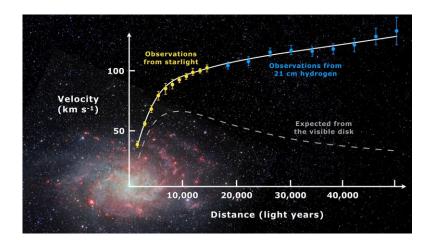
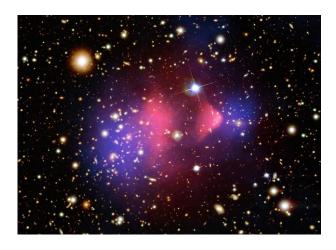
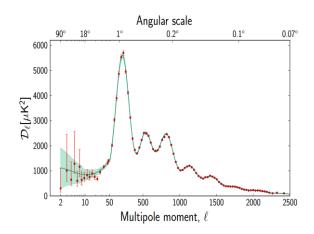


Evidence for Dark Matter in the Universe

- Galaxy Rotation Curves
- Lensing
- Cluster Virialization, Mergers
- CMB Anisotropies
- **\$** Etc.







Mass scale of dark matter

(not to scale)



An alternative to the Wimp paradigm: The Hidden Sector

- The SM is not complete (neutrino, dark matter, ...)
- New Interactions may exist!
- Simple natural extension of the Standard Model: new U(1) symmetry
 - Dark QED
 - Electroweak extension
- Leads to MeV-scale Dark Matter

New bosons expected to mediate new interactions

New spin-1 bosons \leftrightarrow

new gauge symmetries beyond $SU(3) \times SU(2) \times U(1)$

Simplest possibility

$$SU(3) \times SU(2) \times U(1) \times \operatorname{extra} U(1)$$

new gauge coupling $(g'') \leftrightarrow \text{intensity of new interaction } (\propto g''^2)$

Pierre FAYET, "The U BOSON as a generalized DARK PHOTON"

$$\mathcal{D}_{\mu} = \partial_{\mu} - igT_{3}W_{\mu}^{3} - \frac{i}{2}g'YB_{\mu} - \frac{i}{2}g''XC_{\mu},$$
 Symmetry breaking
$$A_{\mu} = \sin\theta_{W} W_{\mu}^{3} + \cos\theta_{W} B_{\mu},$$
 coupling constant and a new gauge boson in the electroweak theory
$$\tilde{Z}_{\mu} = \cos\xi\cos\theta_{W} W_{\mu}^{3} - \cos\xi\sin\theta_{W} B_{\mu} - \sin\xi C_{\mu},$$

$$A'_{\mu} = \sin\xi\cos\theta_{W} W_{\mu}^{3} - \sin\xi\sin\theta_{W} B_{\mu} + \cos\xi C_{\mu}.$$

$$g_{A}(T_{3},Y,X) = eQ,$$

$$g_{\tilde{Z}}(T_{3},Y,X) = g\cos\theta_{W}\cos\xi T_{3} + g'\sin\theta_{W}\cos\xi \frac{Y}{2} + g''\sin\xi \frac{X}{2},$$

$$g_{A'}(T_{3},Y,X) = g\cos\theta_{W}\sin\xi T_{3} + g'\sin\theta_{W}\sin\xi \frac{Y}{2} + g''\cos\xi \frac{X}{2}.$$

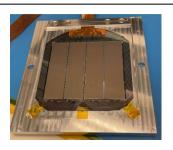
Olivier Deligny, DAMIC-M internal note

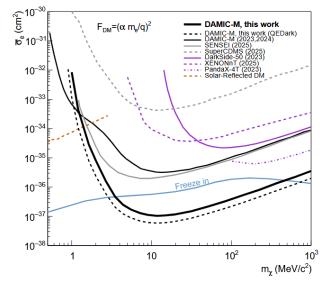
Damic-M in Dark Matter research

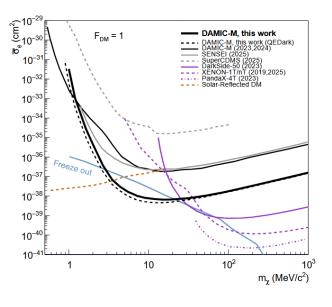
- Direct Dark Matter experiment
- Skipper-CCD detectors
- Single electron detection capability
 - For low-mass dark matter:

$$E_{Target} < 4 \frac{M_{DM}}{M_{Target}} E_{DM}$$

- Sub-electron readout noise
- World-leading limits on hidden sector Dark Matter

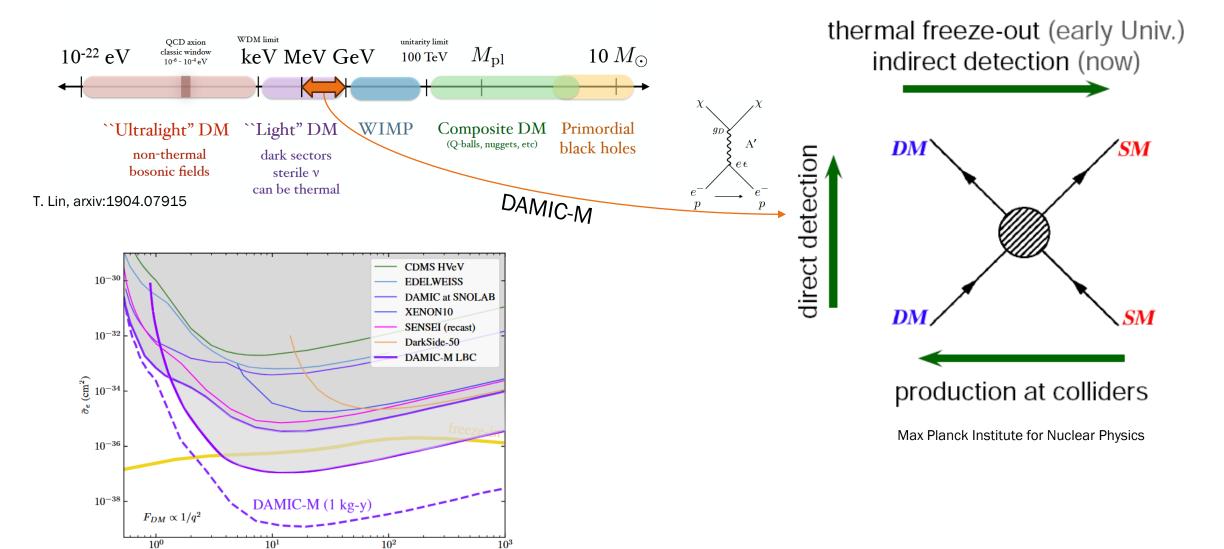






Mass scale of dark matter

(not to scale)



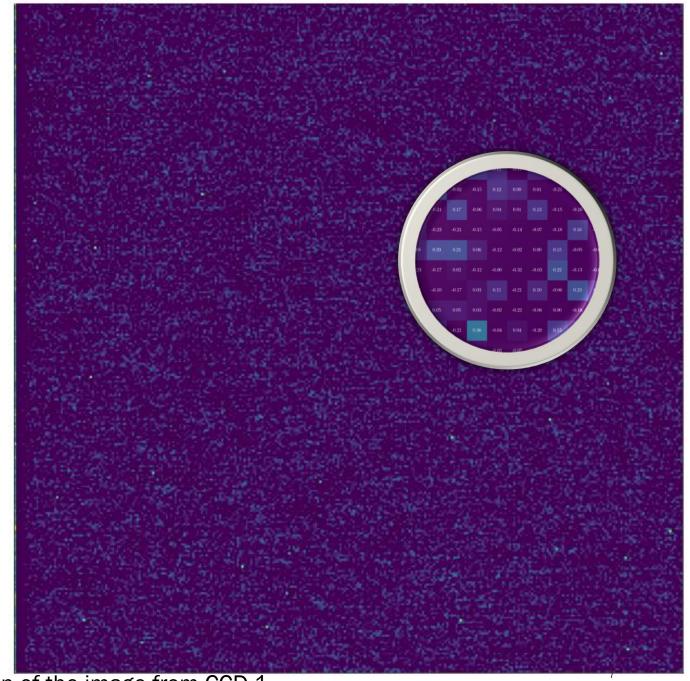
 m_χ (MeV)

 10^{2}

 10^1

The data

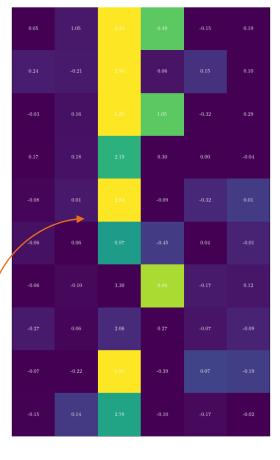
- ◆ ~8 days of DAMIC-M LBC data
- 4 CCDs → 4 images of 6560 ×
 6148 pixels
- $\sim 2.9 \ 10^{-4} \ \text{kg.year exposure}$
- 500 skips for $\sigma \sim 0.17e^-$

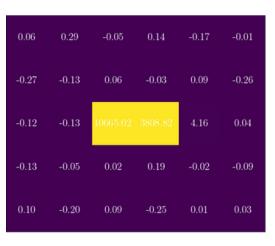


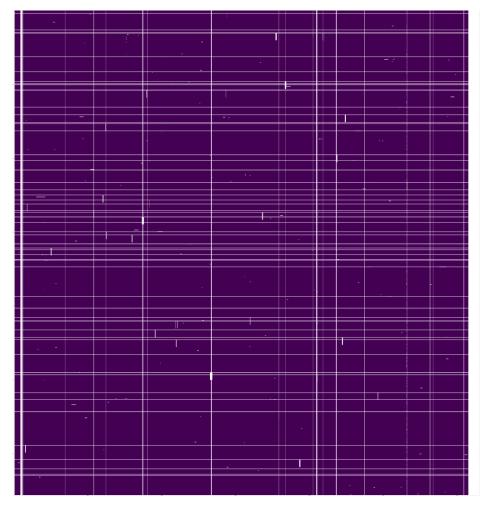
Portion of the image from CCD 1

Image masking

- Hot region (large 1e- rate)
- Defects generating charges continuously
- Clusters of high-charge pixels(>5 e-)
- Cross-talk between CCDs
- ♦ 79.75% of data are kept

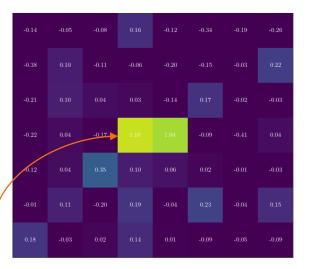






Pattern analysis and exclusion limits

- Searching for {11}, {111} or {12}/{21} events
- \diamond ~2.9 10⁻⁴ kg.year exposure
- Comparison with observed events
 - Background is compatible with observations
 - No evidence for Dark Matter
- Dark matter could be hidden in our events, even if they are compatible with the background
- Feldman-Cousins table provides confidence interval limits for Poisson distributions



Attendu	CCD 1	CCD 2	CCD 3	CCD 4
{11}	3.2	2.6	4.9	2.8
{111}	1.10^{-3}	7.10^{-4}	$2. 10^{-3}$	8.10^{-4}
{21}, {12}	5.10^{-4}	4.10^{-4}	9.10^{-4}	4.10^{-4}

15 [0.00, 0.92]

[0.00, 1.07] [0.00, 1.42]

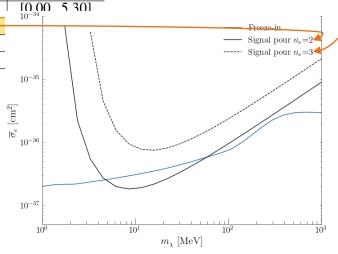
[0.00, 1.59] [0.00, 2.16]

[0.00, 3.35]

Observations are compatible with the prediction based on the DC

Observé	CCD 1	CCD 2	CCD 3	CCD 4
{11}	3	3	8	0
{111}	0	0	0	0
{21}, {12}	0	0	0	0

	0	4.0	4.4	
$n_0 \setminus b$	0	13	14	
0	[0.00, 2.44]	[0.00, 0.92]	[0.00, 0.92]	
2	[0.53, 5.91]	[0.00, 1.05]	[0.00, 1.06]	
4	[1.47, 8.60]	[0.00, 1.36]	[0.00, 1.39]	
6	[2.21, 11.47]	[0.00, 1.52]	[0.00, 1.55]	
8	[3.96, 13.99]	[0.00, 2.06]	[0.00, 2.11]	
10	[5.50, 16.50]	[0.00, 3.20]	[0.00, 3.27]	
12	[7.01, 19.00]	[0.00, 5.09]	[0.00, 5.19]	
14	[8.50, 21.50]	[0.00, 7.41]	[0.00, 7.50]	
16	[9.99, 23.99]	[0.00, 9.90]	[0.00, 9.99]	
18	[11.47, 26.16]	[0.00, 12.07]	[0.00, 12.16]	



Annexe

Dark Matter production scenarios

- Multiple production scenarios :
 - Freeze-in/out
 - Gravitational
 - Etc.
- Freeze-out assumption: thermal equilibrium in early universe
- Freeze-in assumption: production from thermal bath species over time
 - \Leftrightarrow Y^2 is neglected

 $ds^2 = dt^2 - a^2(t)(dx^2 + dy^2 + dz^2)$ Boltzman equation : L[f] = C[f] $\boldsymbol{L}[f] = E \frac{\partial f}{\partial t} - \| \boldsymbol{p}^2 \| \frac{\dot{a}}{a} \frac{\partial f}{\partial E}$ $\frac{g}{(2\pi^3)} \int d^3p \frac{\boldsymbol{L}[f]}{E} = \frac{dn}{dt} + 3Hn \qquad n = \frac{g}{(2\pi^3)} \int d^3p f(p,T)$ $\frac{g_1}{(2\pi)^3} \int d^3p_1 \frac{\mathbf{C}[f_1]}{E_1} = \int d\pi_1 d\pi_2 d\pi_3 d\pi_4 (2\pi)^4 \delta_D^{(4)} (\sum_{i=1}^4 \mathbf{p}_i) \times$ $[f_1f_2(1 \pm f_3)(1 \pm f_4)|M_{12 \to 34}|^2 - f_3f_4(1 \pm f_1)(1 \pm f_2)|M_{34 \to 12}|^2]$ $<\sigma v> = \frac{\int \sigma v \, dn_{\chi}^{Eq} dn_{\bar{\chi}}^{Eq}}{n_{\nu}^{Eq} n_{\bar{\chi}}^{Eq}}$ $\frac{dY}{dx} = \frac{\langle \sigma v \rangle}{Hx} s(Y^2 - Y_{Eq}^2) (1 + \frac{1}{3} \frac{T}{h} \frac{dh}{dT})$ $Y = \frac{n}{s}, \qquad x = \frac{m_{\chi}}{T}$ Freeze-in setup $\frac{dY}{dx} = -\frac{\langle \sigma v \rangle}{Hx} s Y_{Eq}^2 (1 + \frac{1}{3} \frac{T}{h} \frac{dh}{dT}) \simeq -\frac{\langle \sigma v \rangle}{Hx} s Y_{Eq}^2$ $s = \frac{2\pi^2}{45} g_{*s}(T) T^3, \qquad h = g_{eff}(T) \frac{\pi^2}{20} T^4$ $\frac{dY}{dT} = -\frac{M_P}{(2\pi)^2 T^6} \left(\frac{45}{\pi}\right)^{\frac{7}{2}} \frac{1}{g_{*s} \sqrt{g_{eff}}} \times$

 $\left(\sum_{i} \left(\bar{n}_{i}^{2} \langle \sigma v \rangle_{ii \to \chi \bar{\chi}}\right) + \sum_{i} \left(\bar{n}_{j}^{2} \Gamma_{j \to \chi \bar{\chi}}\right)\right)$

Freeze-In Production in a Dark QED Sector

$$\mathcal{D}_{\mu} = \partial_{\mu} - igT_{3}W_{\mu}^{3} - \frac{i}{2}\mathcal{Y}g'B_{\mu} - \frac{i}{2}Q_{X}g''C_{\mu}$$

$$\mathcal{L} = -\frac{1}{4}W_{\mu\nu}^{3}W^{3\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}C_{\mu\nu}C^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}C^{\mu\nu}$$

$$= -\frac{1}{4}\hat{W}_{\mu\nu}^{3}\hat{W}^{3\mu\nu} - \frac{1}{4}\hat{B}_{\mu\nu}\hat{B}^{\mu\nu} - \frac{1}{4}\hat{C}_{\mu\nu}\hat{C}^{\mu\nu}$$

Modification of the Z boson's coupling constant and a new gauge boson in the electroweak theory

$$\begin{pmatrix} \hat{W}_{\mu}^{3} \\ \hat{B}_{\mu} \\ \hat{C}_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \epsilon \\ 0 & 0 & \frac{1}{\sqrt{1-\epsilon^{2}}} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \\ C_{\mu} \end{pmatrix} \qquad g_{A} = eQ$$

$$g_{\tilde{Z}} \simeq g \cos \theta_{W} T_{3} - g' \sin \theta_{W} \frac{\mathcal{Y}}{2} - g'' \epsilon \sin \theta_{W} \frac{Q_{X}}{2}$$

$$g_{A'} \simeq \epsilon e \cos \theta_{W} T_{3} - g' \epsilon (1 + \cos^{2} \theta_{W}) \frac{\mathcal{Y}}{2} + g'' \frac{Q_{X}}{2}$$

Computation of the matrix element

$$\int d\Omega^* |\overline{M}|^2 = \frac{16\pi N_c}{3} \frac{(Qe)^2 g_{A'}^2 s^2}{(s - m_{A'}^2)^2} \left(1 + \frac{2m_i^2}{s} \right) \left(1 + \frac{2m_\chi^2}{s} \right)$$

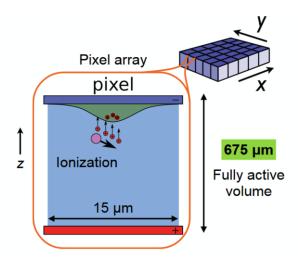
$$\Omega_\chi h^2 = \frac{m_\chi s_{today} Y_{today}}{\rho_c / h^2}$$

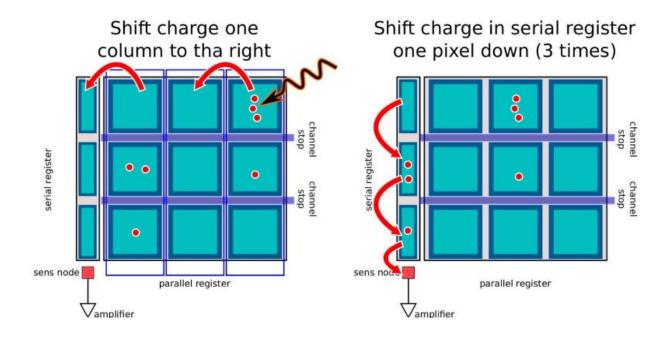
$$\frac{dY}{dT} = -\frac{M_P}{(2\pi)^2 T^6} \left(\frac{45}{\pi} \right)^{\frac{3}{2}} \frac{1}{g_{*s} \sqrt{g_{\text{eff}}}} \times \left(\sum_i \left(\bar{n}_i^2 \langle \sigma v \rangle_{ii \to \chi\bar{\chi}} \right) + \sum_j \left(\bar{n}_j^2 \Gamma_{j \to \chi\bar{\chi}} \right) \right)$$

$$g_{A'}^2 = \frac{\Omega_{\chi} \rho_c}{s_0 m_{\chi}} \left[\int \frac{2 M_P \left(\frac{45}{\pi^3}\right)^{3/2}}{(2\pi)^2 T^5 g_{*s}(T) \sqrt{g_{\text{eff}}(T)}} \int ds \frac{N_c \alpha_{\text{QED}} Q^2}{24\pi^4} \times \left(\frac{(s-4m_{\chi}^2)(s-4m_i^2)}{s} \right)^{1/2} K_1 \left(\frac{\sqrt{s}}{T} \right) \left(1 + \frac{2m_i^2}{s} \right) \left(1 + \frac{2m_{\chi}^2}{s} \right) \right] \right]$$

Classical CCDs

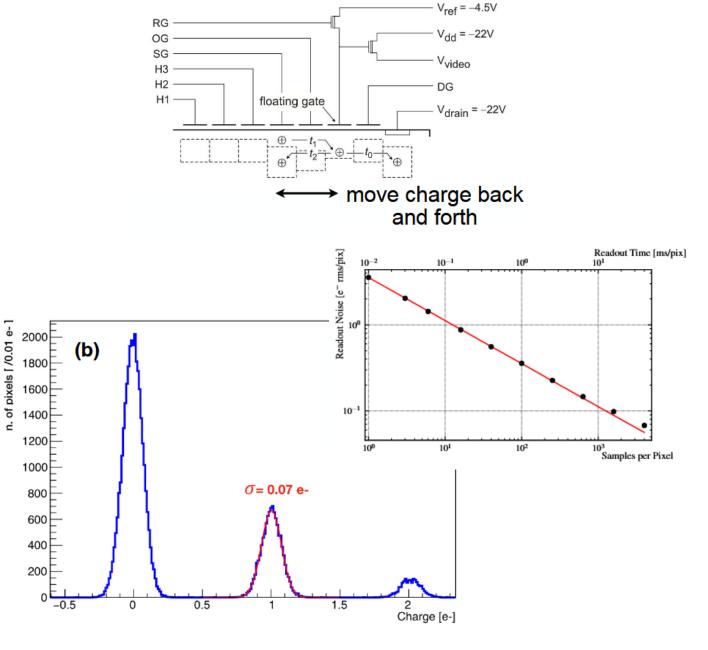
- interaction ionizes the medium and generates charges
- Charges are trapped in potential wells
- Then, the charges are moved line by line, pixel by pixel, toward the serial register
- Measurment of the charge on each pixel in the sens node



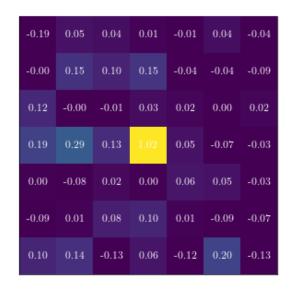


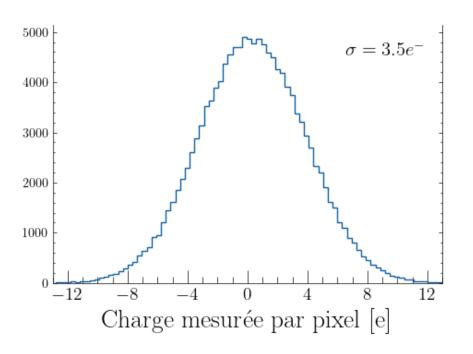
Skipper-CCD

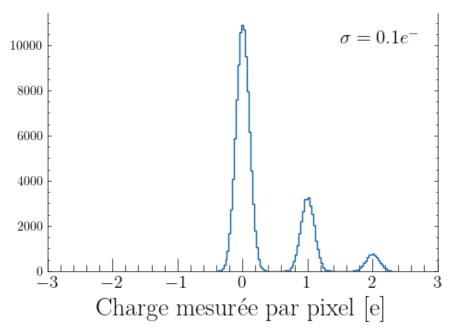
- Multiple non-destructive charge measurments
- * Readout noise divided by $\sqrt{N_S}$
 - Sub-electron reading noise
- Allows us to explore small energy deposits



0.73	3.51	0.89	-1.07	2.10	4.76	2.57
-2.62	8.71	-3.91	4.56	-4.85	0.85	-1.21
-2.63	-5.16		-4.25	-0.28		4.90
-3.06	6.06	1.11	-4.05		-3.28	0.87
-1.78	-0.01		-3.70	0.10	-5.50	1.34
-1.97	-4.79	1.57	-1.00	-0.25	-2.88	2.92
-0.93	-2.49	-1.56	5.71	0.25	3.28	0.49







Clustering and high charge pixels

Clustering

We mask two pixels before and after the cluster, and one pixel above and below

High charge pixels

We mask two pixels before and after the cluster, and one pixel above and below it

