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WLWLWLWL = Observational technique in cosmology for
studying the matter distribution in the universe

Principle:Principle:Principle:Principle: deflection of light from distant galaxies by
gravitational fields → causes image distortion

Weak Weak Weak Weak →→→→    subtle & coherent distortions of
background galaxy shapes

WL provides a direct measurement of the gravitational distortion.
WL enables us to probe the cosmic structure, investigate the nature of dark matter, and constrain
cosmological parameters.
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Shear & Convergence

Convergence Convergence Convergence Convergence κ

κ =
1
2
(∂1∂1 + ∂2∂2)ψ =

1
2

∇2ψ

⟶ difficult to measure

Shear Shear Shear Shear γ

γ1 =
1
2
(∂1∂1 − ∂2∂2)ψ, γ2 = ∂1∂2ψ

⟶ can be measured by statistical analysis of
galaxy shapes
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Relation between κ and γ

Shear map Lensing 
potential

Mass map
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Relation between κ and γ

From convergenceconvergenceconvergenceconvergence to shearshearshearshear: γi = P̂iκ
From shearshearshearshear to convergenceconvergenceconvergenceconvergence: κ = P̂1γ1 + P̂2γ2

P̂1(k) =
k2

1 − k
2
2

k2
, P̂2(k) =

2k1k2

k2

Shear map Lensing 
potential

Mass map
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Kaiser-Squires inversion
Advantages:Advantages:Advantages:Advantages:

Simple linearlinearlinearlinear operator
Very easy to implement in Fourier space
Optimal, in theory
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Kaiser-Squires inversion

Practical difficulties:Practical difficulties:Practical difficulties:Practical difficulties:

Shear measurements are discrete, noisynoisynoisynoisy,
and irregularly sampledirregularly sampledirregularly sampledirregularly sampled

We actually measure the reduced shearreduced shearreduced shearreduced shear:
g = γ / (1 − κ)

Masks and integration over a subset of R2

lead to border errors ⇒ missing datamissing datamissing datamissing data
problemproblemproblemproblem

Convergence is recoverable up to a constant
⇒ mass-sheet mass-sheet mass-sheet mass-sheet degeneracy problemdegeneracy problemdegeneracy problemdegeneracy problem

Advantages:Advantages:Advantages:Advantages:

Simple linearlinearlinearlinear operator
Very easy to implement in Fourier space
Optimal, in theory
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Bayesian reconstruction
Mass mapping problem → statistical inference problem
GoalGoalGoalGoal: infer most probable value of κ-field given observed shear data

p(κ ∣ γ, M)
⏟

Posterior 

∝ p(γ ∣ κ, M)
⏟

likelihood 

p(κ ∣ M)
⏟

prior 

M: cosmological model
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p(κ ∣ γ, M)
⏟

Posterior 

∝ p(γ ∣ κ, M)
⏟

likelihood 

p(κ ∣ M)
⏟

prior 

Maximum A Posteriori solution:Maximum A Posteriori solution:Maximum A Posteriori solution:Maximum A Posteriori solution: x̂ = argmax

In practice:In practice:In practice:In practice: this is usually solved iteratively by alternating two steps:
Move toward better data fit (gradient of likelihood)
Enforce the prior using a proximal operatorproximal operatorproximal operatorproximal operator

Proximal operatorProximal operatorProximal operatorProximal operator

Acts as a "smart denoiser" by finding the closest solution that satisfies the prior.
Example: sparsity prior → proximal operator performs thresholding to enforce sparsity in the
solution.

M: cosmological model
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MCALens
Models -field as a sum of a GaussianGaussianGaussianGaussian and non-Gaussiannon-Gaussiannon-Gaussiannon-Gaussian component

MCAMCAMCAMCA (morphological Component Analysis) performs an alternating minimization scheme:

Estimate  assuming  is known:

Estimate  assuming  is known:

𝜅

𝜅 = +𝜅NG⏟Standard Wiener filter approach
𝜅G⏟Modified wavelet approach

+ ( ) + ( )min
,𝜅𝐺 𝜅𝑁𝐺

‖𝛾 − 𝐀 ( + )‖𝜅𝐺 𝜅𝑁𝐺
2
Σ𝑛 𝐶G 𝜅𝐺 𝐶NG 𝜅𝑁𝐺

𝜅G 𝜅NG

+ ( )min
𝜅𝐺

‖(𝛾 − 𝐀 ) − 𝐀 ‖𝜅𝑁𝐺 𝜅𝐺
2
Σ𝑛 𝐶G 𝜅𝐺

𝜅NG 𝜅G

+ ( )min
𝜅𝑁𝐺

‖(𝛾 − 𝐀 ) − 𝐀 ‖𝜅𝐺 𝜅𝑁𝐺
2
Σ𝑛 𝐶NG 𝜅𝑁𝐺 9
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Mass mapping methods:

Method
KS 
iKS 
MCALens

RMSE↓
1.1 × 10−2

1.1 × 10−2

9.8 × 10−3
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Higher Order Statistics: Peak CountsPeak CountsPeak CountsPeak Counts

Second Order Higher Order

Power Spectrum Peak Counts

PeaksPeaksPeaksPeaks: local maxima of the SNR field 

Peaks trace regions where the value of  is high is high is high is high → they are associated to massive structuresmassive structuresmassive structuresmassive structures

𝜈 = ( ∗ 𝜅) ( )𝜃ker
𝜎 filt𝑛

𝜅
12



Wavelet peaks
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Wavelet peaks
We consider a multi-scale analysismulti-scale analysismulti-scale analysismulti-scale analysis compared to a single-scale analysis
Apply (instead of Gaussian filter) a starlet starlet starlet starlet transformtransformtransformtransform → allows us to represent an image I as a sum of
wavelet coefficient images and a coarse resolution image

= +

Allows for the simultaneoussimultaneoussimultaneoussimultaneous processing of data at different scales → efficiencyefficiencyefficiencyefficiency
Each wavelet band covers a different frequency range, which leads to an almost diagonal peak countdiagonal peak countdiagonal peak countdiagonal peak count
covariance matrixcovariance matrixcovariance matrixcovariance matrix
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Inference with HOS
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cosmic shear
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Inference with HOS
Use \texttt{cosmoSLICS}\texttt{cosmoSLICS}\texttt{cosmoSLICS}\texttt{cosmoSLICS} simulations: suite designed for the analysis of WL data beyond the standard 2pt
cosmic shear

\texttt{cosmoSLICS}\texttt{cosmoSLICS}\texttt{cosmoSLICS}\texttt{cosmoSLICS} cover a wide parameter space in \left[ \Omega_m, \sigma_8, w_0, h \right].

For Bayesian inferenceBayesian inferenceBayesian inferenceBayesian inference → use a Gaussian Gaussian Gaussian Gaussian likelihoodlikelihoodlikelihoodlikelihood for a cosmology independent covariance, and a flatflatflatflat
priorpriorpriorprior.

To have a prediction of each HOS given a new set of given a new set of given a new set of given a new set of parametersparametersparametersparameters→ employ an interpolation with GaussianGaussianGaussianGaussian
Process RegressorProcess RegressorProcess RegressorProcess Regressor (GPR)

14



15



The (standard) mono-scale peak counts

FoM
( , ℎ)Ω𝑚

( , )Ω𝑚 𝑤0
( , )Ω𝑚 𝜎8
(ℎ, )𝑤0
(ℎ, )𝜎8
( , )𝑤0 𝜎8
( , ℎ, , )Ω𝑚 𝑤0 𝜎8

KS
476
152
1323
55

336
75

492

iKS
453
141
1285
63

292
72

444

MCALens
450
233
1740
87

293
124
578
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Wavelet multi-scale peak counts

FoM
( , ℎ)Ω𝑚

( , )Ω𝑚 𝑤0
( , )Ω𝑚 𝜎8
(ℎ, )𝑤0
(ℎ, )𝜎8
( , )𝑤0 𝜎8
( , ℎ, , )Ω𝑚 𝑤0 𝜎8

KS
670
247
2414
82

411
131
758

iKS
702
244
2517
80

433
129
755

MCALens
2159
1051
9039
259
1335
577
1947
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Where does this improvement come from?
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Wait... what about Deep Learning for Mass Mapping?

Yep, people have tried it! ...And it works!

Example: DeepMass

So what's the problem?
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Deep Learning for Mass Mapping?

Mass mapping Mass mapping Mass mapping Mass mapping methodmethodmethodmethod TypeTypeTypeType AccurateAccurateAccurateAccurate FlexibleFlexibleFlexibleFlexible Fast rec.Fast rec.Fast rec.Fast rec. Fast UQFast UQFast UQFast UQ

Iterative Wiener Model-driven (Gaus. prior) ✗ ✓ ✓ ✗

MCALens Model-driven (Gaus. + sparse) ≈ ✓ ✗ ✗

DeepMass Data-driven (UNet) ✓ ✗✗✗✗* ✓ ✓

DeepPosterior Data-driven (UNet + MCMC) ✓ ✓ ✗ ✗

MMGAN Data-driven (GAN) ✓ ✗✗✗✗* ≈ ≈
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Deep Learning for Mass Mapping?

Mass mapping Mass mapping Mass mapping Mass mapping methodmethodmethodmethod TypeTypeTypeType AccurateAccurateAccurateAccurate FlexibleFlexibleFlexibleFlexible Fast rec.Fast rec.Fast rec.Fast rec. Fast UQFast UQFast UQFast UQ

Iterative Wiener Model-driven (Gaus. prior) ✗ ✓ ✓ ✗

MCALens Model-driven (Gaus. + sparse) ≈ ✓ ✗ ✗

DeepMass Data-driven (UNet) ✓ ✗✗✗✗* ✓ ✓

DeepPosterior Data-driven (UNet + MCMC) ✓ ✓ ✗ ✗

MMGAN Data-driven (GAN) ✓ ✗✗✗✗* ≈ ≈

What we'd likeWhat we'd likeWhat we'd likeWhat we'd like Data-drivenData-drivenData-drivenData-driven ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓
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Plug-and-Play Mass Mapping
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Plug-and-Play Mass Mapping
Main idea:Main idea:Main idea:Main idea:

Use PnP framework: replace proxproxproxprox by an on-
the-shelf deep denoiserdeep denoiserdeep denoiserdeep denoiser trained on
simulations
\kappa^{n+1} = \mathrm{prox}_{\tau g}
\left( \kappa^n - \tau \nabla f(\kappa^n)
\right) \kappa^{n+1} = F_{\Theta} \left(
\kappa^n - \tau \mathbf{B} \left(
\mathbf{A} \kappa^n - \gamma \right)
\right) \kappa^{n+1} = \mathrm{Denoiser}
\left( \kappa^n + \mathrm{Data \, residual}
\right)
Series convergesconvergesconvergesconverges towards a fixed fixed fixed fixed pointpointpointpoint
\hat{\kappa}
If we choose \mathbf{B} = \mathbf{A}^T
\Sigma^{-1} → training phase independent
of the noise covariance matrix

Instead of explicitly writing down a prior, we learn
what a "likely" \kappa looks like from simulations and

enforce it through denoising.
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Implementation

TrainingTrainingTrainingTraining

Denoiser models implemented: DRUNetDRUNetDRUNetDRUNet &
SUNetSUNetSUNetSUNet
Trained on κκκκTNGTNGTNGTNG and cosmoSLICScosmoSLICScosmoSLICScosmoSLICS
simulations, using pairs of (\kappa_{\rm
true}, \gamma_{\rm obs}) as training data
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How do we estimate uncertainties?
Step 1Step 1Step 1Step 1

We train a second neural network to estimate the posterior varianceposterior varianceposterior varianceposterior variance of \kappa:
\arg\min_{\Omega} \mathbb{E} \left[ \left\| G_{\Omega}(\gamma) - \big(\kappa - F_{\Theta}
(\gamma) \big)^2 \right\|^2_2 \right]
Trained on simulated pairs (\kappa, \gamma), just like the denoiser — but now focused on
uncertainty.
This gives fast, pixel-wise error bars
Uncertainty estimation is fast — just one extra iteration after κ̂ is computed → adds almost no
overhead
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\arg\min_{\Omega} \mathbb{E} \left[ \left\| G_{\Omega}(\gamma) - \big(\kappa - F_{\Theta}
(\gamma) \big)^2 \right\|^2_2 \right]
Trained on simulated pairs (\kappa, \gamma), just like the denoiser — but now focused on
uncertainty.
This gives fast, pixel-wise error bars
Uncertainty estimation is fast — just one extra iteration after κ̂ is computed → adds almost no
overhead

Step 2Step 2Step 2Step 2

Neural networks tend to produce miscalibrated uncertainties.
We apply conformal quantile regression (CQR) to adjust uncertainty intervals so they have
guaranteed statistical coverage.
CQR uses a held-out calibration set to compute a correction factor for each pixel.
Result: Reliable, data-driven uncertainty maps — with built-in coverage guarantees.
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Uncertainty bounds
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Conclusions
Investigated how different mass mapping algorithmsmass mapping algorithmsmass mapping algorithmsmass mapping algorithms affect cosmological inferencecosmological inferencecosmological inferencecosmological inference using HOS
from WL data.
Constructed new mass mapping algorithmnew mass mapping algorithmnew mass mapping algorithmnew mass mapping algorithm based on the PnPPnPPnPPnP formalism.
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ResultsResultsResultsResults

With a state-of-the-artstate-of-the-artstate-of-the-artstate-of-the-art mass-mapping method (MCALens) we managed to get \sim 157\%
improvement in FoM over KS.
Increase in constraining power comes from the more accurate recovery of the smaller scalessmaller scalessmaller scalessmaller scales.
Wavelet Peak CountsWavelet Peak CountsWavelet Peak CountsWavelet Peak Counts: Provide tighter constraints than single-scale peak counts.
PnP Mass MappingPnP Mass MappingPnP Mass MappingPnP Mass Mapping:

Provides a fastfastfastfast, flexibleflexibleflexibleflexible, and accurateaccurateaccurateaccurate mass mapping algorithm that can be used with any
denoiser.
Provides fastfastfastfast and reliablereliablereliablereliable uncertainties using moment networksmoment networksmoment networksmoment networks and conformal quantileconformal quantileconformal quantileconformal quantile
regressionregressionregressionregression.
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TakeawayTakeawayTakeawayTakeaway

Mass-mapping MattersMass-mapping MattersMass-mapping MattersMass-mapping Matters: Choosing an advanced mass mapping method significantly enhances
constraints on cosmological parameters from HOS. 26


