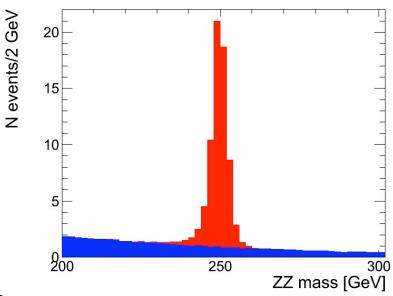
Model-independent spin and coupling determination of Higgs-like resonances

Nhan Tran
Johns Hopkins University
Higgs Hunting 2010
29.07.2010

What if a resonance is found?

 Resonances could be sign of Higgs...or something else!

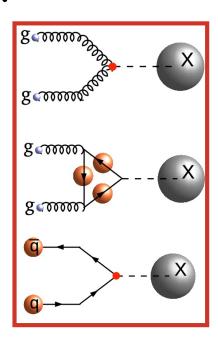


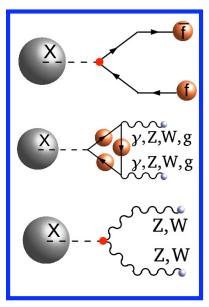
- How can we distinguish?
 - Mass and width
 - Cross-section and branching fractions
 - Angular distributions and spin correlations
 past contributions countless, most recent advances to be discussed
 Gao, Gritsan, Guo, Melnikov, Schulze, N.T. 2010 [arXiv:1001.3396] PRD81,075022(2010)
 De Rujula, Lykken, Pierini, Spiropulu, Rogan 2010 [arXiv:1001.5300]

Techniques and analysis tools for determining the spin, parity, and interactions with SM fields of a resonance by analyzing the angular distributions of its decay products.

Some motivated examples

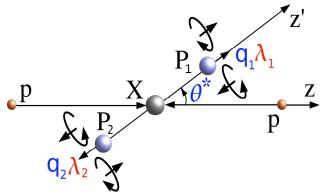
- Spin-zero
 - SM Higgs, $\mathcal{J}^{\rho} = 0^+$, or other non-SM scalar
 - Pseudoscalar $\mathcal{J}^{\rho} = 0^-$, multi-Higgs case
- Spin-one
 - Heavy photon
 - Kaluza-Klein gluon
- Spin-two
 - RS Graviton, $\mathcal{J}^{\rho} = 2^+$: classic model
 - SM fields localized to TeV brane
 - Non-classic RS Graviton model
 - SM fields in the bulk
- Hidden valley models
 - "Hidden glueballs" of various spin/CP





Program

- A model-independent approach: choose most general couplings of a spin-zero, -one, -two particle to SM fields
- Analysis applicable to many cases such as ZZ, W^+W^- , $\gamma\gamma$, gg, l^+l^- : $2\rightarrow 2$ analysis via production angle, $\cos\theta^*$
- Focus on the $X \rightarrow ZZ \rightarrow 41$ decay channel
 - Final state fully reconstructed accurately
 - More information in four-body final state
 - ZZ decay can be large or even dominant



general, model-independent amplitudes for spin-0/1/2

compute helicity amplitudes for production and decay

fit angular distributions to data via multivariate analysis

^{*}data = MC generator based on amplitudes

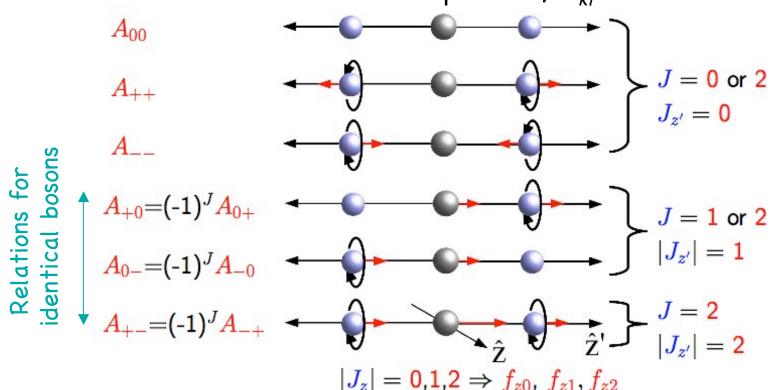
Helicity amplitude formalism

Helicity amplitudes: contributions to the total amplitude from the different daughter helicities

Determined by theory, measured by experiment

Example:

Massive gauge bosons (W,Z) have $J_z = 0,\pm 1$ possible helicity states; 9 total amplitudes, A_{kl}



Theory to experiment:

General amplitudies to helicity amplitudes

Interactions of spin-zero X to two gauge bosons:

$$A(X \to VV) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} M_X^2 + a_2 q_{\mu} q_{\nu} + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

Dimensionless *complex* coupling constants

Gauge boson polarization vectors

e.g. For SM Higgs: $a_1 \rightarrow$ tree level, $a_2 \rightarrow$ radiative corrections O(%), $a_3 \rightarrow 3$ -loop CP-violating $O(10^{-11})$

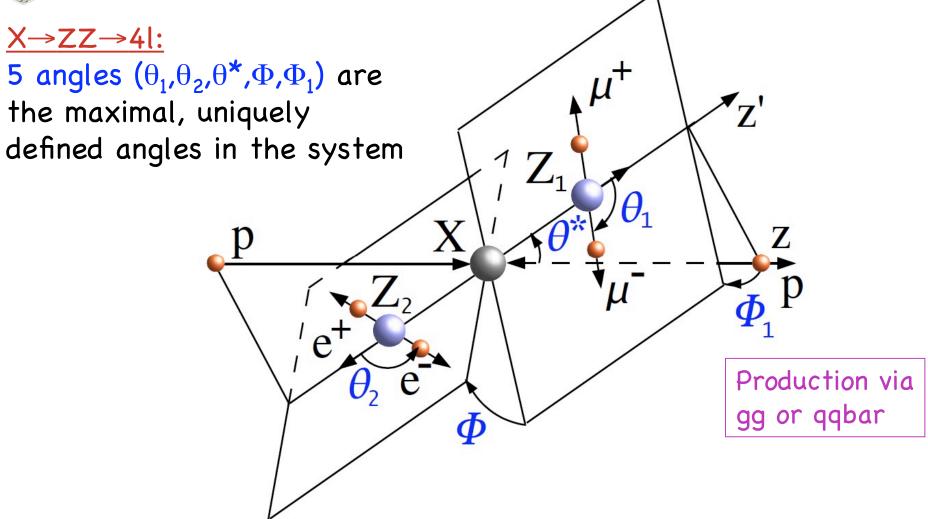
By applying gauge boson polarization vectors to the general amplitudes, we can read off the helicity amplitudes

$$A_{00} = -\frac{m_X^4}{4vm_V^2} \left(a_1(1+\beta^2) + a_2\beta^2 \right);$$

$$A_{++} = \frac{m_X^2}{v} \left(a_1 + \frac{ia_3\beta}{2} \right); \quad A_{--} = \frac{m_X^2}{v} \left(a_1 - \frac{ia_3\beta}{2} \right)$$

We do the same thing for spin-one and spin-two X

Definition of the system



 θ^*, Φ_1 : <u>production</u> angles

 θ_1, θ_2, Φ : <u>helicity</u> angles, independent of production

Angular distributions

General spin-J angular distribution

$$F_{00}^{J}(\theta^{*}) \times \left\{ 4 f_{00} \sin^{2}\theta_{1} \sin^{2}\theta_{2} + (f_{++} + f_{--}) \left((1 + \cos^{2}\theta_{1})(1 + \cos^{2}\theta_{2}) + 4R_{1}R_{2} \cos\theta_{1} \cos\theta_{2} \right) \right.$$

$$\left. - 2 \left(f_{++} - f_{--} \right) \left(R_{1} \cos\theta_{1}(1 + \cos^{2}\theta_{2}) + R_{2}(1 + \cos^{2}\theta_{1}) \cos\theta_{2} \right) \right.$$

$$\left. + 4 \sqrt{f_{++}f_{00}} \left(R_{1} - \cos\theta_{1} \right) \sin\theta_{1}(R_{2} - \cos\theta_{2}) \sin\theta_{2} \cos(\Phi + \phi_{++}) \right.$$

$$\left. + 4 \sqrt{f_{--}f_{00}} \left(R_{1} + \cos\theta_{1} \right) \sin\theta_{1}(R_{2} + \cos\theta_{2}) \sin\theta_{2} \cos(\Phi - \phi_{--}) \right.$$

$$\left. + 2 \sqrt{f_{++}f_{--}} \sin^{2}\theta_{1} \sin^{2}\theta_{2} \cos(2\Phi + \phi_{++} - \phi_{--}) \right\}$$

$$\left. + 4F_{11}^{J}(\theta^{*}) \times \left\{ (f_{+0} + f_{0-})(1 - \cos^{2}\theta_{1} \cos^{2}\theta_{2}) - (f_{+0} - f_{0-})(R_{1} \cos\theta_{1} \sin^{2}\theta_{2} + R_{2} \sin^{2}\theta_{1} \cos\theta_{2}) \right.$$

$$\left. + 2 \sqrt{f_{+0}f_{0-}} \sin\theta_{1} \sin\theta_{2}(R_{1}R_{2} - \cos\theta_{1} \cos\theta_{2}) \cos(\Phi + \phi_{+0} - \phi_{0-}) \right\}$$

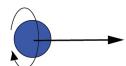
$$\left. + (-1)^{J} \times 4F_{-11}^{J}(\theta^{*}) \times \left\{ (f_{+0} + f_{0-})(R_{1}R_{2} + \cos\theta_{1} \cos\theta_{2}) - (f_{+0} - f_{0-})(R_{1} \cos\theta_{2} + R_{2} \cos\theta_{1}) \right.$$

$$\left. + 2 \sqrt{f_{+0}f_{0-}} \sin\theta_{1} \sin\theta_{2} \cos(\Phi + \phi_{+0} - \phi_{0-}) \right\} \sin\theta_{1} \sin\theta_{2} \cos(2\Psi)$$

$$\left. + 2F_{22}^{J}(\theta^{*}) \times f_{+-} \left\{ (1 + \cos^{2}\theta_{1})(1 + \cos^{2}\theta_{2}) - 4R_{1}R_{2} \cos\theta_{1} \cos\theta_{2} \right\}$$

$$\left. + (-1)^{J} \times 2F_{-22}^{J}(\theta^{*}) \times f_{+-} \sin^{2}\theta_{1} \sin^{2}\theta_{2} \cos(4\Psi)$$

$J_z = \pm 2$



 $J_7 = 0$

 $J_7 = \pm 1$

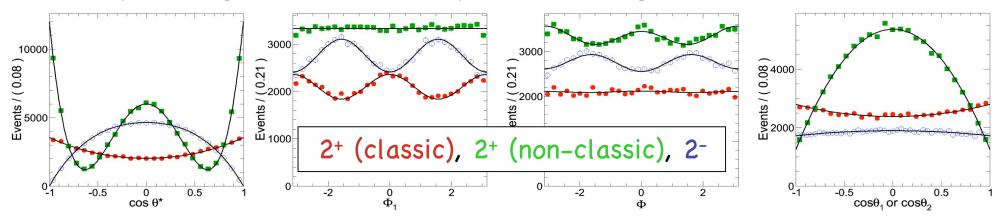
+ interference terms

- Spin-zero X: only $J_7 = 0$ part contributes
- Spin-one X: only $J_Z = \pm 1$ part contributes
- Spin-two X: all contributions exist $J_Z = 0,\pm 1,\pm 2$

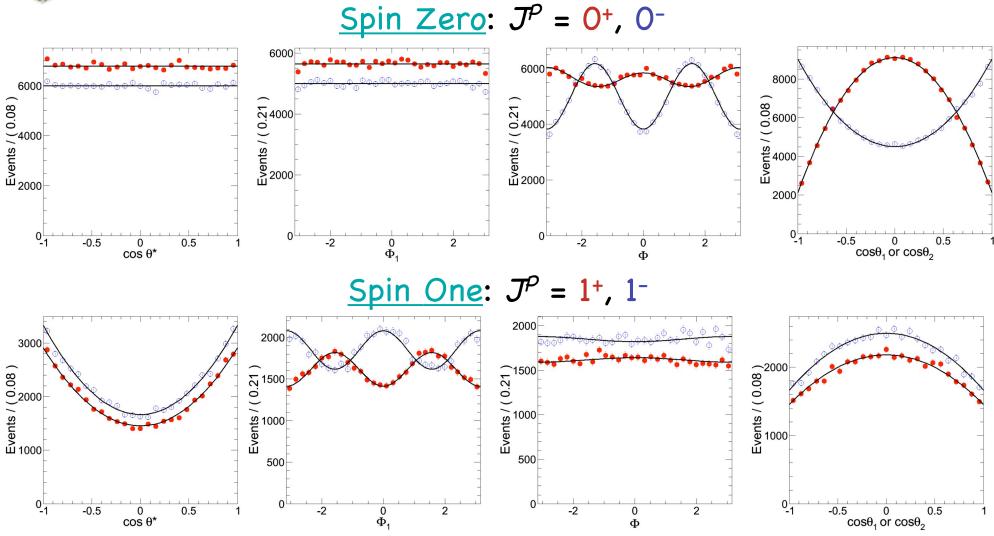
MC Simulation

- A MC program developed to simulate production and decay of X with spin-zero, -one, or -two
 - Includes all spin correlations and all general couplings
 - Inputs are general dimensionless couplings calculates matrix elements
 - Both gg and qqbar production
 - Contains both final states for $ZZ\rightarrow4l$ and $ZZ\rightarrow2l2j$
 - · Output in LHE format; can interface to Pythia
 - All code publicly available: www.pha.jhu.edu/spin

Example of agreement for MC (points) and angular distributions (lines)



MC Simulation



N.B. 1D projections of angles for illustration, statistical power comes from 5D angular correlations

What we do in practice...

- To determine the helicity amplitudes, we need
 - Data: our MC generator
 - Angular distributions
 - Detector: approximate model with acceptance and smearing
 - Fit: multivariate likelihood method
- Fit used for
 - "Hypothesis separation" study: lower statistics, how much separation between different signal hypotheses achieved?
 - "Parameter fitting" study: higher statistics, how well can we determine the parameters of a certain hypothesis?

Example:

Hypothesis separation of signal scenarios near time of discovery

We can already make a statement about spin/CP!

	0-	1+	1-	2_m^+	2_L^+	2-
0+	4.1	2.3	2.6	2.8	2.6	3.3
0-	_	3.1	3.0	2.4	4.8	2.9
1+	_	· —	2.2	2.6	3.6	2.9
1-	_	87 <u>-2</u> 7	<u> </u>	1.8	3.8	3.4
2_{m}^{+}	_	· —	_	_	3.8	3.2
2_L^+	(3 <u>-21</u>)	7-1	7 <u>—</u> a	<u> </u>	(ATE)	4.3

Conclusion and outlook

- A program is developed to determine the spin of a resonance in a model-independent way
- A MC generator is introduced which simulates production and decay of spin-zero, -one, -two resonance including all spin correlations
- Data analysis is performed using multivariate likelihood method for both hypothesis separation and parameter fitting
- We need to be ready for anything!
 - Should not be limited to certain models; consider most general cases
- Use all information available!
 - Full 5D formalism provides the best separation and background suppression
 - At time of discovery, can already constrain spin/CP

Backup

Helicity Amplitudes

In general, 9 complex amplitudes, A_{kl} , where $k,l = 0,\pm 1$

$$\mathcal{J}_X = 0$$

Production: gg^

Allowed spin projection:

Helicity Amplitudes:

A₊₊, A₋₋

4 [free parameters]

$$\mathcal{J}_X = 1$$

Production: qqbar*

Allowed spin projection:

Helicity Amplitudes:

$$A_{+0} = -A_{0+}$$

 $A_{0-} = -A_{-0}$

2

$$J_X = 2$$

Production: gg or qqbar

Allowed spin projection: $0, \pm 1, \pm 2$

Helicity Amplitudes:

$$A_{00}$$
,
 A_{++} , A_{--}
 $A_{+0} = A_{0+}$
 $A_{0-} = A_{-0}$
 $A_{+-} = A_{-+}$

10

For identical vector bosons: $A_{kl} = (-1)^{J} A_{lk}$

For definite CP states: $A_{kl} = \eta_{p}(-1)^{J} A_{-k-l}$

^{*}gg fusion forbidden due to Landau-Yang theorem

[^]assume chirality a good quantum number for massless quarks

Theory to experiment:

General amplitudies to helicity amplitudes

Interactions of spin-two X to two gauge bosons:

$$A(X \to ZZ) = \Lambda^{-1} \underbrace{\left(e_{1}^{*\mu} e_{2}^{*\nu}\right)}_{1} \underbrace{\left(c_{1}\right)(q_{1}q_{2})t_{\mu\nu} + \left(c_{2}g_{\mu\nu}t_{\alpha\beta}\tilde{q}^{\alpha}\tilde{q}^{\beta} + \left(c_{3}\right)\frac{q_{2\mu}q_{1\nu}}{M_{X}^{2}}t_{\alpha\beta}\tilde{q}^{\alpha}\tilde{q}^{\beta} + 2c_{4}\right)q_{1\nu}q_{2}^{\alpha}t_{\mu\alpha}}_{1} + q_{2\mu}q_{1}^{\alpha}t_{\nu\alpha} + \underbrace{\left(c_{5}t_{\alpha\beta}^{\alpha}\tilde{q}^{\beta} + \left(c_{6}t_{\alpha\beta}^{\alpha}\tilde{q}^{\beta} + \left(c_{6}$$

Dimensionless *complex* coupling constants
Gauge boson polarization vectors

By applying gauge boson polarization vectors to the general amplitudes, we can read off the helicity amplitudes

For massive gauge boson, can have 9 A_{kl} where $k,l = 0,\pm 1$

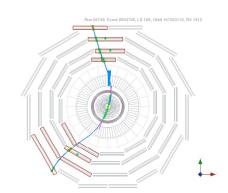
$$A_{+-} = A_{-+} = \frac{m_X^2}{4\Lambda} c_1 \left(1 + \beta^2 \right) , \qquad A_{+0} = A_{0+} = \frac{m_X^3}{m_V \sqrt{2}\Lambda} \left[\frac{c_1}{8} \left(1 + \beta^2 \right) + \frac{c_4}{2} \beta^2 - \frac{c_6 + c_7 \beta^2}{2} i \beta \right] ,$$

$$A_{++} = \frac{m_X^2}{\sqrt{6}\Lambda} \left[\frac{c_1}{4} \left(1 + \beta^2 \right) + 2c_2 \beta^2 + i \beta (c_5 \beta^2 - 2c_6) \right] , \quad A_{-0} = A_{0-} = \frac{m_X^3}{m_V \sqrt{2}\Lambda} \left[\frac{c_1}{8} \left(1 + \beta^2 \right) + \frac{c_4}{2} \beta^2 + \frac{c_6 + c_7 \beta^2}{2} i \beta \right] ,$$

$$A_{--} = \frac{m_X^2}{\sqrt{6}\Lambda} \left[\frac{c_1}{4} \left(1 + \beta^2 \right) + 2c_2 \beta^2 - i \beta (c_5 \beta^2 - 2c_6) \right] , \quad A_{00} = \frac{m_X^4}{m_V^2 \sqrt{6}\Lambda} \left[\left(1 + \beta^2 \right) \left(\frac{c_1}{8} - \frac{c_2}{2} \beta^2 \right) - \beta^2 \left(\frac{c_3}{2} \beta^2 - c_4 \right) \right] .$$

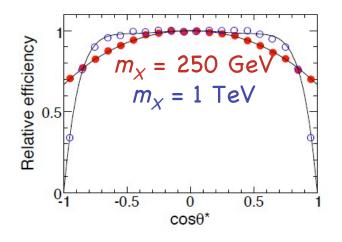
We do the same thing for spin-zero and spin-one X

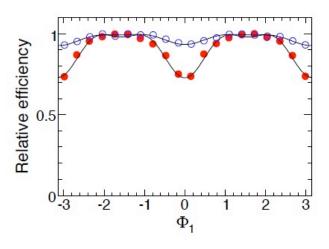
Detector Effects



- Experimental effects addressed in standalone ROOT
 - Parameter resolution: we smear four-momenta of decay products in pT and angular resolution by values determined from CMS cosmic ray studies (JINST)
 - Angular resolution very good; on the order of 0.01 radians
 - Geometric acceptance: assume hermetic detector out to η =2.5
 - Helicity angles weakly dependent on detector acceptance
 - Production angles most directly affected
 - Parameterize acceptance in PDF by:

$$\mathcal{P}(\text{angles}) = \mathcal{P}_{\text{ideal}}(\text{angles}) * G_{\text{acc}}(\text{angles})$$





Multivariate Techniques

- Using RooFit: unbinned maximum-likelihood fit
- Joint fit to combine all 3 channels: 4μ, 4e, 2e2μ

$$\mathcal{L} = \exp\left(-\sum_{J=1}^{3} n_J - n_{\text{bkg}}\right) \prod_{i}^{N} \left(\sum_{J=1}^{3} n_J \times \mathcal{P}_J(\boldsymbol{x}_i; \boldsymbol{\zeta}_J; \boldsymbol{\xi}) + n_{\text{bkg}} \times \mathcal{P}_{\text{bkg}}(\boldsymbol{x}_i; \boldsymbol{\xi})\right)$$

$$x_{i} = \{m_{ZZ}, \theta_{l}, \theta_{2}, \Phi, \theta^{*}, \Phi_{l}\}_{i}$$

$$\zeta_{J} = \{f_{kl}, \phi_{kl}, f_{m}\}$$

$$\xi = \text{other parameters}$$

- Use the multivariate likelihoods for:
 - Distinguishing between different signal hypotheses
 - Improving background suppression both in case of signal or no signal
 - Parameter determination for a certain hypothesis

Hypothesis Separation

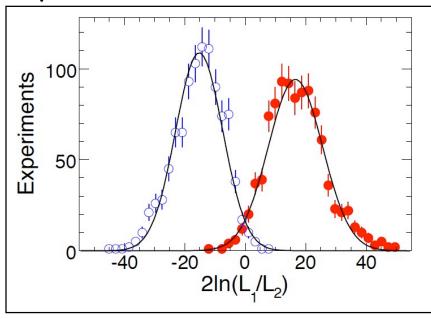
Neyman-Pearson hypothesis testing:

Run 1000 toy experiments...

Determine likelihood ratio estimator $[S = 2*ln(L_A/L_B)]$ for data samples "A" and "B". Quote effective separation of Gaussian peaks.

Probability Density Function constructed of m_{ZZ} + angular distributions

Example case of 0+ vs 0- at 250 GeV



Separation of:

- Signal scenarios (left)
- Signal vs. Background L_A (S+B) and L_B (B only)

e.g. SM Higgs: can achieve 5.7σ using kinematic variables only. We can improve by ~16% if we include angular variables

Parameter fitting

- Fit w/ and w/out detector effects for 2 mass points, compare with generated parameters
- As an example, we take O⁺ and O[−] cases

0+	generated	$m_X = 250 \text{ GeV}$ fitted without detector with detector		generated	$m_X = 1 \text{ TeV}$ fitted without detector with detector	
$n_{\rm sig}$	150	150 ± 13	153 ± 15	150	150 ± 12	152 ± 12
$(f_{++} + f_{})$	0.208	0.21 ± 0.07	0.23 ± 0.08	0.000	0.00 ± 0.03	0.00 ± 0.03
$(f_{++} - f_{})$	0.000	0.01 ± 0.13	0.01 ± 0.14	0.000	0.00 ± 0.02	0.00 ± 0.02
$(\phi_{++} + \phi_{})$	2π	6.30 ± 1.46	6.39 ± 1.54	2π	free	free
$(\phi_{++} - \phi_{})$	0	0.00 ± 1.06	0.01 ± 1.09	0	free	free

150 stream 100 0 0.1 0.2 0.3 0.4 0.5 f ₊₊ + f

 0^+ : $f_{++} + f_{--} = 0.23 \pm 0.08$ 0^- : $f_{++} + f_{--} = 1.00 \pm 0.06$

A naïve separation between $0^+/0^-$ of $\sim 10\sigma$

O-	generated	$m_X = 250 \text{ Ge}$ fitte without detector	ed	generated	$m_X = 1 \text{ TeV}$ fitte without detector	ed
$n_{ m sig}$	150	150 ± 13	151 ± 15	150	151 ± 12	150 ± 13
$(f_{++} + f_{})$	1.000	1.00 ± 0.05	1.00 ± 0.06	1.000	1.00 ± 0.05	1.00 ± 0.06
$(f_{++} - f_{})$	0.000	0.00 ± 0.35	0.00 ± 0.40	0.000	0.00 ± 0.31	-0.01 ± 0.32
$(\phi_{++} + \phi_{})$	N/A	free	free	N/A	free	free
$(\phi_{++} - \phi_{})$	π	3.15 ± 0.31	3.14 ± 0.41	π	3.15 ± 0.31	3.14 ± 0.33