Scalar leptoquarks for $R_{D}(*)$ (and for $B \rightarrow K\nu\nu$)

UNIVERZA V L]UBL]ANI

Fakulteta za matematiko in fiziko

Lovre Pavičić 14.11.2024

IJCLab

Jožef Stefan Institute Ljubljana, Slovenia

(based on 2404.16772 and 2410.23257 with D. Bečirević, S. Fajfer and N. Košnik)

Motivation

Standard Model cannot address Dark Matter, BAU, Neutrino masses, ...

⇒ Need for **New Physics**: Direct searches at LHC - **Indirect searches** at low energy

Indirect searches - Test SM (accidental) symmetries

Flavour physics: test lepton flavour universality

W ⁺ DECAY MODES	CAY MODES Fraction (Γ_i/Γ)						
$\ell^+ u$		[<i>b</i>]	$(10.86\pm~0.09)~\%$				
$e^+ \nu$			$(10.71\pm~0.16)~\%$				
$\mu^+ \nu$			(10.63 ± 0.15) %				
$ au^+ u$			$(11.38\pm~0.21)~\%$				
hadrons			(67.41 \pm 0.27) %				
Z DECAY MODES		Frac	tion (Γ _i /Γ)				
e^+e^-	[<i>h</i>]	($3.3632 \pm 0.0042)$ %				
$\mu^+\mu^-$	[<i>h</i>]	($3.3662 \pm 0.0066)$ %				
$ au^+ au^-$	[<i>h</i>]	($3.3696 \pm 0.0083)$ %				
$\ell^+\ell^-$	[<i>b</i> , <i>h</i>]	($3.3658 \pm 0.0023)$ %				
	[PDG 2024]						

Motivation

Standard Model cannot address Dark Matter, BAU, Neutrino masses...

⇒ Need for New Physics: Direct searches at LHC - Indirect searches at low energy

Indirect searches - Test SM (accidental) symmetries

Flavour physics: test lepton flavour universality

BUT: current measurements of semi-leptonic *B*-meson decays appear to tell a different story!

W ⁺ DECAY MODES	Fraction (Γ _i /Γ)						
$\ell^+ u$	$[b]$ (10.86 \pm 0.09) %						
$e^+ \nu$	$(10.71\pm~0.16)~\%$						
$\mu^+ u$	(10.63 ± 0.15) %						
$ au^+ u$	$(11.38\pm~0.21)~\%$						
hadrons	(67.41± 0.27) %						
Z DECAY MODES	Fraction (Γ_i/Γ)						
e ⁺ e ⁻	[h] (3.3632 ± 0.0042) %						
$\mu^+\mu^-$	[h] (3.3662±0.0066) %						
$\tau^+ \tau^-$	[h] (3.3696±0.0083) %						
$\ell^+\ell^-$	[b,h] (3.3658±0.0023) %						
	[PDG 2024]						

B-meson decays

Powerful probes of New Physics

- Theoretically clean b-quark is heavy: HQET applies, precise predictions thanks to non-perturbative QCD possible
- **Experimentally accessible** at LHC mostly produced in forward region (design of LHCb), also dedicated "*B*-factories" (Belle II, BaBar)
- Scharged current decays used to measure CKM parameters ($|V_{cb}|, |V_{ub}|, \delta_{CP}, \gamma$)
- **During Long lifetime** measure B and B_s oscilations, insight on CP violation in the SM
- Hundreds of decay channels to explore

B-meson decays

	_	Scal	e factor/ p	
Powerf	B ⁺ DECAY MODES	Fraction (Γ_i/Γ) Confide	ence level(MeV/c)	
	Semilepto	nic and leptonic modes		
	$\ell^+ u_\ell X$	[///] (10.99 \pm 0.28) %	_	
▶The	$e^+ \nu_e X_c$	(10.8 \pm 0.4) %	_	ies, precise predictions thanks
	$\frac{D\ell^+}{D\ell^+} \nu_\ell X$	$($ 9.7 \pm 0.7 $)$ %	-	
to n	$\frac{D^0\ell^+\nu_\ell}{D^0\ell^+}$	[///] (2.35 \pm 0.09)%	2310	
	$\frac{D}{D} \tau^+ \nu_{\tau}$	$(7.7 \pm 2.5) \times 10^{-3}$	1911	
	$\frac{D^{*}(2007)^{\circ}\ell}{D^{*}(2007)^{\circ}\sigma^{+}}$	$[///] (5.66 \pm 0.22)\%$	2258	
≥Exp	$D^{-}(2007)^{*\gamma} \nu_{\tau}$	$(1.88 \pm 0.20)\%$ $(44 \pm 04) \times 10^{-3}$	1839	ed in forward region (design of
інс	$\overline{D}^*_{\ast}(2420)^0\ell^+\nu_{\ell}$ $\overline{D}^{*0}_{\ast}\rightarrow$	$(4.4 \pm 0.4) \times 10^{-3}$	- 2300	
LIIC	$D^{-}\pi^{+}$	(2.3 ± 0.3) × 10		/
	$\overline{D}_2^*(2460)^0 \ell^+ \nu_\ell, \ \overline{D}_2^{*0} \rightarrow$	(1.53 \pm 0.16) $\times10^{-3}$	2065	
	$D^{+}\pi^{+}$			
▶Cha	$D^{(*)} n \pi \ell \nu_{\ell} (n \geq 1)$ $D^{*-} \pi^+ \ell^+ \mu_{\ell}$	$(1.88 \pm 0.25)\%$	-	fameters $(V_{ch} , V_{uh} , \delta_{CP}, \gamma)$
	$\overline{D}_{1}(2420)^{0}\ell^{+}\mu_{\ell}$ $\overline{D}_{2}^{0} \rightarrow$	$(0.0 \pm 0.4) \times 10^{-3}$	2254	
	$D_1(2+20) \sim \nu_\ell, D_1 = \ell$	$(3.03 \pm 0.20) \times 10$	2004	
▶Lon	$\overline{D}'_1(2430)^0 \ell^+ \nu_\ell, \ \overline{D}'^0_1 \rightarrow$	(2.7 \pm 0.6) $ imes$ 10 ⁻³	_	ht on <i>CP</i> violation in the SM
492*	$D^{*-}\pi^+$			
	$D_2^*(2460)^0 \ell^+ \nu_\ell$,	(1.01 \pm 0.24) $ imes$ 10 $^{-3}$	S=2.0 2065	
Mur	$\overline{D}_2^{*0} \rightarrow D^{*-}\pi^+$			
	$\frac{D^0}{2}\pi^+\pi^-\ell^+\nu_\ell$	$(1.7 \pm 0.4) imes 10^{-3}$	2301	
	$D^{*0}\pi^+\pi^-\ell^+\nu_\ell$	$(8 \pm 5) \times 10^{-4}$	2248	
	$D_{s}^{(*)-} K^+ \ell^+ u_{\ell}$	(6.1 \pm 1.0) $ imes$ 10 ⁻⁴	-	
	$D_s^- K^+ \ell^+ u_\ell$	$(3.0 \ + 1.4 \ - 1.2 \) imes 10^{-4}$	2242	
l	HTTP://PDG.LBL.GOV	Page 73 Created: 8/2	28/2020 18:31	

neso	n decays		$D_{s}^{*-} K^{+} \ell^{+} \nu_{\ell} \\ \pi^{0} \ell^{+} \nu_{\ell} \\ \eta \ell^{+} \nu_{\ell} \\ \eta' \ell^{+} \nu_{\ell}$	$(2.9 \pm 1.9) \times 10^{-4}$ $(7.80 \pm 0.27) \times 10^{-5}$ $(3.9 \pm 0.5) \times 10^{-5}$ $(2.3 \pm 0.8) \times 10^{-5}$	2185 2638 2611 2553
Powerf	B+ DECAY MODES	S Fraction (Γ _i /Γ) Conf	$\omega \ell^+ \nu_\ell ho^0 \ell^+ \nu_\ell$	[///] (1.19 \pm 0.09) \times 10 ⁻⁴ [///] (1.58 \pm 0.11) \times 10 ⁻⁴	2582 2583
	Semilepton	ic and leptonic modes	$p \overline{p} \ell^+ \nu_\ell$	$(5.8 + 2.6 - 2.3) \times 10^{-6}$	2467
b - - 1	$\ell^+ \nu_\ell X$	$[///] (10.99 \pm 0.28)\%$	$p \overline{p} \mu^{ op} u_{\mu}$	$< 8.5 \times 10^{-0} \text{ CL}=90\%$	2446
Ine	$D\ell^+ \nu_{\ell} X$	$(10.8 \pm 0.4)\%$ $(9.7 \pm 0.7)\%$	ppe	$(8.2 - 3.3) \times 10^{-0}$	2467
to n	$\overline{D}^0 \ell^+ \nu_\ell$	[///] (2.35 \pm 0.09) %	$e^{+} \nu_{e}$ $\mu^{+} \nu$	$< 9.8 \times 10^{-7}$ CL=90% 2.00 $\times 10^{-07}$ to 1.07 $\times 10^{-06}$ CL=90%	2640 2630
	$\overline{D}^0 \tau^+ \nu_{\tau}$	$(7.7 \pm 2.5) \times 10^{-3}$		$(1.09 \pm 0.24) \times 10^{-4}$ S=1.2	2341
	$D^*(2007)^{\circ} \ell^+ \nu_{\ell}$ $\overline{D}^*(2007)^{\circ} -+ \nu_{\ell}$	$[///] (5.66 \pm 0.22) \% $	$\ell^+ \nu_\ell^{} \gamma$	$< 3.0 \times 10^{-6} \text{ CL}=90\%$	2640
≥Exp	$D^{-} \pi^{+} \ell^{+} \nu_{\ell}$	$(1.88 \pm 0.20)\%$ $(44 \pm 04) \times 10^{-3}$	$e^+_{\mu} u_e \gamma$	< 4.3 $\times 10^{-6}$ CL=90%	2640
LHC	$\overline{D}_0^*(2420)^0 \ell^+ \nu_\ell, \ \overline{D}_0^{*0} \rightarrow$	$(2.5 \pm 0.5) \times 10^{-3}$	$\mu^{ op} u_{\mu} \gamma$ $\mu^{+} \mu^{-} \mu^{+} \mu$	< 3.4 $\times 10^{-0}$ CL=90%	2639
	$ \frac{D^{-}\pi^{+}}{D_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} \rightarrow D^{-}\pi^{+}} $ $ D^{(*)}n\pi^{\ell^{+}}\nu_{\ell}(n > 1) $	$(1.53 \pm 0.16) \times 10^{-3}$	$\frac{D^{0}X}{D^{0}X}$	Inclusive modes (8.6 ± 0.7)% (79 ± 4)%	_
▶Cha	$D^{*-}\pi^{+}\ell^{+}\nu_{\ell}$ $\overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{1}^{0} \rightarrow D^{*-} +$	$(6.0 \pm 0.23) \times 10^{-3}$ $(3.03 \pm 0.20) \times 10^{-3}$	$D^+ X$ $D^- X$ $D^+ X$	(15 ± 10.5) (2.5 ± 0.5) % (9.9 ± 1.2) %	- -
▶Lon	$ \begin{array}{c} D^{*-}\pi^{+} \\ \overline{D}_{1}^{\prime}(2430)^{0}\ell^{+}\nu_{\ell}, \overline{D}_{1}^{\prime0} \\ D^{*-}\pi^{+} \\ \end{array} $	(2.7 \pm 0.6) $ imes$ 10 $^{-3}$	$D_s^+ X$ $D_s^- X$	(7.9 + 1.4 - 1.3)% (1.10 + 0.40 - 0.32)%	_
⊳Hur	$D_2^*(2460)^0 \ell^+ u_\ell,$ $\overline{D}_2^{*0} \to D^{*-} \pi^+$ $\overline{D}_2^{0} + - \ell^+$	$(1.01 \pm 0.24) \times 10^{-3}$	$\Lambda_c^+ X$ $\overline{\Lambda}^- X$	$\begin{pmatrix} 2.1 & + & 0.9 \\ - & 0.6 \end{pmatrix}$ % $\begin{pmatrix} 2.8 & + & 1.1 \end{pmatrix}$ %	_
-	$\frac{D^{\circ}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}}{D^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}}$	$(1.7 \pm 0.4) \times 10^{-3}$	\overline{c}	$(2.0 - 0.9)^{70}$	
	$D_{c}^{(*)-}K^{+}\ell^{+}\nu_{\ell}$	$(6.1 \pm 1.0) \times 10^{-4}$	-	(91 ± 4)70	_
	S^{s} $D_{c}^{-}K^{+}\ell^{+}\nu_{\ell}$	$(3.0 + 1.4) \times 10^{-4}$	4 2242		
	5 ~	- 1.2			

าeso	n decays				\mathcal{D} $\pi^{0}\ell$ $\eta\ell^{+}$	$\mathcal{D}_{s}^{*-} K^{+} \ell^{+} \nu_{\ell}$ $\mathcal{D}_{v_{\ell}}^{*-} \nu_{\ell}$	_		(2.9 (7.80 (3.9 (2.3	$egin{array}{ccc} \pm & 1.9 \ \pm & 0.27 \ \pm & 0.5 \ \pm & 0.8 \end{array}$) $\times 10^{-4}$) $\times 10^{-5}$) $\times 10^{-5}$) $\times 10^{-5}$		2185 2638 2611 2553
		$\pi^+ \ell^+ \ell^-$ $\pi^+ \circ^+ \circ^-$	B1	<	4.9 8 0	$\times 10^{-8}$	CL=90%	2638	` (1.19	± 0.09	$) \times 10^{-4}$		2582
Dowarf	B ⁺ DECAY MODES	$\pi^+ \mu^+ \mu^-$	BI R1	< (0.U	$\times 10^{-8}$ + 0.22) $\times 10^{-8}$	CL=90%	2038	(1.58	\pm 0.11) $\times 10^{-4}$		2583
UVVEII	c	$\pi^+ \nu \overline{\nu}$	B1	<	1.4	\pm 0.22) \times 10 \times 10 ⁻⁵	CL=90%	2638	(5.8	$+ 2.6 \\ - 2.3$	$) imes 10^{-6}$		2467
	$\rho + \nu_{\rho} X$	$K^+ \ell^+ \ell^-$	B1	[///] (4.51	\pm 0.23 $)\times 10^{-7}$	S=1.1	2617	8.5		imes 10 ⁻⁶	CL=90%	2446
▶ Tho	$e^+ \nu_e X_e$	$K^+ e^+ e^-$	B1	(5.5	\pm 0.7) $\times 10^{-7}$		2617	(82	+ 4.0) ~ 10-6		2467
P ine	$D\ell^+ \nu_\ell X$	$K^+ \mu^+ \mu^-$	B1	(4.41	\pm 0.22) \times 10 ⁻⁷	S=1.2	2612	0.2	- 3.3) × 10	e , e , (2407
to n	$\overline{D}^0 \ell^+ \overset{c}{\nu}_{\ell}$	${\it K^+\mu^+\mu^-}$ nonreso-	B1	(4.37	\pm 0.27) $ imes$ 10 ⁻⁷		2612	9.8	-07	$\times 10^{-7}$	CL=90%	2640
	$\overline{D}{}^0 au^+ \overset{\sim}{ u_ au}$	nant $\kappa^+ \tau^+ \tau^-$	R1	/	2.25	× 10 [−] 3	CI	1687	01×00	to I	1.07×10^{-4}	°CL=90%	2639
	$\overline{D}^*(2007)^0 \ell^+ \nu_\ell$	$K^+ \overline{\nu} \nu$	B1 B1	<	2.25	$\times 10^{-5}$	CL = 90%	2617	(1.09	± 0.24	+) × 10 +	S=1.2	2341
≫Fyn	$\overline{D}^*(2007)^0 \tau^+ \nu_{\tau}$	$\rho^+ \nu \overline{\nu}$	B1	<	3.0	$\times 10^{-5}$	CL=90%	2583	3.0		× 10 °	CL = 90%	2040
	$D^-\pi^+\ell^+ u_\ell$	$K^*(892)^+ \ell^+ \ell^-$	B1	[///] (1.01	\pm 0.11) × 10 ⁻⁶	S=1.1	2564	4.5		$\times 10^{-6}$	CL = 90%	2040
LHC	$\overline{D}^*_0(2420)^0\ell^+ u_\ell$,	$K^{*}(892)^{+}e^{+}e^{-}$	B1	(1.55	$+ 0.40 \times 10^{-6}$		2564	1.6		$\times 10^{-8}$	CL = 95%	2634
	$D^{-}\pi^{+}$	$K^{*}(902) + \mu + \mu -$	D1	(0.6	-0.31 $/ \times 10^{-7}$		2560	1.0		× 10	CL=3370	2004
	$D_2^*(2460)^0 \ell^+ \nu_\ell$,	$K^{*}(892)^{+}\mu^{-}\mu^{-}$	BI R1	(9.0 4.0	± 1.0) × 10 $\times 10^{-5}$	CI 00%	2500	e mode	IS			
	$D^{(*)} = e^{-\pi^+}$	$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(4.3	$(+ 0.4) \times 10^{-7}$	CL—9070	2593	(8.6	± 0.7)%		_
▶Cha	$D^{(\gamma)} \Pi \pi \ell^+ \nu_\ell (\Pi \geq 1)$ $D^{*-} \pi^+ \ell^+ \mu_\ell$	$\mathcal{A}\mathbf{K}^+ \mathcal{A}^+ \mathcal{A}^-$	D1	(7.0	$+ 2.1 \rightarrow 10^{-8}$		2400	(79)	± 4 ± 05)%		_
	$\frac{D}{D} (2420)^{0} \ell^{+} \mu_{\ell}$	$\varphi \kappa \cdot \mu \cdot \mu$	ы	(7.9	- 1.7) × 10 °		2490	$\begin{pmatrix} 2.5 \\ 0.0 \end{pmatrix}$	± 0.3 ± 1.2) %		_
	$D_1(2420) \ \ell \ \nu_{\ell}$	$\Lambda p \nu \overline{\nu}$		<	3.0	$\times 10^{-5}$	CL=90%	2430	(9.9	± 1.2 ± 1.4) /0		
l on	$\overline{D}'_{4}(2430)^{0}\ell^{+}\nu_{0}$	$\pi \cdot e \cdot \mu$ $\pi^+ e^- \mu^+$		<	6.4	$\times 10^{-3}$	CL=90%	2637	(7.9	-1.3)%		_
LOII	$D^{*-}\pi^+$	$\pi^+ e^{\pm} \mu^{\mp}$		< _	0.4 1 7	$\times 10^{-7}$	CL = 90%	2037	(1.10	+ 0.40	3)%		_
	$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}$	πe^{μ} $\pi^{+}e^{+}\tau^{-}$	LF	<	7.4	$\times 10^{-5}$	CL=90%	2338	(0.1	+ 0.9			
	$\overline{D}^{*0}_{2} \rightarrow D^{*-}$	$\pi^+ e^- \tau^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	2338	(2.1	- 0.6) %		-
PHU	$\overline{D}{}^0 \pi^+ \pi^- \ell^+ \nu_{\ell}$	$\pi^+ e^{\pm} au^{\mp}$	LF	<	7.5	imes 10 ⁻⁵	CL=90%	2338	(2.8	+ 1.1) %		_
	$\overline{D}^{*0}\pi^+\pi^-\ell^+\nu_\ell$	$\pi^+ \mu^+ au^-$	LF	<	6.2	imes 10 ⁻⁵	CL=90%	2333	(97	+ 4) %		_
	$D^{(*)-}K^+\ell^+\nu_{\ell}$	$\pi^+\mu^- au^+$	LF	<	4.5	$\times 10^{-5}$	CL=90%	2333	() //		
	$D_s = K + c + c$	$\pi^+ \mu^\pm \tau^\mp$	LF	<	7.2	$\times 10^{-5}$	CL=90%	2333					
	$D_s K^+ \ell^+ \nu_\ell$	$K^+ e^+ \mu^-$	LF	<	7.0	$\times 10^{-9}$	CL=90%	2615					
		K'e μ '	LF	<	6.4	× 10 ⁻⁹	CL=90%	2615					
	HTTP://PDG.LBL.GO	V Page 73	Crea	ated: 8/2	28/20	20 18:31							

Powerf $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	leso	n decays			D_s^{*-} $\pi^0 \ell^+ \nu_\ell$ $\eta \ell^+ \nu_\ell$	$K^+\ell^+\nu_\ell$		(2.9 ± 1.9) (7.80 ± 0.2) (3.9 ± 0.9) (2.3 ± 0.8)	$\begin{array}{l} 9 \\ 9 \end{array} \times 10^{-4} \\ 27 \end{array} \times 10^{-5} \\ 5 \\ 9 \times 10^{-5} \\ 8 \end{array} \times 10^{-5} \end{array}$	2185 2638 2611 2553
Powerfine $\frac{\pi^{+}\mu^{+}\mu^{-}}{\mu^{+}\nu_{k}}$ Bi $(175 \pm 0.22) \times 10^{-8}$ 2634 $\ell^{+}\nu_{k}X$ $e^{+}e^{+}e^{-}$ BI $(4.51 \pm 0.23) \times 10^{-7}$ 2617 $(4.31 \pm 0.22) \times 10^{-7}$ 2617 $(4.31 \pm 0.22) \times 10^{-7}$ 2617 $(109 \pm 0.24) \times 10^{-6}$ CL=90% $(109 \pm 0.24) \times 10^{-6}$ CL=90% $(100 \pm 0.24) \times 10^{-6}$		B+ DECAY MODES	$ \begin{array}{c} \pi^+ \ell^+ \ell^- \\ \pi^+ e^+ e^- \end{array} $	B1 B1	< 4.9 < 8.0	$\times 10^{-6}$ CL=90% $\times 10^{-8}$ CL=90%	2638 2638	(1.19 ± 0.0) (1.58 ± 0.1)	09) $ imes 10^{-4}$ 11) $ imes 10^{-4}$	2582 2583
$ \begin{aligned} & \text{Pring}_{t \to \mu_{x} X_{x}} \\ & e^{\pm} \nu_{\mu_{x} X_{x}} \\ & e^{\pm} \nu_{\mu_{x} X_{x}} \\ & D^{\pm} (2007)^{0} \ell^{\pm} \nu_{\mu_{x}} \\ & D^{\pm} \pi^{\pm} \ell^{+} \nu_{\mu_{x}} \\ & D^{\pm} 2(2400)^{0} \ell^{\pm} \nu_{\mu_{x}} \\ & D^{\pm} \pi^{\pm} \ell^{+} \mu^{-} \\ & D^{\pm} 2(2400)^{0} \ell^{\pm} \nu_{\mu} \\ & D^{\pm} 2(2400)^{0} \ell^{\pm}$	Powert	c	$\begin{array}{c} \pi^+ \mu^+ \mu^- \\ \pi^+ \nu \overline{\nu} \end{array}$	B1 B1	(1.75 ± < 1.4	0.22) $\times 10^{-8}$ $\times 10^{-5}$ CL=90%	2634 2638	(5.8 + 2.6)	$(53) \times 10^{-6}$	2467
$ \begin{aligned} & \text{The} \\ & e^{\pm}\nu_{e}X_{c} \\ & D^{\pm}\nu_{\mu}X_{c} \\ & D^{\pm}\nu_{\mu}X_{c} \\ & \overline{D^{0}}\ell^{+}\nu_{\mu}X_{c} \\ & \overline{D^{0}}\ell^{+}\nu^{+}\mu^{+}X_{c} \\ & \overline{D^{0}}\ell^{+}\nu^{+}\mu^{+}X_{c} \\ & \overline{D^{0}}\ell^{+}\mu^{+}\mu^{+}X_{c} \\ & \overline{D^{0}}\ell^{+}\mu^{+}\chi^{+}X_{c} \\ & \overline{D^{0}}\ell^{+}\mu^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}X_{c} \\ & \overline{D^{0}}\ell^{+}\mu^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}X_{c} \\ & \overline{D^{0}}\ell^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi^{+}\chi$		$\ell^+ \nu_{\ell} X$	$K^+\ell^+\ell^-$	B1 [///]	(4.51 \pm	0.23) $\times 10^{-7}$ S=1.1	2617	8.5	$\times 10^{-6}$ CL=90%	2446
to n $ \begin{array}{c} D_{1}^{2} \ell_{\nu} \ell_{\nu} \\ \overline{D}^{0} \ell_{\nu} \ell_{\nu} \\ \overline{D}^{0$	▶The	$e^+ \nu_e X_c$	$K^{+}e^{+}e^{-}$ $K^{+}u^{+}u^{-}$	B1 B1	$(5.5 \pm (4.41 \pm$	$(0.7) \times 10^{-7}$	2617 2612	(8.2 + 4.0)	$^{0}_{3}$) $ imes$ 10 ⁻⁶	2467
$ \begin{array}{c} \text{Lor} & D_{2}^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{0} (2007)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{+} (2007)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{+} (2007)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{+} (2007)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{-} \pi^{+} \ell^{+} \nu_{\ell} \\ \overline{D}^{-} \pi^{+} \ell^{+} \nu_{\ell} \\ \overline{D}^{-} \pi^{+} \ell^{+} \nu_{\ell} \\ \overline{D}^{-} (2420)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{-} (2420)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{-} (2420)^{0} \ell^{+} \nu_{\ell} \\ \overline{D}^{+} (2400)^{0} \ell^{+}$	+ o . o	$\frac{D\ell^+\nu_\ell X}{\overline{D}0} + $	$K^{+}\mu^{+}\mu^{-}$ nonreso-	B1 B1	(4.37 ±	$(0.22) \times 10^{-7}$	2612	9.8	$ imes 10^{-7}$ CL=90%	2640
$ \begin{aligned} & Exp \\ Exp \\ LHC \\ & D_{0}^{+}(2007)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{0}^{+}(2007)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{0}^{-}\pi^{+}\ell^{+}\nu_{\ell} \\ & \overline{D}_{1}^{-}(2420)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{2}^{-}(2460)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{2}^{$	ιο η	$\frac{D^{\circ} \ell + \nu_{\ell}}{D^{\circ} \sigma^{+} \mu}$	nant		(, , , , , , , , , , , , , , , , , , , ,		$90 imes 10^{-07}$ to	$1.07 \times 10^{-06} CL = 90\%$	2639
$ \begin{aligned} & \text{Exp} \\ \text{LHC} \\ & \overset{D}{D}_{0}^{+}(2007)^{0}\tau^{+}\nu_{\tau} \\ & \overset{D}{D}_{0}^{+}(2420)^{0}\ell^{+}\nu_{\ell}, \\ & \overset{D}{D}_{0}^{-}\tau^{+}\ell^{+}\nu_{\ell}, \\ & \overset{D}{D}_{0}^{-}\tau^{+}\ell^{+}\nu_{\ell}, \\ & \overset{D}{D}_{0}^{-}\tau^{+}\ell^{+}\nu_{\ell}, \\ & \overset{D}{D}_{0}^{-}\tau^{+}\ell^{+}\nu_{\ell}, \\ & \overset{D}{D}_{1}^{+}(2400)^{0}\ell^{+}\nu_{\ell}, \\ & \overset{T}{D}_{2}^{+}(2460)^{0}\ell^{+}\nu_{\ell}, \\ & \overset{T}{D}_{2}^{+}(2460)^{0}\ell^{+}\nu$		$\frac{D^* \gamma \cdot \nu_{\tau}}{D^* (2007)^0 \ell^+ \mu_{\ell}}$	$K^+ \tau^+ \tau^-$	R1	< 2.25	× 10 ⁻³ CI -90%	1687	(1.09 ± 0.2)	24) $\times 10^{-4}$ S=1.	2341
$ \begin{aligned} & Exp \\ LHC \\ & LHC \\ & D_{n}^{-\pi+\ell+\nu_{\ell}} \\ & D_{2}^{(2420)} D_{\ell+\nu_{\ell}}, \\ & D_{2}^{-\pi+\ell+\nu_{\ell}} \\ & D_{2}^{-\pi+\ell+\nu_{\ell}} \\ & D_{2}^{-\pi+\ell+\nu_{\ell}} \\ & D_{1}^{+n} A_{1}^{+\nu_{\ell}} In agreement with the SM \\ & All in agreement with the SM \\ & K^{*}(R) \\ & Lon \\ & D_{n}^{-\pi+\ell+\nu_{\ell}} \\ & D_{n}^{+n+\ell+\nu_{\ell}} \\ & D_{1}^{2(240)} D_{\ell+\nu_{\ell}}, \\ & D_{n}^{+n} D_{n+\ell+\nu_{\ell}}^{+n} \\ & D_{1}^{2(240)} D_{\ell+\nu_{\ell}}, \\ & D_{n}^{+n} D_{n+\ell+\nu_{\ell}}^{+n} \\ & D_{n}^{+n} D_{n+\ell+\nu}^{+n} \\ & D_{n+\ell+\nu}^{+n} \\ $		$\frac{D}{D^*}(2007)^0 \tau^+ \nu$	$K^+ \overline{\nu} \nu$	B1	< 1.6	$\times 10^{-5}$ CL=90%	2617	3.0	$\times 10^{-6}$ CL=90%	2640
LHC $ \begin{bmatrix} Triangle (2420)^{0} \ell^{+} \nu_{\ell}, \\ Triangle (2420)^{0} \ell^{+} \nu_{\ell}, \\ Triangle (2420)^{0} \ell^{+} \nu_{\ell}, \\ D^{-} \pi^{+} \ell^{+} \nu_{\ell}, \\ D^{+} n \pi^{+} \ell^{+} \mu^{-}, \\ D^{+} n \pi^{+} \ell^{+} \mu^{-}, \\ D^{+} n \pi^{+} \ell^{+} \ell^{+} \nu_{\ell}, \\ D^{+} n \pi^{+} \ell^{+} \nu_{\ell}, \\ D^{+} n \pi^{+} \ell^{+} \ell^{+} \ell^{+} \mu^{-}, \\ D^{+} n \pi^{+} \ell^{+} \ell^{+} \ell^{+} \mu^{-}, \\ D^{+} n \pi^{+} \ell^{+} \ell^{+} \ell^{+} \mu^{-}, \\ D^{+} n \pi^{+} \ell^{+} \ell^{+$	PEX P	$D^-\pi^+\ell^+\nu_\ell$	$\kappa^{+}(89) + \ell^{+} \ell^{-} Anc$	l hun	dred	s more	2583	4.3	$\times 10^{-6}$ CL=90%	2640
$\mathbb{E} \operatorname{Her} = \begin{bmatrix} D - \pi^{+} & D - \pi^{+} \\ \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \\ D^{-}\pi^{+} & D^{-}\pi^{+} \\ D^{+}n\pi\ell^{+}\nu_{\ell}(n \geq 1) \\ D^{+}n\pi\ell^{+}\nu_{\ell}(n \geq 1) \\ D^{+}n\pi\ell^{+}\nu_{\ell}(n \geq 1) \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell}, \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell}, \\ \overline{D}_{1}(2430)^{0}\ell^{+}\nu_{\ell}, \\ \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \\ \overline$	IHC	$\overline{D}_{0}^{*}(2420)^{0}\ell^{+}\nu_{\ell},$	$K^*(00)$			0.40 (-6)	2504	3.4	$\times 10^{-6}$ CL=90%	2639
$ \begin{split} & \widehat{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \\ & D_{-\pi^{+}}^{-}\ell^{+}\nu_{\ell}(n \geq 2) \\ D^{*}_{-\pi^{+}}\ell^{+}\nu_{\ell}(n \geq 2) \\ & \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{1}(2430)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{1}^{*}(2430)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \\ & \overline{D}_{2}^{*}(2460)^{0}\ell$		$D^-\pi^+$	All in a	greer	nent	with the S	SM	1.6	$\times 10^{-6}$ CL=95%	2634
$ \begin{aligned} & \sum_{n=1}^{\infty} C_{n} \\ & \sum_{n=1}^{\infty} C_{$		$\overline{D}_2^*(2460)^0 \ell^+ u_\ell$,	$K^{*}(92) \rightarrow \mu$		9.6 ¥	1.0^{-1} $\times 10^{-5}$ $ch = 00\%$	2560	modes		
$ \begin{aligned} & & \text{Cha} \\ & & \text{D}^{(s)} \pi \pi \ell^{s} \nu_{\ell} (n \geq D^{s} \pi^{s} \ell^{s} + \ell^{s} \nu_{\ell}} \\ & & & \frac{1}{D_{1}(2420)^{0}} \ell^{s} \nu_{\ell} \\ & & \frac{1}{D_{1}(2420)^{0}} \ell^{s} \nu_{\ell} \\ & & \frac{1}{D_{1}(2430)^{0}} \ell^{s} \nu_{\ell} \\ & & \frac{1}{D_{2}(2460)^{0}} \ell^{s} \nu_{\ell} \\ & & \frac{1}{D_{2}(2460)^{0}} \ell^{s} \nu_{\ell} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \\ & & \frac{1}{D_{2}^{0}(2^{s} \circ D^{s})} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{\pi^{s}} e^{-\pi} \ell^{s} \\ & & \frac{1}{D_{2}^{0} \circ D^{s}} \frac{1}{D_{2}^{0} \circ D^{s}}$		$D^-\pi^+$	$K^{+}(89) = 00$	BI R1	< 4.0	$\times 10^{\circ} \text{ CL}=90\%$	2504	8.6 ± 0.7	7)%	_
$ \begin{array}{c} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty$	▶Cha	$D^{(*)}$ n $\pi \ell^+ \nu_\ell$ (n ≥ 1		DI	(4.3 ⊥	0.4 $\mathbf{J} \times 10$	2095	79 ± 4) %	_
$ \sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$	dda.	n = - + n = -				2.1 $10-8$	0.400		-) 0/	
$ \begin{aligned} & \qquad \qquad$		$D^{*-}\pi^+\ell^+\nu_\ell$	$\phi K^+ \mu$	D1	(7 0 +	2.1 1.7 F	0.400	2.5 ± 0.5	5)%	-
		$D^{*-} \pi^{+} \ell^{+} \nu_{\ell} = \overline{D}_{1} (2420)^{0} \ell^{+} \nu_{\ell}$	$\phi K^{+} \mu$ $\overline{\Lambda} p \nu \overline{\nu}$ $+ + -$		< 3.0	$\times 10^{-5}$ CL=90%	2430	2.5 ± 0.5 (9.9 ± 1.2	5)% 2)%	_
$ \boxed{\begin{array}{c} \overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}} \\ \overline{D}_{2}^{*0} \rightarrow D^{*-} \\ $	⊳lon	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \end{array} $	$ \phi K^{+} \mu^{-} \\ \overline{\Lambda} p \nu \overline{\nu} \\ \pi^{+} e^{+} \mu^{-} \\ \pi^{+} e^{-} \mu^{+} $	LF	< 3.0 < 6.4	$\times 10^{-5}$ CL=90% $\times 10^{-3}$ CL=90% $\times 10^{-3}$ CL=90%	2430 2637 2627	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 3)%	_ _ _
$\blacksquare Hur = \begin{bmatrix} \overline{D}_{2}^{*0} \rightarrow D^{*} \\ \overline{D}_{2}^{0} + \pi^{-} \ell^{+} \nu_{\ell} \\ \overline{D}_{0}^{0} \pi^{+} \pi^{-} \ell^{+} \nu_{\ell} \\ \overline{D}_{s}^{*0} \pi^{+} \pi^{-} \ell^{+} \nu_{\ell} \\ \overline{D}_{s}^{*0} \pi^{+} \pi^{-} \ell^{+} \nu_{\ell} \\ D_{s}^{(*)-} K^{+} \ell^{+} \nu_{\ell} \\ D_{s}^{(*)-} K^{+} \ell^{+} \nu_{\ell} \\ D_{s}^{(*)-} K^{+} \ell^{+} \nu_{\ell} \\ HTTP: //PDG.LBL.GOV \\ Page 73 \\ \hline HTTP: //PDG.LBL.GOV \\ Page 73 \\ \hline LF < 2.0 \\ \times 10^{-5} CL = 90\% 2338 \\ \times 10^{-5} CL = 90\% 2338 \\ \times 10^{-5} CL = 90\% 2333 \\ \times 10^{-5} CL = 90\% 2333 \\ \times 10^{-5} CL = 90\% 2333 \\ K^{+} e^{+} \mu^{-} \pi^{+} \\ LF < 7.2 \\ \times 10^{-5} CL = 90\% 2333 \\ \times 10^{-9} CL = 90\% 2615 \\ K^{+} e^{-} \mu^{+} \\ LF < 6.4 \\ \times 10^{-9} CL = 90\% 2615 \\ \hline HTTP: //PDG.LBL.GOV \\ Page 73 \\ \hline HTTP: //PDG.LBL.GOV \\ $	▶Lon	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ D^{*-}\pi^{+} \end{array} $	$ \phi K^{+} \mu = \frac{1}{\sqrt{\rho}} $ $ \overline{\lambda} \rho \nu \overline{\nu} $ $ \pi^{+} e^{+} \mu^{-} $ $ \pi^{+} e^{-} \mu^{+} $ $ \pi^{+} e^{\pm} \mu^{\mp} $	LF LF LF	< 3.0	$ \begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \end{array} $	2430 2637 2637 2637	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 43)% 40)%	_ _ _
$\frac{\overline{D}^{0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}}{\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}} \begin{bmatrix} \pi^{+}e^{\pm}\tau^{\mp} & LF < 7.5 & \times 10^{-5} \text{ CL}=90\% 2338 \\ \pi^{+}\mu^{+}\tau^{-} & LF < 6.2 & \times 10^{-5} \text{ CL}=90\% 2333 \\ \pi^{+}\mu^{-}\tau^{+} & LF < 4.5 & \times 10^{-5} \text{ CL}=90\% 2333 \\ \pi^{+}\mu^{\pm}\tau^{\mp} & LF < 7.2 & \times 10^{-5} \text{ CL}=90\% 2333 \\ \pi^{+}\mu^{\pm}\tau^{\mp} & LF < 7.2 & \times 10^{-5} \text{ CL}=90\% 2333 \\ K^{+}e^{+}\mu^{+}\tau^{-} & LF < 7.0 & \times 10^{-9} \text{ CL}=90\% 2615 \\ K^{+}e^{-}\mu^{+} & LF < 6.4 & \times 10^{-9} \text{ CL}=90\% 2615 \\ K^{+}e^{-}\mu^{+} & LF < 6.4 & \times 10^{-9} \text{ CL}=90\% 2615 \\ HTTP://PDG.LBL.GOV & Page 73 & Created: 8/28/2020 18:31 \end{bmatrix}$	▶Lon	$egin{array}{cccc} D^{*-}\pi^+\ell^+ u_\ell\ \overline{D}_1(2420)^0\ell^+ u_\ell\ D^{*-}\pi^+\ \overline{D}_1'(2430)^0\ell^+ u_\ell\ D^{*-}\pi^+\ \overline{D}_2^*(2460)^0\ell^+ u_\ell \end{array}$	$ \phi K^{+} \mu = \frac{1}{\sqrt{\rho}} $ $ \pi^{+} e^{+} \mu^{-} $ $ \pi^{+} e^{-} \mu^{+} $ $ \pi^{+} e^{\pm} \mu^{\mp} $ $ \pi^{+} e^{\pm} \tau^{-} $	LF LF LF LF	 < 3.0 < 6.4 < 6.4 < 1.7 < 7.4 	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \end{array}$	2430 2637 2637 2637 2637 2338	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 3)% 32)% 32)%	_ _ _
$\frac{\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}}{D_{s}^{(*)-}K^{+}\ell^{+}\nu_{\ell}} \begin{bmatrix} \pi^{+}\mu^{+}\tau^{-} & LF < 6.2 & \times 10^{-5} \text{ CL}=90\% 2333 \\ \pi^{+}\mu^{-}\tau^{+} & LF < 4.5 & \times 10^{-5} \text{ CL}=90\% 2333 \\ \pi^{+}\mu^{\pm}\tau^{\mp} & LF < 7.2 & \times 10^{-5} \text{ CL}=90\% 2333 \\ K^{+}e^{+}\mu^{-} & LF < 7.0 & \times 10^{-9} \text{ CL}=90\% 2615 \\ K^{+}e^{-}\mu^{+} & LF < 6.4 & \times 10^{-9} \text{ CL}=90\% 2615 \end{bmatrix}$ $HTTP://PDG.LBL.GOV \qquad Page 73 \qquad Created: 8/28/2020 18:31$	▶Lon	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \phi K^{+} \mu = \frac{1}{\sqrt{\rho}} $ $ \pi^{+} e^{+} \mu^{-} $ $ \pi^{+} e^{-} \mu^{+} $ $ \pi^{+} e^{\pm} \mu^{\mp} $ $ \pi^{+} e^{\pm} \tau^{-} $ $ \pi^{+} e^{-} \tau^{+} $	LF LF LF LF LF	 3.0 6.4 6.4 1.7 7.4 2.0 	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \end{array}$	2430 2637 2637 2637 2338 2338	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 3)% 32)% 32)%	_ _ _ _
$D_{s}^{(*)-} \kappa^{+} \ell^{+} \nu_{\ell}$ $D_{s}^{-} \kappa^{+} \ell^{+} \nu_{\ell}$ $D_{s}^{-} \kappa^{+} \ell^{+} \nu_{\ell}$ $\frac{\pi^{+} \mu^{-} \tau^{+}}{\pi^{+} \mu^{\pm} \tau^{\mp}}$ $LF < 4.5 \times 10^{-5} \text{ CL}=90\% 2333$ $K^{+} \ell^{+} \mu^{\pm} \tau^{\mp}$ $LF < 7.2 \times 10^{-5} \text{ CL}=90\% 2615$ $K^{+} \ell^{-} \mu^{+}$ $LF < 6.4 \times 10^{-9} \text{ CL}=90\% 2615$ $K^{+} \ell^{-} \mu^{+}$ $LF < 6.4 \times 10^{-9} \text{ CL}=90\% 2615$ $K^{+} \ell^{-} \mu^{+}$ $LF < 6.4 \times 10^{-9} \text{ CL}=90\% 2615$ $K^{+} \ell^{-} \mu^{+}$ $LF < 6.4 \times 10^{-9} \text{ CL}=90\% 2615$	▶Lon ▶Hur	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{2}'(2460)^{0}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0} \rightarrow D^{*-} \\ \overline{D}^{0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \end{array} $	$\phi K^{+} \mu$ $\overline{\lambda} p \nu \overline{\nu}$ $\pi^{+} e^{+} \mu^{-}$ $\pi^{+} e^{-} \mu^{+}$ $\pi^{+} e^{\pm} \mu^{\mp}$ $\pi^{+} e^{\pm} \tau^{-}$ $\pi^{+} e^{-} \tau^{+}$ $\pi^{+} e^{\pm} \tau^{\mp}$	LF LF LF LF LF LF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \end{array}$	2430 2637 2637 2637 2338 2338 2338	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 3)% 32)% 5)% 5)%	_ _ _ _
$D_{s}^{-}K^{+}\ell^{+}\nu_{\ell}$ $\frac{\pi^{+}\mu^{+}\tau^{+}}{K^{+}e^{+}\mu^{-}}$ $LF < 7.2 \times 10^{-9} \text{ CL}=90\% 2333$ $K^{+}e^{+}\mu^{-}$ $LF < 7.0 \times 10^{-9} \text{ CL}=90\% 2615$ $K^{+}e^{-}\mu^{+}$ $LF < 6.4 \times 10^{-9} \text{ CL}=90\% 2615$ $K^{+}e^{-}\mu^{+}$ $LF < 6.4 \times 10^{-9} \text{ CL}=90\% 2615$ $K^{+}e^{-}\mu^{+}$ $LF < 8/28/2020 18:31$	▶Lon ▶Hur	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{2}'(2460)^{0}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0} \rightarrow D^{*-} \\ \overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \end{array} $	$\phi K^{+} \mu$ $\overline{\Lambda} p \nu \overline{\nu}$ $\pi^{+} e^{+} \mu^{-}$ $\pi^{+} e^{-} \mu^{+}$ $\pi^{+} e^{\pm} \mu^{\mp}$ $\pi^{+} e^{\pm} \tau^{-}$ $\pi^{+} e^{-} \tau^{+}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$	LF LF LF LF LF LF LF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \end{array}$	2430 2637 2637 2637 2338 2338 2338 2338	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 3)% 32)% 5)% 5)% 1)%)%	
$\frac{D_{s} R c}{K^{+} e^{-} \mu^{+}} = \frac{LF}{LF} < \frac{10}{6.4} \times \frac{10^{-9} CL}{90\%} = \frac{90\%}{2615}$ $\frac{10^{-9} CL}{90\%} = \frac{90\%}{2615}$ $\frac{10^{-9} CL}{90\%} = \frac{10^{-9} CL}{90\%} = $	►Lon	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{2}'(2460)^{0}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0} \rightarrow D^{*-} \\ \overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ D^{(*)-}\kappa^{+}\ell^{+}\nu_{\ell} \end{array} $	$\phi K^{+} \mu$ $\overline{\lambda} p \nu \overline{\nu}$ $\pi^{+} e^{+} \mu^{-}$ $\pi^{+} e^{-} \mu^{+}$ $\pi^{+} e^{\pm} \mu^{\mp}$ $\pi^{+} e^{\pm} \tau^{-}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} \mu^{+} \tau^{-}$ $\pi^{+} \mu^{-} \tau^{+}$ $+ + \pm$	LF LF LF LF LF LF LF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\$	2430 2637 2637 2637 2338 2338 2338 2338 2333 2333	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 43)% 40)% 40)% 5)% 5)%	
HTTP://PDG.LBL.GOV Page 73 Created: 8/28/2020 18:31	►Lon	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{2}'(2460)^{0}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0} \rightarrow D^{*-} \\ \overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ \overline{D}_{3}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ D^{(*)-}\kappa^{+}\ell^{+}\nu_{\ell} \\ D^{-}\kappa^{+}\ell^{+}\nu_{\ell} \end{array} $	$ \begin{array}{c} \phi K^{+} \mu \\ \overline{\lambda} p \nu \overline{\nu} \\ \pi^{+} e^{+} \mu^{-} \\ \pi^{+} e^{-} \mu^{+} \\ \pi^{+} e^{\pm} \mu^{\mp} \\ \pi^{+} e^{\pm} \tau^{-} \\ \pi^{+} e^{\pm} \tau^{\mp} \\ \pi^{+} e^{\pm} \tau^{\mp} \\ \pi^{+} \mu^{+} \tau^{-} \\ \pi^{+} \mu^{\pm} \tau^{\mp} \\ \pi^{+} \mu^{\pm} \tau^{\mp} \\ \kappa^{+} e^{\pm} u^{-} \end{array} $	LF LF LF LF LF LF LF LF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \end{array}$	2430 2637 2637 2637 2338 2338 2338 2333 2333 2333 2333	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 43)% 40)% 5)% 5)% 1)%	
HTTP://PDG.LBL.GOV Page 73 Created: 8/28/2020 18:31	Lon	$ \begin{array}{c} D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \\ \overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+} \\ \overline{D}_{2}'(2460)^{0}\ell^{+}\nu_{\ell} \\ \overline{D}_{2}^{*0} \rightarrow D^{*-} \\ \overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ \overline{D}_{s}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ D^{(*)-}_{s}K^{+}\ell^{+}\nu_{\ell} \\ D^{-}_{s}K^{+}\ell^{+}\nu_{\ell} \end{array} $	$\phi K^{+} \mu$ $\overline{\lambda} p \nu \overline{\nu}$ $\pi^{+} e^{+} \mu^{-}$ $\pi^{+} e^{-} \mu^{+}$ $\pi^{+} e^{\pm} \mu^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} \mu^{+} \tau^{-}$ $\pi^{+} \mu^{-} \tau^{+}$ $\pi^{+} \mu^{\pm} \tau^{\mp}$ $K^{+} e^{+} \mu^{-}$ $K^{+} e^{-} \mu^{+}$	LF LF LF LF LF LF LF LF LF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \times 10^{-9} \text{CL}=90\% \\ \times 10^{-9} \text{CL}=90\% \end{array}$	2430 2637 2637 2637 2338 2338 2338 2333 2333 2333 2333 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5)% 2)% 43)% 432)% 5)% 5)% 1)%	
	Lon Hur	$D^{*-}\pi^{+}\ell^{+}\nu_{\ell}$ $\overline{D}_{1}(2420)^{0}\ell^{+}\nu_{\ell}$ $D^{*-}\pi^{+}$ $\overline{D}_{1}'(2430)^{0}\ell^{+}\nu_{\ell}$ $D^{*-}\pi^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}$ $\overline{D}_{2}^{*0} \rightarrow D^{*-}$ $\overline{D}_{2}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$ $D^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$ $D^{(*)-}_{s}K^{+}\ell^{+}\nu_{\ell}$ $D^{-}_{s}K^{+}\ell^{+}\nu_{\ell}$	$\phi K^{+} \mu$ $\overline{\lambda} p \nu \overline{\nu}$ $\pi^{+} e^{+} \mu^{-}$ $\pi^{+} e^{-} \mu^{+}$ $\pi^{+} e^{\pm} \mu^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} e^{\pm} \tau^{\mp}$ $\pi^{+} \mu^{\pm} \tau^{\mp}$ $\pi^{+} \mu^{\pm} \tau^{\mp}$ $K^{+} e^{+} \mu^{-}$ $K^{+} e^{-} \mu^{+}$	LF LF LF LF LF LF LF LF LF LF	$< 3.0 \\ < 6.4 \\ < 6.4 \\ < 1.7 \\ < 7.4 \\ < 2.0 \\ < 7.5 \\ < 6.2 \\ < 4.5 \\ < 7.2 \\ < 7.0 \\ < 6.4 $	$\begin{array}{c} \times 10^{-5} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-3} \text{CL}=90\% \\ \times 10^{-7} \text{CL}=90\% \\ \times 10^{-5} \text{CL}=90\% \\ \times 10^{-9} \text{CL}=90\% \\ \times 10^{-9} \text{CL}=90\% \end{array}$	2430 2637 2637 2637 2338 2338 2338 2333 2333 2333 2333 2615 2615	$\begin{array}{c} 2.5 \pm 0.9 \\ (9.9 \pm 1.2 \\ (7.9 \pm 1.4 \\ -1.3 \\ (1.10 \pm 0.3 \\ (1.10 \pm 0.3 \\ -0.3 \\ (2.1 \pm 0.4 \\ -0.6 \\ (2.8 \pm 1.1 \\ -0.9 \\ (97 \pm 4 \\ \end{array}$	5)% 2)% 43)% 432)% 5)% 5)%)%	

าeso	n decays				D $\pi^{0}\ell^{1}$ $\eta\ell^{+}$	$ \overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}{\overset{s}$			(2.9 (7.80 (3.9 (2.3	± 1.9 ± 0.27 ± 0.5 ± 0.8) $\times 10^{-4}$) $\times 10^{-5}$) $\times 10^{-5}$) $\times 10^{-5}$		2185 2638 2611 2553
		$\pi^{+}\ell^{+}\ell^{-}$ $\pi^{+}e^{+}e^{-}$	B1 B1	< <	4.9 8.0	$^{ imes}$ 10 ⁻⁸ $^{ imes}$ 10 ⁻⁸ $^{ imes}$	CL=90%	2638 2638	(1.19	\pm 0.09	$) \times 10^{-4}$		2582
Powerf	B ' DECAT MODES	$\pi^+ \mu^+ \mu^-$	B1	(1.75	\pm 0.22) \times 10 ⁻⁸	3	2634	(1.58 (E.9	\pm 0.11 + 2.6	$) \times 10^{-4}$	i i	2583
		$\begin{array}{c} \pi^+ \nu \overline{\nu} \\ \kappa^+ \ell^+ \ell^- \end{array}$	B1 B1	< [///] (1.4 4 51	$\times 10^{-5}$ + 0.23) $\times 10^{-7}$	CL=90%	2638 2617	(5.8 ° E	- 2.3	$) \times 10^{-6}$	CI	2407
	$\ell^+ \nu_\ell X$	$K^+ e^+ e^-$	B1 B1	[""] (4.51 5.5	\pm 0.23) × 10 \pm 0.7) × 10 ⁻⁷	, 5—1.1	2617	0.5	+ 4.0	× 10 °	CL=90%	2440
Pine	$D\ell^+ \nu_\ell X$	$K^+ \mu^+ \mu^-$	B1	(4.41	\pm 0.22) \times 10 ⁻⁷	S=1.2	2612	(8.2	- 3.3) × 10 °		2467
to n	$\overline{D}^0 \ell^+ \tilde{\nu}_\ell$	$K^+ \mu^+ \mu^-$ nonreso-	B1	(4.37	\pm 0.27) × 10 ⁻⁷		2612	9.8 90 × 10 ⁻	-07 _{to 1}	$\times 10^{-1}$	CL = 90%	2640 2639
	$\frac{D^0}{D^*} \tau^+ \nu_{\tau}$					~ 	<u> </u>	2001	T.09	= 0.24	$(10^{-4}) \times 10^{-4}$	S=1.2	2341
ь г	$\frac{D^{*}(2007)^{\circ}\ell^{-}\nu_{\ell}}{D^{*}(2007)^{\circ}\sigma^{+}\nu}$	$K^+ \overline{\nu} \nu$		<	1.6	× 10 ⁻⁵	C L =90%	2617	3.9		× 10 ⁻⁶	CL=90%	2640
≥Exp	$D^{-}(2007)^{-7} \nu_{\tau}$ $D^{-}\pi^{+}\ell^{+}\nu_{\ell}$	But: Signi		INK	ue	viation	I I I I I I I I I I		SIVI		$\times 10^{-6}$	CL=90%	2640
ІНС	$\overline{D}_{2}^{*}(2420)^{0}\ell^{+}\nu_{\ell}$	$(092)^{+}\ell^{+}\ell^{-}$	BI		1.01	$\pm 0.11 \times 10$	5=1.1	2504	3.4		× 10 ⁻⁰	CL=90%	2639
	$D^{-}\pi^{+}$	observed	1 in	R°	1.55	$D^{(r)}P$	v de	cav	/S ^{1.6}		× 10 ⁻⁰	CL=95%	2634
	$\overline{D}_2^*(2460)^0 \ell^+ u_\ell$,		BI		9.6	\pm 1.0) × 10 ⁻¹		2500	e mode				
	$D^{-}\pi^{+}$	$K^{+}(892) + \nu\nu$	B1		4.0	$\times 10^{-3}$		2564	(8.6	= 0.7) %		-
▶Cha	$D^{(*)}$ n $\pi \ell^+ \nu_\ell$ (n ≥ 1	$(\chi + \chi + \chi + \chi - \chi + \chi + \chi + \chi + \chi - \chi + \chi +$	DI		4.5	± 0.4) × 10 · · · + 2.1 · · · · · · · · · · · · · · · · · · ·		2095	(79	= 4)%		-
992	$D^{*} \pi^{+} \ell^{+} \nu_{\ell}$ $\overline{D}_{*} (2420)^{0} \ell^{+} \nu_{\ell}$					— 1. <i>1 ·</i>			(00	± 0.5 ± 1.2)%		_
	$D_1(2420) \ \ell \ \nu_{\ell}$	$\Lambda p \nu \overline{\nu}$		<	3.0	$\times 10^{-5}$	CL=90%	2430	(3.9	± 1.2 + 1.4) /0		
▶Lon	$\overline{D}'_{1}(2430)^{0}\ell^{+}\nu_{\ell}$	$\pi^+ e^- \mu^+$		< <	0.4 6.4	$\times 10^{-3}$	CL = 90%	2037 2637	(7.9	- 1.3) %		_
<i>w</i>	$D^{*-}\pi^+$	$\pi^+ e^\pm \mu^\mp$	LF	<	1.7	$\times 10^{-7}$	CL=90%	2637	(1.10	+ 0.40 - 0.32)%		-
	\overline{D}_2^* (2460) $^0\ell^+ u_\ell$	$\pi^+ e^+ \tau^-$	LF	<	7.4	imes 10 ⁻⁵	CL=90%	2338	(2.1	+ 0.9) %		_
Mur	$\overline{D}_2^{*0} \rightarrow D^{*-}$	$\pi^+ e^- \tau^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	2338	(- 0.6) / 0		
FIG	$\overline{D}{}^{0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	$\pi^+ e^\pm \tau^+$	LF	<	7.5	$\times 10^{-5}$	CL=90%	2338	(2.8	$^+$ 0.9) %		-
	$D^{*0}\pi^+\pi^-\ell^+\nu_\ell$	$ \begin{array}{c} \pi \cdot \mu \cdot \tau \\ \pi^+ \mu^- \tau^+ \end{array} $		<	6.2 4 5	$\times 10^{-3}$	CL = 90%	2333	(97	± 4) %		-
	$D_{s}^{(+)-}K^{+}\ell^{+} u_{\ell}$	$ \begin{array}{c} \pi & \mu & \tau \\ \pi^+ \mu^{\pm} \tau^{\mp} \end{array} $	LF	<	4.5 7.2	$\times 10 \times 10^{-5}$	CL=90%	2333					
	$D_s^- K^+ \ell^+ \nu_\ell$	$K^+e^+\mu^-$	LF	<	7.0	$\times 10^{-9}$	CL=90%	2615					
		${\cal K}^+e^-\mu^+$	LF	<	6.4	× 10 ⁻⁹	CL=90%	2615					
	HTTP://PDG.LBL.GO	V Page 73	Crea	ted: 8/2	28/20	20 18:31							

Observables in $b \rightarrow c \ell \nu$

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)} \tau \nu)}{\Gamma(B \to D^{(*)} \ell \nu)}, \quad \ell = e, \mu$$

▶ Test of lepton flavour universality

Theoretically clean; hadronic uncertainties cancel in the ratio

SM predictions significantly smaller than experiment, combined deviation: $\sim 3.3 \sigma$

 \Rightarrow Violation of LFU? **New Physics** coupled to b and τ ?

Observables in $b \rightarrow s\ell\ell$

$$R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)} \mu \mu)}{\Gamma(B \to K^{(*)} e e)}$$

(Another) test of lepton flavour universality

Theoretically very clean

1810.08132 1605.07633

Combined deviation from the SM $\sim 4 \sigma$, until December 2022.

(now fully consistent with the SM)

EFT study -
$$\Lambda_{NP} \simeq m_{NP}/C_{NP} \sim \mathcal{O}(1-3)^{-1}$$

Possible NP solutions: W', neutrino interactions, ...

Or Leptoquarks!

		$\mathcal{L}_{\mathrm{b} ightarrow\mathrm{cr}}$	$-\nu = -2$	$2\sqrt{2}G_F V_{cb} \Big[\left(1+g_{V_L} ight) \left(\overline{a} ight) \Big]$	$ar{c}_L \gamma^\mu$	$b_L)\left(ar{ au}_L\gamma_\mu u_{ au L} ight)+g_{V_R}\left(ar{c}_R\gamma^\mu b_R ight)\left(ar{ au}_L\gamma_\mu u_{ au} ight)$
/	$C_{NP} \sim \mathcal{O}(1 \cdot$	- 3)	TeV	$+ g_{S_L} (ar{c}_R ar{c}_R)$	$b_L)($	$ar{ au}_R u_{ au L}) + g_T \left(ar{c}_R \sigma^{\mu u} b_L ight) \left(ar{ au}_R \sigma_{\mu u} u_{ au L} ight) ight]$
	Charged Higg	ses,	Exoti	C	_	
						τ
[$(\mathbf{CII}(2) \ \mathbf{CII}(2) \ \mathbf{II}(1))$	Spin	Sumbol	Tumo	F	
	$\frac{(SU(3), SU(2), U(1))}{(\overline{2} + 1/3)}$	Spin	Symbol Sol	$\frac{1 \text{ype}}{LL(S^L)}$		
	(3 , 2 , 7/6)	0	R_2	$RL(S_{1}^{L}), LR(S_{1}^{R})$	$\begin{bmatrix} -2\\ 0 \end{bmatrix}$	
	(3, 2, 1/6)	0	$ ilde{R}_2$	$\frac{1}{RL} (\tilde{S}_{1/2}^L), \frac{1}{LR} (\tilde{S}_{1/2}^L)$	0	
	$(\overline{3}, \underline{1}, 4/3)$	0	$ ilde{S}_1$	$RR(ilde{S}^R_0)$	-2	
	$(\overline{3}, 1, 1/3)$	0	S_1	$LL(S_0^L), RR(S_0^R), \overline{RR}(S_0^{\overline{R}})$	-2	ν
	$(\overline{3}, 1, -2/3)$	0	$ar{S}_1^-$	$\overline{RR}(ar{S}_0^{\overline{R}})$	-2	
	(3, 3, 2/3)	1	U_3	$LL(V_1^L)$	0	
	$(\overline{3}, 2, 5/6)$	1	V_2	$RL(V_{1/2}^{L}), LR(V_{1/2}^{R})$	-2	
	$(\overline{f 3},{f 2},-1/6)$	1	$ ilde{V}_2$	$RL(ilde{V}_{1/2}^{L}),\overline{LR}(ilde{V}_{1/2}^{\overline{R}})$	-2	
	(3 , 1 ,5/3)	1	$ ilde{U}_1$	$\stackrel{'}{RR}(ilde{V}^R_0)$	0	
	(3 , 1 ,2/3)	1	U_1	$LL\left(V_{0}^{L} ight),RR\left(V_{0}^{R} ight),\overline{RR}\left(V_{0}^{\overline{R}} ight)$	0	
	$({f 3},{f 1},-1/3)$	1	$ar{U}_1$	$\overline{RR}(ar{V}_0^{\overline{R}})$	0	

(1603.04993)

EFT study -
$$\Lambda_{NP} \simeq m_{NP}/C_{NP} \sim \mathcal{O}(1-3)^{-1}$$

Possible NP solutions: W', Charged Higgses, Exotic neutrino interactions

Or Leptoquarks

(SU(3), SU(2), U(1))	Spin	Symbo
$(\bar{3}, 3, 1/3)$	0	S_3
$({f 3},{f 2},7/6)$	0	R_2
$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$
$(\overline{3},1,4/3)$	0	$ ilde{S}_1$
$(\overline{3},1,1/3)$	0	S_1
$(\overline{3},1,-2/3)$	0	$ar{S}_1$
(3, 3, 2/3)	1	U_3
$(\overline{3}, 2, 5/6)$	1	V_2
$(\overline{3}, 2, -1/6)$	1	$ ilde{V}_2$
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$
$({f 3},{f 1},2/3)$	1	U_1
(3 , 1 , -1/3)	1	$ar{U}_1$

(1603.04993)

$\mathcal{L}_{b\to c\tau\nu} = -2\sqrt{2}G_F V_{cb} \Big[\left(1 + g_{V_L}\right) \left(\bar{c}_L \gamma^\mu b_L\right) \left(\bar{\tau}_L \gamma_\mu \nu_{\tau L}\right) + g_{V_R} \left(\bar{c}_R \gamma^\mu b_R\right) \left(\bar{\tau}_L \gamma_\mu \nu_{\tau L}\right) \Big]$ $+ g_{S_L} \left(\bar{c}_R b_L \right) \left(\bar{\tau}_R \nu_{\tau L} \right) + g_T \left(\bar{c}_R \sigma^{\mu\nu} b_L \right) \left(\bar{\tau}_R \sigma_{\mu\nu} \nu_{\tau L} \right) \Big]$ TeV

EFT study -
$$\Lambda_{NP} \simeq m_{NP}/C_{NP} \sim \mathcal{O}(1-3)^{-1}$$

Possible NP solutions: W', Charged Higgses, Exotic neutrino interactions

Or Leptoquarks

[(SU(3), SU(2), U(1))]	Spin	Symbo
$(\bar{3}, 3, 1/3)$	0	S_3
(3, 2, 7/6)	0	R_2
$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$
$(\overline{3},1,4/3)$	0	$ ilde{S}_1$
$(\overline{3},1,1/3)$	0	S_1
$(\overline{f 3}, {f 1}, -2/3)$	0	$ar{S}_1$
$({\bf 3},{\bf 3},2/3)$	1	U_3
$(\overline{3}, 2, 5/6)$	1	V_2
$(\overline{3}, 2, -1/6)$	1	$ ilde{V}_2$
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$
(3, 1, 2/3)	1	U_1
$({f 3},{f 1},-1/3)$	1	$ar{U}_1$

(1603.04993)

$\mathcal{L}_{\mathrm{b}\to\mathrm{c}\tau\nu} = -2\sqrt{2}G_F V_{cb} \Big[\left(1 + g_{V_L}\right) \left(\bar{c}_L \gamma^{\mu} b_L\right) \left(\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}\right) + g_{V_R} \left(\bar{c}_R \gamma^{\mu} b_R\right) \left(\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}\right) \Big]$ $+ g_{S_L} \left(\bar{c}_R b_L \right) \left(\bar{\tau}_R \nu_{\tau L} \right) + g_T \left(\bar{c}_R \sigma^{\mu\nu} b_L \right) \left(\bar{\tau}_R \sigma_{\mu\nu} \nu_{\tau L} \right) \Big]$ TeV

EFT study -
$$\Lambda_{NP} \simeq m_{NP}/C_{NP} \sim \mathcal{O}(1-3)^{-1}$$

Possible NP solutions: W', Charged Higgses, Exotic neutrino interactions

Or Leptoquark	Ś
---------------	---

(SU(3), SU(2), U(1))	Spin	Symbo
$(\bar{3}, 3, 1/3)$	0	S_3
$({f 3},{f 2},7/6)$	0	R_2
$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$
$(\overline{3},1,4/3)$	0	$ ilde{S}_1$
$(\overline{3},1,1/3)$	0	S_1
$(\overline{f 3}, {f 1}, -2/3)$	0	$ar{S}_1$
(3, 3, 2/3)	1	U_3
$(\overline{f 3},{f 2},5/6)$	1	V_2
$({f \overline{3}},{f 2},-1/6)$	1	$ ilde{V}_2$
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$
$({f 3},{f 1},2/3)$	1	U_1
$({f 3},{f 1},-1/3)$	1	$ar{U}_1$

(1603.04993)

$\mathcal{L}_{\mathrm{b}\to\mathrm{c}\tau\nu} = -2\sqrt{2}G_F V_{cb} \Big[\left(1 + g_{V_L}\right) \left(\bar{c}_L \gamma^{\mu} b_L\right) \left(\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}\right) + g_{V_R} \left(\bar{c}_R \gamma^{\mu} b_R\right) \left(\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}\right) \Big]$ $+ g_{S_L} \left(\bar{c}_R b_L \right) \left(\bar{\tau}_R \nu_{\tau L} \right) + g_T \left(\bar{c}_R \sigma^{\mu\nu} b_L \right) \left(\bar{\tau}_R \sigma_{\mu\nu} \nu_{\tau L} \right) \Big]$ TeV

Constraints on LQ models - collider bounds

Direct searches $\Rightarrow M_{LO}^{\min} \sim 1 \text{ TeV} - 1.5 \text{ TeV}$

▶**High-** p_T tails in $pp \rightarrow \tau \tau, pp \rightarrow \tau \nu$

\Rightarrow Mathematica package High-pT

2207.10756 2207.10714 2112.14604 1801.07641

Constraints on LQ models - electroweak and flavour

 \mathbb{B} -physics observables: $B_s - \overline{B}_s$ mixing, $B \to K \nu \overline{\nu}, B_c \to \tau \nu, B_s \to \tau \tau$, $B \rightarrow K \tau \tau$, angular observables

Correlations between flavour observables are highly model dependent \Rightarrow i.e. dependent on the quantum numbers and "texture" of couplings

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

$\mathcal{L}_{R_2} = y_R^{ij} \bar{Q}_i^a e_j R_2^a + y_L^{ij} \bar{u}_{Ri} R_2^{T,a} \epsilon^{ab} L_j^b + \text{h.c.}$

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{R_D}{R_D^{SM}} = 1 + 11.1 \operatorname{Re}(g_S) + 65.4 |g_S|^2$$
$$\frac{R_D^*}{R_D^{SM}} = 1 - 25.5 \operatorname{Re}(g_S) + 663 |g_S|^2$$
$$g_S = -0.59 \frac{y_R^{b\tau} y_L^{b\tau*}}{2}$$
After matching and running...

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{R_D}{R_D^{\text{SM}}} = 1 + 11.1 \operatorname{Re}(g_S) + 65.4 |g_S|^2$$
$$\frac{R_D^*}{R_D^*} = 1 - 25.5 \operatorname{Re}(g_S) + 663 |g_S|^2$$

Fails to accommodate for the anomaly ... **Unless?**

 $\mathcal{L}_{R_2} = y_R^{ij} \bar{Q}_i^a e_j R_2^a + y_L^{ij} \bar{u}_{R_i} R_2^{T,a} \epsilon^{ab} L_j^b + \text{h.c.}$

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\frac{R_D}{R_D^{\rm SM}} = 1 + 11.1 \operatorname{Re}(g_S e^{-i\varphi}) + 65.4 |g_S e^{-i\varphi}|^2$$
$$\frac{R_D^*}{R_D^{\rm SM}} = 1 - 25.5 \operatorname{Re}(g_S e^{-i\varphi}) + 663 |g_S e^{-i\varphi}|^2$$

Fails to accommodate for the anomaly... Unless? ⇒ We allow couplings to have imaginary part!

1309.03012002.072721806.056892206.09717

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

 $R_{D^{(*)}}$ can be accommodated :)

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

 $R_{D^{(*)}}$ can be accommodated :)

 $R_2 = (3, 2, 7/6)$

$$y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \qquad y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

 $R_{D^{(*)}}$ can be accommodated :)

But: high- p_T - data and constraints from $Z \rightarrow \tau \tau$ decay exclude the viable parameter space :(

* 2σ allowed

 $\tilde{R}_2 = (3, 2, 1/6)$

The "opposite" of R_2 *wrt. to quantum numbers

$$\widetilde{y}_{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \widetilde{y}_{L}^{b\tau} \end{pmatrix}, \qquad \widetilde{y}_{R} = \begin{pmatrix} 0 \\ \widetilde{y}_{R}^{sN} \\ 0 \end{pmatrix}$$

 $\mathcal{L} = -\widetilde{y}_L^{ij} \overline{d}^i \widetilde{R}_2^a \epsilon^{ab} L^{j,b} + \widetilde{y}_R^{iN} \overline{Q}^{i,a} \widetilde{R}_2^a N_R + \text{h.c.}$

 $R_2 = (3, 2, 1/6)$

The "opposite" of R_2 *wrt. to quantum numbers

 $\widetilde{y}_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \widetilde{y}_L^{b\tau} \end{pmatrix}, \qquad \widetilde{y}_R = \begin{pmatrix} 0 \\ \widetilde{y}_R^{sN} \\ 0 \end{pmatrix}$

Again, $R_{D^{(*)}}$ can be accommodated :) * if a **right-handed neutrino** is added!

But $B \rightarrow K \nu \nu$ is too severely affected **Modified** High- p_T with right-handed neutrinos

 $\mathcal{L}_{S_1} = y_L^{ij} \overline{Q_i^{C,a}} \epsilon^{ab} L_j^b S_1 + y_R^{ij} \overline{u_i^C} e_j S_1 + \tilde{y}_R^{iN} \overline{d_i^C} N_R S_1 + \text{h.c.}$

$S_1 = (\overline{3}, 1, 1/3)$

 $\mathcal{L}_{S_1} = y_L^{ij} \overline{Q_i^{C,a}} \epsilon^{ab} L_j^b S_1 + y_R^{ij} \overline{u_i^C} e_j S_1 + \tilde{y}_R^{iN} \overline{d_i^C} N_R S_1 + \text{h.c.}$

We will focus on three cases:

1. Only left-handed interactions

$S_1 = (\overline{3}, 1, 1/3)$

 $\mathcal{L}_{S_1} = y_L^{ij} \overline{Q_i^{C,a}} \epsilon^{ab} L_j^b S_1 + y_R^{ij} \overline{u_i^C} e_j S_1 + \tilde{y}_R^{iN} \overline{d_i^C} N_R S_1 + \text{h.c.}$

- **1.** Only left-handed interactions
- **2.** Left- and right-handed interactions

$S_1 = (\overline{3}, 1, 1/3)$

 $\mathcal{L}_{S_1} = y_L^{ij} \overline{Q_i^{C,a}} \epsilon^{ab} L_j^b S_1 + y_R^{ij} \overline{u_i^C} e_j S_1 + \tilde{y}_R^{iN} \overline{d_i^C} N_R S_1 + \text{h.c.}$

- **1.** Only left-handed interactions
- **2.** Left- and right-handed interactions
- **3.** Only right-handed interactions

$S_1 = (\overline{\mathbf{3}}, \mathbf{1}, 1/3)$

 $\mathcal{L}_{S_1} = y_L^{ij} Q_i^{C,a} \epsilon^{ab} L_j^b S_1 + y_R^{ij} \overline{u_i^C} e_j S_1 + \tilde{y}_R^{iN} \overline{d_i^C} N_R S_1 + \text{h.c.}$

- **1.** Only left-handed interactions
- **2.** Left- and right-handed interactions
- **3.** Only right-handed interactions
 - \Rightarrow each of them will have specific correlations between flavour observables

"Left-handed" $S_1 = (\overline{3}, 1, 1/3)$

$$y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_L^{s\tau} \\ 0 & 0 & y_L^{b\tau} \end{pmatrix}, \qquad y_R = 0$$

Solution Once again, $R_{D^{(*)}}$ can be accommodated

But this time the effect in $B_s - \overline{B}_s$ and $\tau \rightarrow \ell \nu \nu$ is slightly too large

"Left- and right-handed" $S_1 = (3, 1, 1/3)$

$$y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_L^{b\tau} \end{pmatrix}, \qquad y_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_R^{c\tau} \\ 0 & 0 & 0 \end{pmatrix}$$

▶Need right-handed interactions

 \Rightarrow evade $B_{s} - \overline{B}_{s}$ mixing constraint

Successfully accommodate $R_{D^{(*)}}$ and consistent with other observables :)

2008.09548

Predictions with "left- and right-handed" S_1

Explored 3 different minimal TeV-scale LQ models

Can be tested in $B \to D^{(*)} \tau \nu$ angular observables

- \Rightarrow Only S_1 with left and right-handed interactions **phenomenologically viable**

Predictions with "left- and right-handed" S_1

Tree level effect in $b \to c\tau \nu \Rightarrow \frac{\mathcal{B}(B_c \to B_c)}{\mathcal{B}(B_c \to B_c)}$

▶Loop effects in $b \rightarrow s\ell\ell$

$$\frac{(\tau - \tau \nu)^{S_1}}{(\tau - \tau \nu)^{SM}} \in [1.13, 1.48]$$

 $\frac{\mathcal{B}(B \to K^{(*)} \nu \nu)^{S_1}}{\mathcal{B}(B \to K^{(*)} \nu \nu)^{\text{SM}}} \in [1.001, 1.02]$

$B^+ \rightarrow K^+ \nu \nu \mu \text{ decay}$

Relatively clean theoretical prediction \Rightarrow No large uncertainties beyond the form factors

New Belle II measurement shows $\sim 2.7\sigma$ deviation from the SM prediction

 $\Rightarrow \begin{cases} \mathcal{B}(B^+ \to K^+ \nu \nu)^{\text{SM}} = 4.4(3) \times 10^{-6} \\ \mathcal{B}(B^+ \to K^+ \nu \nu)^{\text{exp.}} = 2.35(67) \times 10^{-5} \end{cases}$

The new neutral lepton of mass ~ 0.6 GeV fits the binned data best

2403.13887 2312.12507

Inert S₁ ("right-handed")

▶ Right-handed interactions

\Rightarrow no CKM mixing

 \Rightarrow evading a lot of constraints from flavour observables

Model with only right-handed interactions?

 $\rightarrow \mathcal{L}_{S_1} = y_{ij}^R \overline{u_i^C} e_j S_1 + \tilde{y}_{iN}^R \overline{d_i^C} N_R S_1$

Inert S₁ ("right-handed")

Right-handed couplings

\Rightarrow no CKM mixing

 \Rightarrow evading a lot of constraints from flavour observables

Model with only right-handed interactions?

 $\mathcal{L}_{S_1} = y_{c\tau}^R \overline{c^C} \tau S_1 + \tilde{y}_{bN}^R \overline{b^C} N_R S_1 + \tilde{y}_{sN}^R \overline{s^C} N_R S_1$

Create desired effect in $R_{D^{(*)}}$

Also allows an enhancing effect in $B \rightarrow K^{(*)}$ 'inv'

Inert S₁ ("right-handed")

 $R_{D^{(*)}}$ can be accommodated :)

 \Rightarrow up to masses of RHN up to $\sim 1 \text{ GeV}$

Only RH interactions

 \Rightarrow Evaded $B_s - \overline{B}_s$ mixing, also $Z \rightarrow \tau \tau$ and $\tau \rightarrow \ell \nu \nu$

Inert S₁ ("right-handed")

Excess in $\mathscr{B}(B^+ \to K^+ \text{ 'inv'})$ can also be accommodated :)

Besides $R_{D^{(*)}}$ and $B \rightarrow K^{(*)}$ inv', practically no other constraining observable

Inert S_1 ("right-handed") - predictions

For example: $B_c \rightarrow \tau$ 'inv', $B_c \rightarrow D_s$ 'inv', $B_c \rightarrow D_s$

▶Particularly interesting:

 $\Rightarrow D_{s} \rightarrow \text{'inv'}$ (branching fraction scal

 \Rightarrow Angular observables in $B \rightarrow D^{(*)} \tau \nu$ decays, example:

Quantity	\mathbf{SM}	$m_{N_R} = 0 \text{ GeV}$	0.6 C
$P_{\tau}^{D^*}$	-0.51(2)	-0.39(4)	-0.41
$F_L^{D^*}$	0.46(1)	0.46(1)	0.46

$$\rightarrow J/\psi \tau$$
 'inv' $(R_{J/\psi})$

les with the
$$m_{N_R}^2$$
)

Inert S_1 ("right-handed") - predictions

For example: $B_c \to \tau'$ inv', $B_c \to D_s'$ inv', $B_c \to J/\psi \tau'$ inv' $(R_{J/\psi})$

▶Particularly interesting:

 $\Rightarrow D_s \rightarrow \text{'inv'}$ (branching fraction sca

 \Rightarrow Angular observables in $B \rightarrow D^{(*)} \tau \nu$ decays, example:

Quantity	\mathbf{SM}	$m_{N_R} = 0 \text{ GeV}$	$0.6 { m ~GeV}$	$1 { m GeV}$
$P_{ au}^{D^*}$	-0.51(2)	-0.39(4)	-0.41(3)	-0.43(3)
$F_L^{D^*}$	0.46(1)	0.46(1)	0.46(1)	0.45(1)

 \Rightarrow Only some observables experimentally measured, poor accuracy

les with the
$$m_{\!N_R}^2$$
)

 \Rightarrow Improvements in Belle II?

Summary and conclusions

Hint for the New Physics in $b \to c \ell \nu$ transitions

- Explored 4 different minimal TeV-scale LQ models \Rightarrow Only two are viable:
 - $*S_1$ with left and right-handed interactions
 - \Rightarrow Plenty of observables affected; $R_{D^{(*)}}, Z \rightarrow \tau\tau, \nu\nu, \tau \rightarrow \ell\nu\nu$, High- p_T ,
 - FB asymmetry,...
 - $*S_1$ with only right-handed interactions, with the introduction of
 - **right-handed neutrino(s)**, enhances also $B \rightarrow K^{(*)}\nu\nu$

 - ⇒Few observables affected, **but has a specific signature in** angular observables in $B \rightarrow D^{(*)} \tau \nu$
 - \Rightarrow More specifically, the presence of **RHN can be inferred from** P_{τ}

Thank you for your attention!

