Impact of Weak Lensing Mass Mapping Algorithms on Cosmology Inference

June 11th, 2025

Andreas Tersenov

COLOURS workshop, Saclay

if you are seeing this in pdf, a nicer version of the slides is available at andreasters enov. github.io/talks/COLOURS_Saclay_2025/

Introduction - Weak Lensing

 WL = Observational technique in cosmology for studying the matter distribution in the universe

- Principle: deflection of light from distant galaxies by gravitational fields → causes image distortion
- Weak → subtle & coherent distortions of background galaxy shapes

galaxy cluste or see

axies by

lensing visible by eye

weak lensing detected only via statistical analysis

distorted light-rays

Earth

Introduction - Weak Lensing

galaxy cluste servational technique in cosmology for

- WL = Observational technique in cosmology for studying the matter distribution in the universe
- Principle: deflection of light from distant galaxies by gravitational fields → causes image distortion
- Weak → subtle & coherent distortions of background galaxy shapes

strong
lensing
visible by
eye

weak
lensing
detected
only via
statistical
analysis

distorted light-rave

- WL provides a direct measurement of the gravitational distortion.
- WL enables us to probe the cosmic structure, investigate the nature of dark matter, and constrain cosmological parameters.

Earth

Shear & Convergence

Shear & Convergence

Convergence κ

$$\kappa = \frac{1}{2} (\partial_1 \partial_1 + \partial_2 \partial_2) \psi = \frac{1}{2} \nabla^2 \psi$$

→ difficult to measure

Shear γ

$$\gamma_1 = \frac{1}{2} (\partial_1 \partial_1 - \partial_2 \partial_2) \psi, \ \gamma_2 = \partial_1 \partial_2 \psi$$

ightharpoonup can be measured by statistical analysis of galaxy shapes

Relation between κ and γ

Relation between κ and γ

Relation between κ and γ

- From convergence to shear: $\gamma_i = \hat{P}_{i} \kappa$
- From shear to convergence: $\kappa = \hat{P}_1 \gamma_1 + \hat{P}_2 \gamma_2$

$$\hat{P}_1(k) = \frac{k_1^2 - k_2^2}{k^2}, \ \hat{P}_2(k) = \frac{2k_1k_2}{k^2}$$

Kaiser-Squires inversion

Kaiser-Squires inversion

Advantages:

- Simple *linear* operator
- Very easy to implement in Fourier space
- Optimal, in theory

Kaiser-Squires inversion

Advantages:

- Simple *linear* operator
- Very easy to implement in Fourier space
- Optimal, in theory

Practical difficulties:

- Shear measurements are discrete, noisy, and irregularly sampled
- We actually measure the **reduced shear**: $g = \gamma/(1 \kappa)$
- Masks and integration over a subset of R² lead to border errors ⇒ missing data problem
- Convergence is recoverable up to a constant
 ⇒ mass-sheet degeneracy problem

- Mass mapping problem → statistical inference problem
- Goal: infer most probable value of κ -field given observed shear data

- Mass mapping problem → statistical inference problem
- Goal: infer most probable value of κ -field given observed shear data

$$p(\mathbf{k} \mid \mathbf{y}, \mathbf{M}) \propto p(\mathbf{y} \mid \mathbf{k}, \mathbf{M}) p(\mathbf{k} \mid \mathbf{M})$$
Posterior likelihood prior

M: cosmological model

• Maximum A Posteriori solution: $\hat{x} = \operatorname{argmax}$

- Mass mapping problem → statistical inference problem
- Goal: infer most probable value of κ -field given observed shear data

$$p(\kappa \mid \gamma, M) \propto p(\gamma \mid \kappa, M) p(\kappa \mid M)$$
Posterior likelihood prior

M: cosmological model

- Maximum A Posteriori solution: $\hat{x} = \operatorname{argmax}$
- In practice: this is usually solved iteratively by alternating two steps:
 - Move toward better data fit (gradient of likelihood)
 - Enforce the prior using a **proximal operator**

- Mass mapping problem → statistical inference problem
- Goal: infer most probable value of κ -field given observed shear data

$$p(\kappa \mid \gamma, M) \propto p(\gamma \mid \kappa, M) p(\kappa \mid M)$$
Posterior likelihood prior

M: cosmological model

- Maximum A Posteriori solution: $\hat{x} = \operatorname{argmax}$
- In practice: this is usually solved iteratively by alternating two steps:
 - Move toward better data fit (gradient of likelihood)
 - Enforce the prior using a **proximal operator**

Proximal operator

- Acts as a "smart denoiser" by finding the closest solution that satisfies the prior.
- Example: sparsity prior → proximal operator performs thresholding to enforce sparsity in the solution.

MCALens

• Models κ -field as a sum of a **Gaussian** and **non-Gaussian** component

$$\kappa = \underbrace{\kappa_{\rm NG}}_{\text{Standard Wiener filter approach}} + \underbrace{\kappa_{\rm G}}_{\text{Modified wavelet approach}}$$

$$\min_{\kappa_{G},\kappa_{NG}} \|\gamma - \mathbf{A} (\kappa_{G} + \kappa_{NG})\|_{\Sigma_{n}}^{2} + C_{G} (\kappa_{G}) + C_{NG} (\kappa_{NG})$$

- MCA (morphological Component Analysis) performs an alternating minimization scheme:
 - Estimate κ_G assuming κ_{NG} is known:

$$\min_{\kappa_G} \| (\gamma - \mathbf{A}\kappa_{NG}) - \mathbf{A}\kappa_G \|_{\Sigma_n}^2 + C_{\mathcal{G}}(\kappa_G)$$

• Estimate κ_{NG} assuming κ_{G} is known:

$$\min_{\kappa_{NG}} \| (\gamma - \mathbf{A}\kappa_G) - \mathbf{A}\kappa_{NG} \|_{\Sigma_n}^2 + C_{NG} (\kappa_{NG})$$

Does the choice of mass-mapping method matter for cosmology?

A. Tersenov, L. Baumont, J.L. Starck, M. Kilbinger, doi.org/10.1051/0004-6361/202553707

Mass mapping methods:

Method	RMSE↓		
KS	1.1×10^{-2}		
iKS	1.1×10^{-2}		
MCALens	9.8×10^{-3}		

Higher Order Statistics: Peak Counts

• Peaks: local maxima of the SNR field
$$v = \frac{(\mathcal{W} * \kappa) \, (\theta_{\mathrm{ker}})}{\sigma_n^{\mathrm{filt}}}$$

• Peaks trace regions where the value of κ is high \rightarrow they are associated to massive structures

• We consider a **multi-scale analysis** compared to a single-scale analysis

- We consider a **multi-scale analysis** compared to a single-scale analysis
- Apply (instead of Gaussian filter) a **starlet transform** → allows us to represent an image | as a sum of wavelet coefficient images and a coarse resolution image

- We consider a multi-scale analysis compared to a single-scale analysis
- Apply (instead of Gaussian filter) a **starlet transform** → allows us to represent an image | as a sum of wavelet coefficient images and a coarse resolution image

- We consider a **multi-scale analysis** compared to a single-scale analysis
- Apply (instead of Gaussian filter) a **starlet transform** → allows us to represent an image | as a sum of wavelet coefficient images and a coarse resolution image

- Allows for the **simultaneous** processing of data at different scales → **efficiency**
- Each wavelet band covers a different frequency range, which leads to an almost **diagonal peak count** covariance matrix

• Use **\texttt{cosmoSLICS}** simulations: suite designed for the analysis of WL data beyond the standard 2pt cosmic shear

- Use **\texttt{cosmoSLICS}** simulations: suite designed for the analysis of WL data beyond the standard 2pt cosmic shear
- \texttt{cosmoSLICS} cover a wide parameter space in \left[\Omega_m, \sigma_8, w_0, h \right].

- Use \texttt{cosmoSLICS} simulations: suite designed for the analysis of WL data beyond the standard 2pt cosmic shear
- \texttt{cosmoSLICS} cover a wide parameter space in \left[\Omega_m, \sigma_8, w_0, h \right].
- For Bayesian inference → use a Gaussian likelihood for a cosmology independent covariance, and a flat prior.

- Use \texttt{cosmoSLICS} simulations: suite designed for the analysis of WL data beyond the standard 2pt cosmic shear
- \texttt{cosmoSLICS} cover a wide parameter space in \left[\Omega_m, \sigma_8, w_0, h \right].
- For Bayesian inference → use a Gaussian likelihood for a cosmology independent covariance, and a flat prior.
- To have a prediction of each HOS given a new set of parameters → employ an interpolation with Gaussian Process Regressor (GPR)

So does the choice of the mass mapping algorithm matter for the final constraints?

The (standard) mono-scale peak counts

FoM	KS	iKS	MCALens
(Ω_m,h)	476	453	450
(Ω_m, w_0)	152	141	233
(Ω_m,σ_8)	1323	1285	1740
(h, w_0)	55	63	87
(h, σ_8)	336	292	293
(w_0, σ_8)	75	72	124
$(\Omega_m, h, w_0, \sigma_8)$	492	444	578

Wavelet multi-scale peak counts

FoM	KS	iKS	MCALens
(Ω_m,h)	670	702	2159
(Ω_m, w_0)	247	244	1051
(Ω_m,σ_8)	2414	2517	9039
(h, w_0)	82	80	259
(h, σ_8)	411	433	1335
(w_0, σ_8)	131	129	577
$(\Omega_m, h, w_0, \sigma_8)$	758	755	1947

Where does this improvement come from?

Where does this improvement come from?

Part 2

A plug-and-play approach with fast uncertainty quantification for weak lensing mass mapping

H. Leterme, A. Tersenov, J. Fadili, and J.-L. Starck (in prep.)

Yep, people have tried it! ...And it works!

Yep, people have tried it! ...And it works!

Example: DeepMass

Yep, people have tried it! ...And it works!

Example: DeepMass

Yep, people have tried it! ... And it works!

Example: DeepMass

So what's the problem?

Deep Learning for Mass Mapping?

Mass mapping method	Туре	Accurate	Flexible	Fast rec.	Fast UQ
Iterative Wiener	Model-driven (Gaus. prior)	X	√	√	X
MCALens	Model-driven (Gaus. + sparse)	≈	√	X	X
DeepMass	Data-driven (UNet)	✓	X *	✓	✓
DeepPosterior	Data-driven (UNet + MCMC)	✓	✓	X	X
MMGAN	Data-driven (GAN)	✓	X *	*	≈

Deep Learning for Mass Mapping?

Mass mapping method	Туре	Accurate	Flexible	Fast rec.	Fast UQ
Iterative Wiener	Model-driven (Gaus. prior)	X	√	√	X
MCALens	Model-driven (Gaus. + sparse)	≈	√	X	X
DeepMass	Data-driven (UNet)	✓	X *	✓	✓
DeepPosterior	Data-driven (UNet + MCMC)	✓	✓	X	Х
MMGAN	Data-driven (GAN)	✓	X *	*	*
What we'd like	Data-driven	✓	✓	✓	✓

Plug-and-Play Mass Mapping

Plug-and-Play Mass Mapping

Main idea:

- Use PnP framework: replace prox by an onthe-shelf deep denoiser trained on simulations
 \kappa^{n+1} = \mathrm{prox}_{\tau g}
 \left(\kappa^n \tau \nabla f(\kappa^n) \right) \kappa^{n+1} = F_{\tau heta} \left(\kappa^n \tau \mathbf{B} \left(\mathbf{A} \kappa^n \gamma \right) \right) \kappa^{n+1} = \mathrm{Denoiser} \left(\kappa^n + \mathrm{Data \, residual} \right)
- Series converges towards a fixed point \hat{\kappa}
- If we choose \mathbf{B} = \mathbf{A}^T
 \Sigma^{-1} → training phase independent
 of the noise covariance matrix

Instead of explicitly writing down a prior, we learn what a "likely" \kappa looks like from simulations and enforce it through denoising.

Implementation

Implementation

Training

- Denoiser models implemented: DRUNet & SUNet
- Trained on kTNG and cosmoSLICS simulations, using pairs of (\kappa_{\rm true}, \gamma_{\rm obs}) as training data

Implementation

Training

- Denoiser models implemented: DRUNet & SUNet
- Trained on kTNG and cosmoSLICS simulations, using pairs of (\kappa_{\rm true}, \gamma_{\rm obs}) as training data

How do we estimate uncertainties?

How do we estimate uncertainties?

Step 1

- We train a second neural network to estimate the posterior variance of \kappa: \arg\min_{\Omega} \mathbb{E} \left[\left\| G_{\Omega}(\gamma) - \big(\kappa - F_{\Theta} (\gamma) \big)^2 \right\|^2_2 \right]
- Trained on simulated pairs (\kappa, \gamma), just like the denoiser but now focused on uncertainty.
- This gives fast, pixel-wise error bars
- Uncertainty estimation is fast just one extra iteration after κ̂ is computed → adds almost no overhead

How do we estimate uncertainties?

Step 1

- We train a second neural network to estimate the posterior variance of \kappa: \arg\min_{\Omega} \mathbb{E} \left[\left\| G_{\Omega}(\gamma) - \big(\kappa - F_{\Theta} (\gamma) \big)^2 \right\|^2_2 \right]
- Trained on simulated pairs (\kappa, \gamma), just like the denoiser but now focused on uncertainty.
- This gives fast, pixel-wise error bars
- Uncertainty estimation is fast just one extra iteration after k̂ is computed → adds almost no overhead

Step 2

- Neural networks tend to produce miscalibrated uncertainties.
- We apply conformal quantile regression (CQR) to adjust uncertainty intervals so they have guaranteed statistical coverage.
- CQR uses a held-out calibration set to compute a correction factor for each pixel.
- Result: Reliable, data-driven uncertainty maps with built-in coverage guarantees.

Uncertainty bounds

Uncertainty bounds

Uncertainty bounds

- Investigated how different mass mapping algorithms affect cosmological inference using HOS from WL data.
- Constructed **new mass mapping algorithm** based on the **PnP** formalism.

- Investigated how different mass mapping algorithms affect cosmological inference using HOS from WL data.
- Constructed new mass mapping algorithm based on the PnP formalism.

Results

- With a **state-of-the-art** mass-mapping method (MCALens) we managed to get \sim 157\% improvement in FoM over KS.
- Increase in constraining power comes from the more accurate recovery of the smaller scales.
- Wavelet Peak Counts: Provide tighter constraints than single-scale peak counts.
- PnP Mass Mapping:
 - Provides a fast, flexible, and accurate mass mapping algorithm that can be used with any denoiser.
 - Provides fast and reliable uncertainties using moment networks and conformal quantile regression.

- Investigated how different mass mapping algorithms affect cosmological inference using HOS from WL data.
- Constructed new mass mapping algorithm based on the PnP formalism.

Results

- With a **state-of-the-art** mass-mapping method (MCALens) we managed to get \sim 157\% improvement in FoM over KS.
- Increase in constraining power comes from the more accurate recovery of the smaller scales.
- Wavelet Peak Counts: Provide tighter constraints than single-scale peak counts.
- PnP Mass Mapping:
 - Provides a fast, flexible, and accurate mass mapping algorithm that can be used with any denoiser.
 - Provides fast and reliable uncertainties using moment networks and conformal quantile regression.

Takeaway

• Mass-mapping Matters: Choosing an advanced mass mapping method significantly enhances constraints on cosmological parameters from HOS.