# $\pi^0$ efficiency study with 3-prong $\tau$ decay

Flavien CALLET (IJCLab)

IDPASC Summer school 2025 @IJCLab: 15/07/2025





### Me





- (End of) 2nd year PhD student at IJCLab (Building 200)
- Working on  $\tau$  lepton at Belle II (asymetric  $e^+e^-$  collider, B-factory)
- Currently working on  $\pi^0$  efficiency correction factor for service task





## Belle II and SuperKEKB





Belle II is the detector associated with SuperKEKB accelerator.

- Located at KEK in Tsukuba, Ibaraki (Japan)
- e<sup>+</sup>e<sup>−</sup> asymetric collider
- So-called B-factory
- Most recent achievement : New world record of instanteneous luminosity at 5.1.10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> (27/12/2024)





#### Belle II





 $\pi^0$  efficiency is linked in great part to calorimeter efficiency :  $\pi^0 \to \gamma \gamma$  (> 98%)

#### Introduction



The aim is to get an efficiency correction given by the double ratio

$$\frac{\epsilon^{\text{data}}}{\epsilon^{\text{MC}}} = \frac{N_{\pi^0}^{\text{data}}}{N_{\text{event}}^{\text{data}}} \div \frac{N_{\pi^0}^{\tau\bar{\tau}} + N_{\pi^0}^{q\bar{q}} + ...}{N_{\text{event}}^{\tau\bar{\tau}} + N_{\text{event}}^{q\bar{q}} + ...}$$

assuming an accurate simulation of  $\tau$  decays.

We use the  $3 \times 1$  prong (=charged tracks) topology :

- Signal side  $\tau \to \pi^- \pi^+ \pi^- (n\pi^0) \nu_{\tau}$
- Tag side  $\tau \to e \nu_{\tau} \bar{\nu_{e}}$

We use 365.29fb<sup>-1</sup> of data and MC15rd (up to 4x luminosity of data) → After selection: 6 276 946 events.

# TauNom $M_{\gamma\gamma}$ template fit





- p = [0, 0.5, 1, 1.5, 2, 2.5, 3, above] GeV
- PN indicates the order of background polynominal

# Nom $\pi^0$ efficiency correction (preliminary)





Efficiency correction factors in 1D and 2D of  $\cos \theta$  and p bins.

Error is statistical only

# Questions?





