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| Introduction - Weak Lensing

e WL = Observational technique in-cosmology for
studying the matter distribution in the universe

 Principle: deflection of light from distant galaxies by

gravitational fields — causes image distortion

e Weak — subtle & coherent distortions of

background galaxy shapes
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= WL provides a direct measurement of the gravitational distortion.
» WL enables us to probe the cosmic structure, investigate the nature of dark matter, and constrain

cosmological parameters.
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| Shear & Convergence

Convergence Shear y

| 1 |
K= 500101 T 050w = EVZW 71 = 5(0101 = 02,0500, 5 = 0105y

— can be measured by statistical analysis of
. galaxy shapes
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| Relation between x and y

Shear map Lensing

Mass map
potential

1
M = 9 (812 = 8§)¢

Vo= 01027

« From convergence to shear: y, = Px

« From shear to convergence: « = P,y, + P,y,
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» Simple linear operator
» Very easy to implement in Fourier space
e Optimal, in theory



| Kaiser-Squires inversion

Advantages:

» Simple linear operator
» Very easy to implement in Fourier space
e Optimal, in theory

Practical difficulties:

o Shear measurements are discrete, noisy,
and irregularly sampled

o We actually measure the reduced shear:
g=y/(1-x)

« Masks and integration over a subset of R?
lead to border errors = missing data
problem

« Convergence is recoverable up to a constant
= mass-sheet degeneracy problem
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e Mass mapping problem — statistical inference problem
o Goal: infer most probable value of x-field given observed shear data
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| Bayesian reconstruction

Mass mapping problem — statistical inference problem
Goal: infer most probable value of x-field given observed shear data

px | M) « p(y | kK, M) p(x | M)
—— —— ——
Posterior likelihood prior

M: cosmological model

Maximum A Posteriori solution: ¥ = argmax

In practice: this is usually solved iteratively by alternating two steps:
= Move toward better data fit (gradient of likelihood)
= Enforce the prior using a proximal operator

Proximal operator

« Acts as a "smart denoiser" by finding the closest solution that satisfies the prior.
o Example: sparsity prior = proximal operator performs thresholding to enforce sparsity in the
solution.



| MCALens

e Models k-field as a sum of a Gaussian and non-Gaussian component

K= KNG + KG
N— fp—

Standard Wiener filter approach ~ Modified wavelet approach

min |y — A (kg + kno)ll3, + Co (kG) + Cng (kKng)

KG,KNG

« MCA (morphological Component Analysis) performs an alternating minimization scheme:
» Estimate kg assuming kNG is known:

min ||(y — Akneg) — Axgll3 + Co (k)

KG

= Estimate kng assuming kg is known:

min ||(y — Axg) — AknGll3, + Cng (Kng)

K e



Does the choice of mass-mapping method matter for
cosmology?

A. Tersenov, L. Baumont, J.L. Starck, M. Kilbinger, doi.org/10.1051/0004-6361/202553707



| Mass mapping methods:

Kaiser-Squires
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| Higher Order Statistics: Peak Counts

Second Order Higher Order

(W * K) (ler)

e Peaks: local maxima of the SNR field v = =
O.nllt

» Peaks trace regions where the value of k is high — they are associated to massive structures

12
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« We consider a multi-scale analysis compared to a single-scale analysis
 Apply (instead of Gaussian filter) a starlet transform — allows us to represent an image | as a sum of
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| Wavelet peaks

« We consider a multi-scale analysis compared to a single-scale analysis
 Apply (instead of Gaussian filter) a starlet transform — allows us to represent an image | as a sum of
wavelet coefficient images and a coarse resolution image

o Allows for the simultaneous processing of data at different scales — efficiency
» Each wavelet band covers a different frequency range, which leads to an almost diagonal peak count
covariance matrix

13
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o Use \texttt{cosmoSLICS} simulations: suite designed for the analysis of WL data beyond the standard 2pt
cosmic shear
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| Inference with HOS

Use \texttt{cosmoSLICS} simulations: suite designed for the analysis of WL data beyond the standard 2pt
cosmic shear

\texttt{cosmoSLICS} cover a wide parameter space in \left[ \Omega_m, \sigma_8, w_0, h \right].

For Bayesian inference — use a Gaussian likelihood for a cosmology independent covariance, and a flat
prior.

To have a prediction of each HOS given a new set of parameters— employ an interpolation with Gaussian
Process Regressor (GPR)

14



So does the choice of the mass mapping algorithm
matter for the final constraints?



| The (standard) mono-scale peak counts
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| Wavelet multi-scale peak counts

Il KS
iKS
MCALens

FoM KS 1IKS  MCALens
(o) 670 702 2159
(Q,,, wy) 247 244 1051
(Q,,,03) 2414 2517 9039
(h, wy) 82 80 259

(h, og) 411 433 1335
(wy, 63) 131 129 577
(Q,,, h,wy,o3) 7158 755 1947
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| Where does this improvement come from?
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| Where does this improvement come from?
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Part 2

A plug-and-play approach with fast uncertainty quantification for weak
lensing mass mapping

H. Leterme, A. Tersenov, ). Fadili, and J.-L. Starck (in prep.)
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Wait... what about Deep Learning for Mass Mapping?

Yep, people have tried it! ...And it works!

Example: DeepMass

Wiener filtering
(one iteration)

So what's the problem?




| Deep Learning for Mass Mapping?

Mass mapping method | Type Accurate | Flexible | Fast rec. | Fast UQ
DeepMass Data-driven (UNet) v X* v v
DeepPosterior Data-driven (UNet + MCMC) v v X X
MMGAN Data-driven (GAN) v X* ~ ~




| Deep Learning for Mass Mapping?

Mass mapping method | Type Accurate | Flexible | Fast rec. | Fast UQ
DeepMass Data-driven (UNet) v X* v v
DeepPosterior Data-driven (UNet + MCMC) v v X X
MMGAN Data-driven (GAN) v X* ~ ~
What we'd like Data-driven v v v v
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| Plug-and-Play Mass Mapping

Main idea:

e Use PnP framework: replace prox by an on-
the-shelf deep denoiser trained on - (0)
simulations K = 0

\kappa”{n+1} = \mathrm{prox}_{\tau g} ~ L Forward |

\left( \kappa”n - \tau \nabla f(\kappa™n) [ TOTWAIE N | Backward Fg ‘

\right) \kappa”{n+1} = F_{\Theta} \ left( | /!

\kappa”™n - \tau \mathbf{B} \left( v MJ Backward — Fi F &

\mathbf{A} \kappa”n - \gamma \right) —/ ©

\right) \kappa”{n+1} = \mathrm{Denoiser} 7 —{ Forward {_| Backward — G | 4

\left( \kappa”n + \mathrm{Data \, residual} | £

\right)
« Series converges towards a fixed point

\hat{\kappa} Instead of explicitly writing down a prior, we learn
« If we choose \mathbf{B} = \mathbf{A}*T what a "likely" |kappa looks like from simulations and

enforce it through denoising.

\Sigma”{-1} = training phase independent
of the noise covariance matrix
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| Implementation

Training

o Denoiser models implemented: DRUNet &
SUNet

e Trained on KTNG and cosmoSLICS
simulations, using pairs of (\kappa_{\rm
true}, \gamma_{\rm obs}) as training data

RMSE

0.0200 A

0.0195 A

0.0190 A

0.0185 A

0.0180 A

0.0175 A

- Step size = 1.0e-01

Step size = 1.2e-01
= Step size = 1.4e-01
—— Step size = 1.6e-01

0

1

2

3 4 5 6 7 8

PnP Iterations




| Implementation

.- . 0.0200 1 —— Step size = 1.0e-01
Tralnlng Step size = 1.2e-01
0.0195 1 —— Step size = 1.4e-01
« Denoiser models implemented: DRUNet & iy 00190 T Stepsize s Loe0l
SUNet Z 0.0185
e Trained on KTNG and cosmoSLICS 0.0180 1
simulations, using pairs of (\kappa_{\rm 0.0175 - M
true}, \gamma_{\rm obs}) as training data S S S S S
PnP Iterations
Ground truth Kaiser-Squires Iterative Wiener DeepMass PnPMass
0.25
0.20
0.15
0.10
0.05
0.00

RMSE = 31.8 RMSE = 18.3 RMSE =17.4 RMSE=17.4
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| How do we estimate uncertainties?

Step 1

« We train a second neural network to estimate the posterior variance of \kappa:
\arg\min_{\Omega} \mathbb{E} \left[ \left\| G_{\Omega}(\gamma) - \big(\kappa - F_{\Theta}
(\gamma) \big)”"2 \right\|"2_2 \right]

« Trained on simulated pairs (\kappa, \gamma), just like the denoiser — but now focused on
uncertainty.

« This gives fast, pixel-wise error bars

o Uncertainty estimation is fast — just one extra iteration after K is computed — adds almost no
overhead




| How do we estimate uncertainties?

Step 1

« We train a second neural network to estimate the posterior variance of \kappa:
\arg\min_{\Omega} \mathbb{E} \left[ \left\| G_{\Omega}(\gamma) - \big(\kappa - F_{\Theta}
(\gamma) \big)”"2 \right\|"2_2 \right]

« Trained on simulated pairs (\kappa, \gamma), just like the denoiser — but now focused on
uncertainty.

« This gives fast, pixel-wise error bars

o Uncertainty estimation is fast — just one extra iteration after K is computed — adds almost no
overhead

Step 2

e Neural networks tend to produce miscalibrated uncertainties.

« We apply conformal quantile regression (CQR) to adjust uncertainty intervals so they have
guaranteed statistical coverage.

« CQR uses a held-out calibration set to compute a correction factor for each pixel.

o Result: Reliable, data-driven uncertainty maps — with built-in coverage guarantees.
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PnPMass (ours)




| Uncertainty bounds
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improvement in FOM over KS.
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PnP Mass Mapping:
» Provides a fast, flexible, and accurate mass mapping algorithm that can be used with any
denoiser.
= Provides fast and reliable uncertainties using moment networks and conformal quantile
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| Conclusions

 Investigated how different mass mapping algorithms affect cosmological inference using HOS
from WL data.

o Constructed new mass mapping algorithm based on the PnP formalism.

Results

With a state-of-the-art mass-mapping method (MCALens) we managed to get \sim 157\%
improvement in FOM over KS.
Increase in constraining power comes from the more accurate recovery of the smaller scales.
Wavelet Peak Counts: Provide tighter constraints than single-scale peak counts.
PnP Mass Mapping:
» Provides a fast, flexible, and accurate mass mapping algorithm that can be used with any
denoiser.
= Provides fast and reliable uncertainties using moment networks and conformal quantile
regression.

Takeaway

o Mass-mapping Matters: Choosing an advanced mass mapping method significantly enhances
constraints on cosmological parameters from HOS.




