phenomenology
- Functional matching is ideal for automation (also useful for pen-and-paper computations!)
- The ultimate goal is a tool (or chain of tools) that fully automates
 - Matching
 RG evolution
 Multi-step matching

streamlining future BSM analyses

Huge progress towards complete (one-loop) automation: Lagrangian in, fully simplified EFT Lagrangian out

Connection to observables / fit to data Interface with other EFT pheno codes

https://gitlab.com/matchete/matchete

Thank you **BSM** phenomenology is about to become easy!

Linear simplifications

Example: Integrating out a heavy fermion in the fundamental representation of SU(3)

 $In[12]:= \begin{bmatrix} \text{LEFT // NiceForm} \\ Out[12]//NiceForm= \\ \hline \frac{7}{540} \hbar g^2 \frac{1}{M\Psi^2} (D_{\rho}G^{\mu\nu A})^2 + \\ \frac{1}{40} \hbar g^2 \frac{1}{M\Psi^2} G^{\mu\nu A} D^2 G^{\mu\nu A} + \frac{7}{540} \hbar g^2 \frac{1}{M\Psi^2} D_{\rho}G^{\mu\nu A} D_{\nu}G^{\mu\rho A} - \\ \frac{1}{180} \hbar g^2 \frac{1}{M\Psi^2} D_{\nu}G^{\mu\nu A} D_{\rho}G^{\mu\rho A} + \frac{1}{40} \hbar g^2 \frac{1}{M\Psi^2} G^{\mu\nu A} D_{\nu}D_{\rho}G^{\mu\rho A} + \\ \frac{1}{40} \hbar g^2 \frac{1}{M\Psi^2} G^{\mu\nu A} D_{\rho}D_{\nu}G^{\mu\rho A} - \frac{1}{24} \hbar g^3 \frac{1}{M\Psi^2} G^{\mu\nu A} G^{\mu\rho B} G^{\nu\rho C} f^{ABC} \end{bmatrix}$

Linear simplifications

Example: Integrating out a heavy fermion in the fundamental representation of SU(3)

 $In[12]:= \begin{bmatrix} \text{LEFT // NiceForm} \\ Out[12]//NiceForm= \\ \hline \frac{7}{540} \hbar g^2 \frac{1}{M\Psi^2} (D_{\rho}G^{\mu\nu A})^2 + \\ \frac{1}{40} \hbar g^2 \frac{1}{M\Psi^2} G^{\mu\nu A} D^2 G^{\mu\nu A} + \frac{7}{540} \hbar g^2 \frac{1}{M\Psi^2} D_{\rho}G^{\mu\nu A} D_{\nu}G^{\mu\rho A} - \\ \frac{1}{180} \hbar g^2 \frac{1}{M\Psi^2} D_{\nu}G^{\mu\nu A} D_{\rho}G^{\mu\rho A} + \frac{1}{40} \hbar g^2 \frac{1}{M\Psi^2} G^{\mu\nu A} D_{\nu}D_{\rho}G^{\mu\rho A} + \\ \frac{1}{40} \hbar g^2 \frac{1}{M\Psi^2} G^{\mu\nu A} D_{\rho}D_{\nu}G^{\mu\rho A} - \frac{1}{24} \hbar g^3 \frac{1}{M\Psi^2} G^{\mu\nu A} G^{\mu\rho B} G^{\nu\rho C} f^{ABC} \end{bmatrix}$

 $I \subseteq O$ is the space of all operators identities, such as IBP relations, yielding e.g.

$$\mathcal{O}_1 + 2 \mathcal{O}_3 = 0$$

interpreted as

 $\mathcal{O}_1 + 2 \mathcal{O}_3 \in I$

Linear simplifications

Example: Integrating out a heavy fermion in the fundamental representation of SU(3)

for $[\mathscr{L}_{EFT}] \in O/I$ to get an EFT basis

In[13]:= LEFT // GreensSimplify // NiceForm Out[13]//NiceForm= $-\frac{1}{15} \hbar g^2 \frac{1}{M\Psi^2} D_{\nu} G^{\mu\nu A} D_{\rho} G^{\mu\rho A} - \frac{1}{180} \hbar g^3 \frac{1}{M\Psi^2} G^{\mu\nu A} G^{\mu\rho B} G^{\nu\rho C} f^{ABC}$

 $I \subseteq O$ is the space of all operators identities, such as IBP relations, yielding e.g.

$$\mathcal{O}_1 + 2 \mathcal{O}_3 = 0$$

interpreted as

 $\mathcal{O}_1 + 2 \mathcal{O}_3 \in I$

Evanescent operators

Evanescent operators appear from a special type of linear simplification (valid only for d = 4)

$$O_d = \mathscr{P}O_d + \mathscr{E}O_d$$

Physical part \checkmark Evanesc

E.g. Fierz identities

$$(\bar{\ell}_p e_r)(\bar{e}_s \ell_t) = -\frac{1}{2} (\bar{\ell}_p \gamma_\mu \ell_t)(\bar{e}_s \gamma^\mu e_r) + \frac{E_{\ell e}^{prst}}{\ell e} \cdot$$

Representative elements are chosen so evanescent operators are retained. Afterwards, they are removed by shifting the coefficients of physical operators

$$\mathscr{P}\left(\underbrace{}_{E} \underbrace{}_{E} \underbrace$$

 $\mathscr{P} \equiv \mathsf{Projection}$ to the physical (d = 4) basis cent part

ank (d-4) $\longrightarrow (\bar{\ell}_p e_r)(\bar{e}_s \ell_t) + \frac{1}{2}(\bar{\ell}_p \gamma_\mu \ell_t)(\bar{e}_s \gamma^\mu e_r) - \frac{E_{\ell e}^{prst}}{\ell e} \in I$

e.g.
$$E_{\ell e}^{prst} \rightarrow -\frac{g_L y_e^{ts}}{128\pi^2} Q_{eW}^{pr} +$$
[other contributio

ons