La taille des noyaux lourds sous la loupe de la spectroscopie laser

Benjamin Bally

Journée P2I - Orsay - 27/11/2024

Article

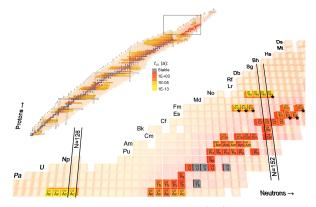
$Smooth \, trends \, in \, fermium \, charge \, radii \, and \, the \, impact \, of \, shell \, effects$

Thomas Albrecht-Schönzart⁴, Brankica Andelic^{13,6}, Julian Auler³, Benjamin Bally⁶, Received: 20 December 2023 Michael Bender², Sebastian Berndt², Michael Block ^{12,5}, Alexandre Brizard³, Pierre Chauveau^{1,5} Accepted: 17 September 2024 Bradley Cheal®, Premaditya Chhetri^{1,3,10}, Arno Claessens®, Antoine de Roubin® Charlie Devlin*, Holoer Dorrer*, Christoph E, Düllmann***, Julie Ezold*, Rafael Ferrer* Published online: 30 October 2024 Vadim Gadelshin¹¹, Alvasa Gaiser¹³³⁴, Francesca Giacoppo^{1,2}, Stephane Goriely¹⁵ Onen anness Manuel J. Gutiérrez^{1,5}, Ashley Harvey⁴, Raphael Hasse¹⁰, Reinhard Heinke¹ Fritz-Peter Heßberger¹, Stephane Hilaire^{10,07}, Magdalena Kaja¹³, Oliver Kaleja¹³ Check for updates Tom Kieck^{1,2,3}, EunKang Kim², Nina Kneip¹², Ulli Köster¹⁰, Sandro Kraemer¹³, Mustapha Lastiagui², Jeremy Lantis², Nathalie Lecesne³, Andrea Tzeitel Loria Basto^{2,3} Andrew Kishor Mistry 1303. Christoph Mokry 33. Jain Moore 33. Tohias Murböck 13. Danny Münzberg 11,1, Witold Nazarewicz 11,11, Thorben Niemeyer 11, Steven Nothhelfer Sophie Péru^{10,7}, Andrea Raggio¹³, Paul-Gerhard Reinhard²⁴, Dennis Renisch¹³, Emmanuel Rev-Herme¹⁶, Jekabs Romans¹⁹, Elisa Romero Romero², Jörg Runke^{1,6} Wouter Ryssens¹⁶, Hervé Savaiols⁶, Fabian Schneider², Joseph Sperling⁴, Matou Stemmler³ Dominik Studer^{1,3,13}, Petra Thörle-Pospiech^{2,3}, Norbert Trautmann², Mitzi Urquiza-González^{26,27}, Kenneth van Beek¹⁷, Shelley Van Cleve⁹, Piet Van Duppen¹⁹, Marine Vandebrouck¹⁵, Elise Verstraelen¹⁰, Thomas Walther²¹, Felix Weber¹² & Klaus Wendt¹ The quantum-mechanical nuclear-shell structure determines the stability and limits

of the existence of the heaviest nuclides with large proton numbers Z = 100 (refs. 1–3). Shell effects also affect the sizes and shapes of atomic nuclei, as shown by laser spectroscopy studies in lighter nuclides'. However, experimental information on the

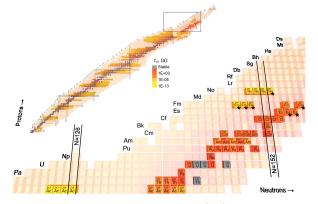
Article recently published: Warbinek et al., Nature 634, 1075 (2024)

Article

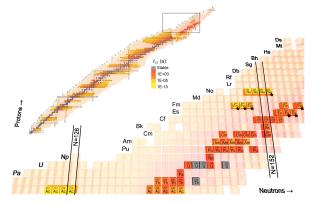

Smooth trends in fermium charge radii and the impact of shell effects

Thomas Albrecht-Schlinzart⁴ Reanking Andelin^{13,5} Julian Auter³ Renismin Rally⁴ Received: 20 December 2023 Michael Bender², Sebastian Berndt², Michael Block ^{12,5}, Alexandre Brizard³, Pierre Chauveau^{1,5} Accepted: 17 September 2024 Bradley Cheal®, Premaditya Chhetri^{1,3,10}, Arno Claessens®, Antoine de Roubin® Charlie Devlin*, Holoer Dorrer*, Christoph E, Düllmann***, Julie Ezold*, Rafael Ferrer* Published online: 30 October 2024 Vadim Gadelshin¹¹, Alvasa Gaiser¹³³⁴, Francesca Giacoppo^{1,2}, Stephane Goriely¹⁵ Onen anness Manuel J. Gutiérrez^{1,5}, Ashley Harvey⁴, Raphael Hasse¹⁰, Reinhard Heinke¹ Fritz-Peter Heßberger', Stephane Hilaire'00, Magdalena Kaja'0, Oliver Kaleja'00 Check for updates Tom Kieck^{1,23}, EunKang Kim², Nina Kneio¹², Ulli Köster¹⁹, Sandro Kraemer¹⁰ Mustapha Lastisqui², Jeremy Lantis², Nathalie Lecesne³, Andrea Tzeitel Loria Basto² Andrew Kishor Mistry 1303. Christoph Mokry 33. Jain Moore 33. Tobias Murböck 13 Danny Münzberg 11,1, Witold Nazarewicz 11,11, Thorben Niemeyer 11, Steven Nothhelfer Sophie Péru^{10,7}, Andrea Raggio¹³, Paul-Gerhard Reinhard²⁴, Dennis Renisch¹³, Emmanuel Rev-Herme¹⁶, Jekabs Romans¹⁹, Elisa Romero Romero², Jörg Runke^{1,6} Wouter Ryssens¹⁶, Hervé Savajols⁶, Fabian Schneider⁶, Joseph Sperling⁶, Matou Stemmler Dominik Studer^{1,312}, Petra Thörle-Pospiech^{2,3}, Norbert Trautmann², Mitzi Urquiza-Gonz*il*lez^{16,27} Kenneth van Beek¹⁷, Shelley Van Cleve⁹, Piet Van Duppen¹⁹, Marine Vandebrouck¹⁵, Elise Verstraelen¹⁰, Thomas Walther³, Felix Weber¹² & Klaus Wendt¹ The quantum-mechanical nuclear-shell structure determines the stability and limits of the existence of the heaviest nuclides with large proton numbers $Z \ge 100$ (refs. 1-3). Shell effects also affect the sizes and shapes of atomic nuclei, as shown by laser spectroscopy studies in lighter nuclides⁴. However, experimental information on the

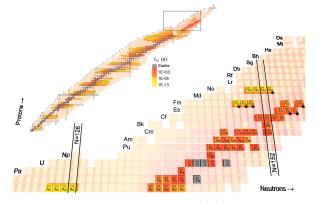
- Article recently published: Warbinek et al., Nature 634, 1075 (2024)
- Contribution from CEA (DRF and DAM)
 - Experimental: M. Vandebrouck, E. Rey-Herme, H. Savajols, N. Lecesne
 - Theoretical: B. Bally, S. Hilaire, S. Péru



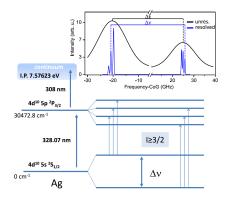
- Major line of research in modern nuclear physics
 - Rich variety of emergent phenomena (deformation, isomerism, fission, etc.)
 - What is the heaviest element in the periodic table?


- Major line of research in modern nuclear physics
 - Rich variety of emergent phenomena (deformation, isomerism, fission, etc.)
 - What is the heaviest element in the periodic table?
- Difficulty: production cross sections are small

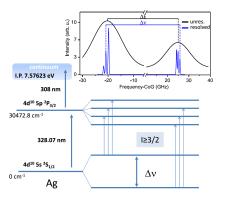
Block, Prog. Part. Nucl. Phys. 116 (2021)

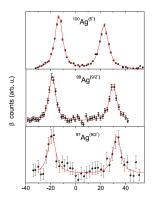

- Experimental techniques:
 - Decay spectroscopy
 - ♦ Laser spectroscopy
 - ٥..

Block, Prog. Part. Nucl. Phys. 116 (2021)

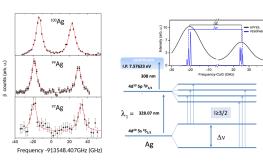

- Experimental techniques:
 - Decay spectroscopy
 - ♦ Laser spectroscopy
 - ٥ ...
- Laser spectroscopy: expertise of the RADRIS collaboration at GSI

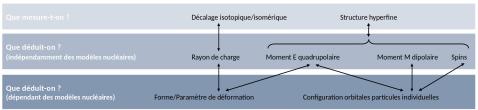
Block, Prog. Part. Nucl. Phys. 116 (2021)


- Example of Ag isotopes
 - Two-steps ionization scheme
 - \diamond Scan of transition λ_1
 - $\diamond~$ Count the number of ions as a function of the frequency λ_1

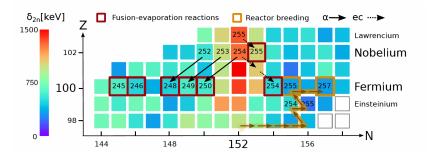


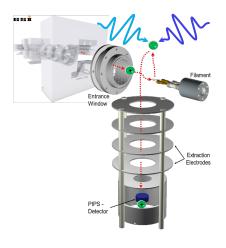
Ferrer, PLB 728, 191 (2014)


- Example of Ag isotopes
 - ⋄ Two-steps ionization scheme
 - \diamond Scan of transition λ_1
 - $\diamond~$ Count the number of ions as a function of the frequency λ_1

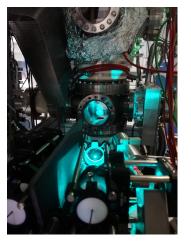


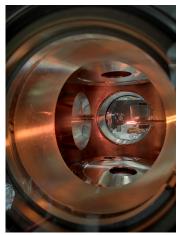
Ferrer, PLB 728, 191 (2014)





- Combination of several production methods:
 - ♦ Direct fusion-evaporation: ²⁰⁸Pb(⁴⁰Ar,2-3n)^{245,246}Fm
 - ♦ Indirect fusion-evaporation: ^{206,207,208}Pb(⁴⁸Ca,2n)^{252,253,254}No
 - ♦ Re-irradiation of samples collected in nuclear reactor: ^{255,257}Fm

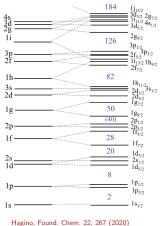




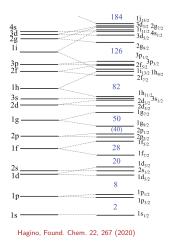
Courtesy of S. Raeder

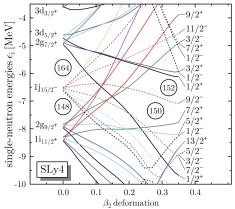
Laser spectroscopy of 8 isotopes thanks to the RADRIS technique

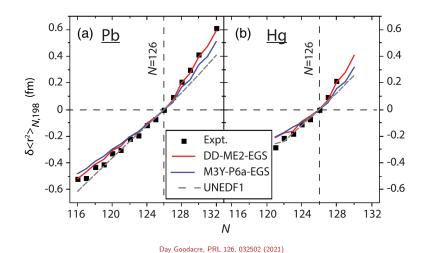
Courtesy of A. Raggio and J. Warbinek

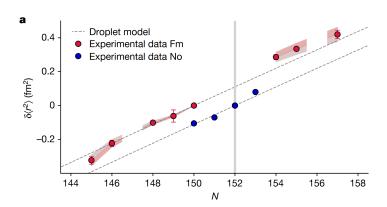

Shell closures and magic numbers

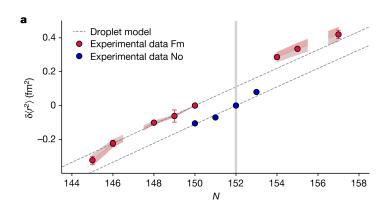
• Nucleon magic numbers: 2, 8, 20, 28, 50, 82, ...




Nucleon magic numbers: 2, 8, 20, 28, 50, 82, ...




• Nucleon magic numbers: 2, 8, 20, 28, 50, 82, ...

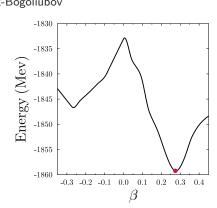


Dobaczewski, Nucl. Phys. A, 388 (2015)

- Slight increase but no clear "kink" contrary to lighter nuclei
- Good agreement with simple liquid drop model: $r \propto A^{1/3}$

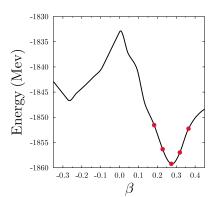
- Slight increase but no clear "kink" contrary to lighter nuclei
- Good agreement with simple liquid drop model: $r \propto A^{1/3}$
 - → Towards a more **macroscopic** behavior of nuclear matter?

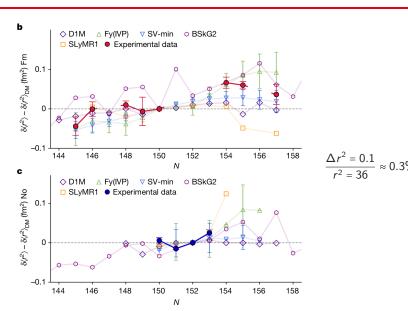
Theoretical analysis: microscopic models



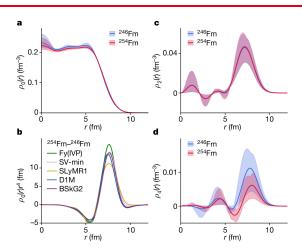
• Phenomenological interactions (Skyrme, Gogny, Fayans)

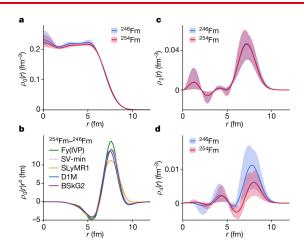
- Phenomenological interactions (Skyrme, Gogny, Fayans)
- Single-Reference Energy Density Functional (SR-EDF)
 "Mean field", "Hartree-Fock-Bogoliubov"

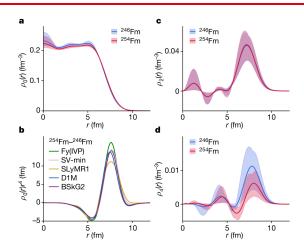

$$\delta \langle \Phi | \mathcal{H}_{\text{eff}} | \Phi \rangle = 0$$

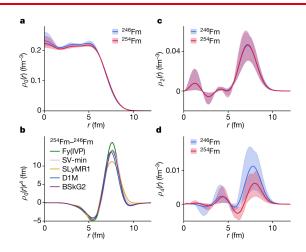


- Phenomenological interactions (Skyrme)
- Multi-Reference Energy Density Functional (MR-EDF)
 "Beyond the mean field", "Generator Coordinate Method"


$$|\Psi^{\Lambda}\rangle = \sum_{k} f_{k} P^{\Lambda} |\Phi_{k}\rangle$$
$$\delta \langle \Psi^{\Lambda} | H_{\text{eff}} | \Psi^{\Lambda} \rangle = 0$$







• Proton density of ²⁴⁶Fm et ²⁵⁴Fm very similar $[\rho_0(r) = \int \rho_p(\mathbf{r}) Y_{00}(\Omega) d\Omega]$

- Proton density of ²⁴⁶Fm et ²⁵⁴Fm very similar $[\rho_0(r) = \int \rho_p(\mathbf{r}) Y_{00}(\Omega) d\Omega]$
- Same quadrupole deformations $[\rho_2(r) = \int \rho_p(\mathbf{r}) Y_{20}(\Omega) d\Omega]$

- Proton density of ²⁴⁶Fm et ²⁵⁴Fm very similar $[\rho_0(r) = \int \rho_p(\mathbf{r}) Y_{00}(\Omega) d\Omega]$
- Same quadrupole deformations $[\rho_2(r) = \int \rho_p(\mathbf{r}) Y_{20}(\Omega) d\Omega]$
- Different hexadecapolar deformations $[\rho_4(r) = \int \rho_p(\mathbf{r}) Y_{40}(\Omega) d\Omega]$

Conclusion and outlook

• Laser spectroscopy of heavy-mass radioactive nuclei

- Laser spectroscopy of heavy-mass radioactive nuclei
- Change in $\langle r^2 \rangle$ doesn't exhibit a characteristic "kink" at N = 152

- Laser spectroscopy of heavy-mass radioactive nuclei
- Change in $\langle r^2 \rangle$ doesn't exhibit a characteristic "kink" at N=152
- \bullet Theory in relative agreement with experiment (up to theo. & exp. accuracies)

- Laser spectroscopy of heavy-mass radioactive nuclei
- Change in $\langle r^2 \rangle$ doesn't exhibit a characteristic "kink" at N=152
- Theory in relative agreement with experiment (up to theo. & exp. accuracies)
- But it will be more interesting to look at other observables
 - ⋄ Moments: dipole magnetic (µ) and quadrupole electric (Q_S) of odd-mass nuclei
 - ⋄ Physics case of S³ at GANIL (Caen)

- Laser spectroscopy of heavy-mass radioactive nuclei
- Change in $\langle r^2 \rangle$ doesn't exhibit a characteristic "kink" at N=152
- Theory in relative agreement with experiment (up to theo. & exp. accuracies)
- But it will be more interesting to look at other observables
 - Moments: dipole magnetic (μ) and quadrupole electric (Q_S) of odd-mass nuclei
 - ⋄ Physics case of S³ at GANIL (Caen)
 - Unique possibilities of MR-EDF calculations

