

Detecting Relativistic Doppler by Multi-tracing a Single Galaxy Population

[F. Montano & S. Camera, PDU 46 (2024) 101570, arXiv:2309.12400]

[F. Montano & S. Camera, PDU 46 (2024) 101634, arXiv:2407.06284]

Federico Montano (federico.montano@unito.it)

COLOURS – Institut Pascal – 10th June 2025

Detecting relativistic effects: why?

Are there any confirmations of GR on scales far from the strong-gravity regime?

[NASA/ESA Hubble Space Telescope]

[Event Horizon Telescope]

[Yoo (2010); Bonvin & Durrer (2011); Challinor & Lewis (2011)]

Galaxy surveys observe the galaxy distribution

- in redshift space
- on the past lightcone

Auto- and cross-correlation measurements

- $X = Y \rightarrow$ auto-correlation
- $X \neq Y \rightarrow$ cross-correlation

Auto- and cross-correlation measurements

•
$$<\delta_{X}(\vec{k})\delta_{X}(\vec{k'})> \propto \delta^{D}(\vec{k}+\vec{k'})P_{XX}(k)$$

$$P_{XY}(z,k,\mu) =$$

$$= \left[(b_{X}+f\mu^{2})(b_{Y}+f\mu^{2}) + \left(\frac{\mathcal{H}f\mu}{k}\right)^{2} \alpha_{X}\alpha_{Y} + i\frac{\mathcal{H}f\mu}{k} \left(\alpha_{X}(b_{Y}+f\mu^{2}) - \alpha_{Y}(b_{X}+f\mu^{2})\right) \right] P_{m}(k)$$

• $X = Y \rightarrow$ auto-correlation

Auto- and cross-correlation measurements

- $P_{XY}(z, k, \mu) = P_{YX}^*(z, k, \mu) \to P_{XY}(z, k, \mu) = P_{YX}(z, k, -\mu)$
- The Doppler contribution is proportional to k^{-1} in the imaginary part of the cross-power spectrum [McDonald (2009)].

Luminosity cut technique

[Bonvin et al. (2014, 2016, 2023); Gaztanaga et al. (2017)]

• Complete sample (T): all the galaxies that are observed with a flux density *F* higher than a fixed minimum flux

$$F > F_c$$

• Faint sample (F): all the galaxies with

$$F_c < F < F_s$$

Bright sample (B): all the galaxies with

$$F > F_{S}$$

Multi-tracer power spectrum

[McDonald & Seljak (2009); Seljak (2009); Abramo & Leonard (2013); Fonseca *et al.* (2015)]

Multi-tracer power spectrum

[McDonald & Seljak (2009); Seljak (2009); Abramo & Leonard (2013); Fonseca *et al.* (2015)]

With one tracer, we can only measure its auto-correlation power spectrum. Looking at two different tracers of the LSS we are able to study P_{XX}, P_{YY}, P_{XY}

Multi-tracer power spectrum

[McDonald & Seljak (2009); Seljak (2009); Abramo & Leonard (2013); Fonseca *et al.* (2015)]

With one tracer, we can only measure its auto-correlation power spectrum.

Looking at two different tracers of the LSS we are able to study

 P_{XX} , P_{YY} , P_{XY}

We can jointly analyse autoand cross-power spectra to obtain tighter constrains

Faint-bright multi-tracer

Information matrix analysis

We can study how the probability of detecting a relativistic contribution depends upon the splitting flux adopted.

We can study how the probability of detecting a relativistic contribution depends upon the splitting flux adopted.

$$\boldsymbol{\theta}_{\alpha} = \left\{ A_{N}, A_{K}, A_{D}, \left\{ N_{FF}^{(i)} \right\}, \left\{ N_{FB}^{(i)} \right\}, \left\{ N_{BB}^{(i)} \right\} \right\}$$

Can we further increase the signal by considering more than 2 sub-samples?

DESI-like BGS

What about multiple splits?

Detection significance analysis

Can we further increase the signal by considering more than 2 sub-samples?

$$\Delta \chi^2(\overline{z_i}) = \sum_{k,\mu} \Delta P^H \Gamma^{-1} \Delta P$$

ΔP computed with a null-hypothesis of no Doppler

DESI-like BGS

What about multiple splits?

Detection significance analysis

Can we further increase the signal by considering more than 2 sub-samples?

$$\Delta \chi^2(\overline{z_i}) = \sum_{k,\mu} \Delta P^H \Gamma^{-1} \Delta P$$

ΔP computed with a null-hypothesis of no Doppler

Detection significance analysis

Can we further increase the signal by considering more than 2 sub-samples?

DESI-like BGS

Detection significance analysis

Can we further increase the signal by considering more than 2 sub-samples?

Detection significance analysis

Can we further increase the signal by considering more than 2 sub-samples?

We seem to be going towards a saturation of the information we can extract from a single galaxy population

DESI-like BGS

What about multiple splits? Detection significance analysis

Ongoing work

- An analysis of the performance of the luminosity cut technique using simulated data will demonstrate its reliability
 - With M. Y. Elkhashab, J. Salvalaggio & P. Monaco
- Including wide-angle effects
- Convolution with window function

Ongoing work

- An analysis of the performance of the luminosity cut technique using simulated data will demonstrate its reliability
 - With M. Y. Elkhashab, J. Salvalaggio, P. Monaco
- Including wide-angle effects
- Convolution with window function

Take-home messages

- A first detection of relativistic Doppler could confirm the validity of general relativity on cosmological scales
- A multi-tracer approach is able to overcome cosmic variance, even within a single dataset.

Thanks for your attention!