

Realistic map-based delens ng for the Inflation and Cosm c Origins Probe o

Neutrino Mass

Primordial Magnetic Fields

Interstellar Dust

Cosmic Birefringence

Julien TANG^{1,2} First Luminous with Sebastian Belkner, Julien Carron, Jacques Delabrouille, Shamik Ghosh, Kris Gorski,

Milky Way Dynamics Shaul Hanany, Brandon Hensley, & Star Formation Remazeilles Russier, Mathieu Remazeilles

For the PICO collaboration

¹CPB, CNRS/IN2P3 and LBNL, Berkeley ²APC

Searching for inflation with CMB B-Modes

CMB B-modes identified as high priority in the Astro2020 Decadal Survey report

Pico arXiv 1902.10541) **B-modes**

PICO Concept

Large frequency range with a single 13,000 detector focal plane

Sky coverage	Full sky
Duration [years]	5
Frequency range [GHz]	21 — 799 GHz (21 bands)
Angular resolution [arcmin]	38.4 — 1.1
Noise sensitivity (CBE) [µK.arcmin]	0.61

Large frequency range, high resolution, high sensitivity

Model for weak lensing of the CMB

Deflection angle: $\alpha = \nabla \phi$

Lensing B-modes

Delensing

- Bayesian (Optimal) method: maximum a posteriori lensing potential reconstruction <u>Carron, Lewis arxiv.org/1704.08230</u>
- Map-based method

Internal: using information from the data to reconstruct lensing Unlensed E modes Curved sky Lensing Observed **Optimal** B-mode $\mathsf{CMB}\ X^{\mathrm{dat}}$ delensing template Belkner et al 2024 ApJ Lensing 964 148 potential ϕ **Contains Lensing** reconstruction B-modes

Deflection angle: $\alpha = \nabla \phi$

Data and noise model

- Foregrounds contaminate the signal in the galactic plane, which impacts the delensing.
- Minimal galactic mask
- variance inversely proportional to the survey depth $\sigma_p^2 \propto \frac{1}{\text{hits}_p}$

More depth, less noise

Results: residual lensing

Lensing B Template (from component separation product)

$$B^{\rm RL} \equiv B^{\rm in} - B^{\rm LT}$$

Lensing B difference

Results: Delensing performance

Consistency check: Local delensing performance

The delensing performance traces the noise and foreground variance.

Total error on the power spectra

- Cosmic variance limits ultimate sensitivity on primordial GW with Υ
- For this simulation, contributions of noise and residual lensing to sensitivity on r roughly similar
- Next step: run multiple realizations and propagate to cosmological likelihood

$$f_{\rm skv} = 46\%$$

Conclusion

- Detection of inflation remains one of the most compelling science goals in cosmology today.
- The CMB offers an extraordinary window into this early epoch.
- Efficient delensing is crucial for detection of primordial B-modes.
- The proposed PICO design features high sensitivity, high angular resolution, and broad frequency coverage.
- We developed and validated a delensing pipeline that successfully reduces the lensing signal.
- Next step: scale up with many simulations to produce robust forecasts on Primordial Gravitational Waves (with \varUpsilon) .
- Get started on curved-sky optimal delensing with https://github.com/NextGenCMB/delensalot

Please ask me questions!

Backup

Weak Lensing of the CMB

- ullet Gravitational pull by structures deflect CMB photons, with lensing potential arphi
- In temperature, this corresponds to a remapping $\tilde{\Theta}(\mathbf{x}) = \Theta\left(\mathbf{x} + \nabla\phi\right)$
- In polarization, this converts E-modes into B-modes

$$X^{\text{dat}} \equiv \begin{pmatrix} Q^{\text{dat}} \\ U^{\text{dat}} \end{pmatrix} = \mathcal{B}\mathcal{D}_{\alpha}X^{\text{unlensed}} + \text{noise}$$

- ${\cal B}$ describes the instrument beam and transfer functions
- \mathcal{D}_{α} is the deflection operator with $\alpha = \nabla \phi$
- What is the most probable (Maximum A-posteriori) lensing potential given the observed data? i.e. maximize the log-posterior probability

$$-2\ln \mathbb{P}\left(\alpha|X^{\text{dat}}\right) = X^{\text{dat},\dagger} \text{cov}_{\alpha}^{-1} X^{\text{dat}} + \ln \det \text{cov}_{\alpha} + \sum_{LM} \frac{\phi_{LM}^2}{C_L^{\phi\phi,\text{fid}}}$$

Deflection of unlensed E-modes

Quadratic Mean-Field Priors Pixel-Pixel covariance matrix: $\operatorname{cov}_{\alpha} \equiv \langle X^{\operatorname{dat}} X^{\operatorname{dat},\dagger} \rangle = \mathcal{B} \mathcal{D}_{\alpha} C^{\operatorname{unlensed}} \mathcal{D}_{\alpha}^{\dagger} \mathcal{B}^{\dagger} + N$

Iterative Internal Delensing with Delensalot [CMB-S4: Iterative Internal Delensing and r Constraints]

