Moving beyond dense networks

IDPASC school 2025

Anja Butter, LPNHE/ITP

How to train better networks

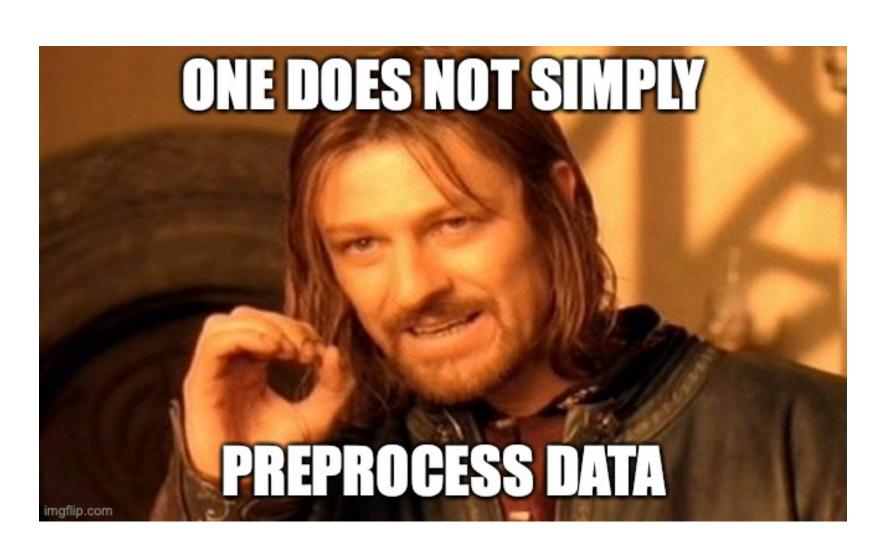
Some pointers

- 1. Preprocessing
- 2. Network initialisation
- 3. Optimisation of the training
- 4. Hyperparameter scans

Data Preprocessing

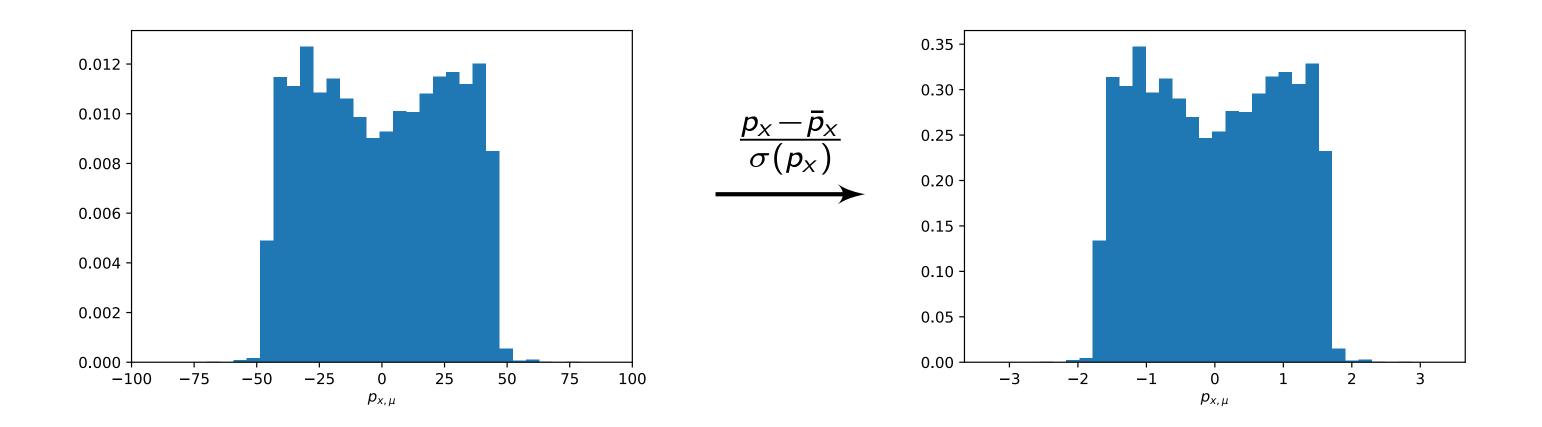
Why preporcessing?

- input features with different scales eg. jet = (charge, $n_{particles}, p_T, M, \eta, \phi$)
- large value with small spread eg. $pp o Z o II, m_{II} \in [80 \text{ GeV} 100 \text{ GeV}]$
- ullet weights usually initialized to be sensitive in range [-1,+1]
- classification output in range [0,1]
- training more efficient/stable if features are also in range [-1, +1]



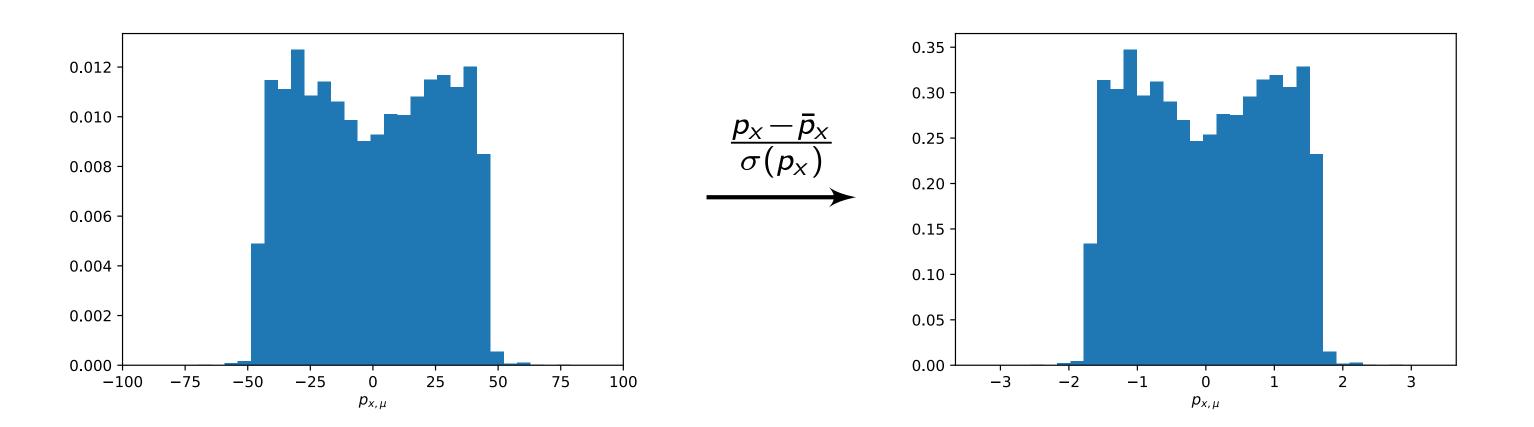
Example: $pp \rightarrow Z \rightarrow \mu^{+}\mu^{-}$

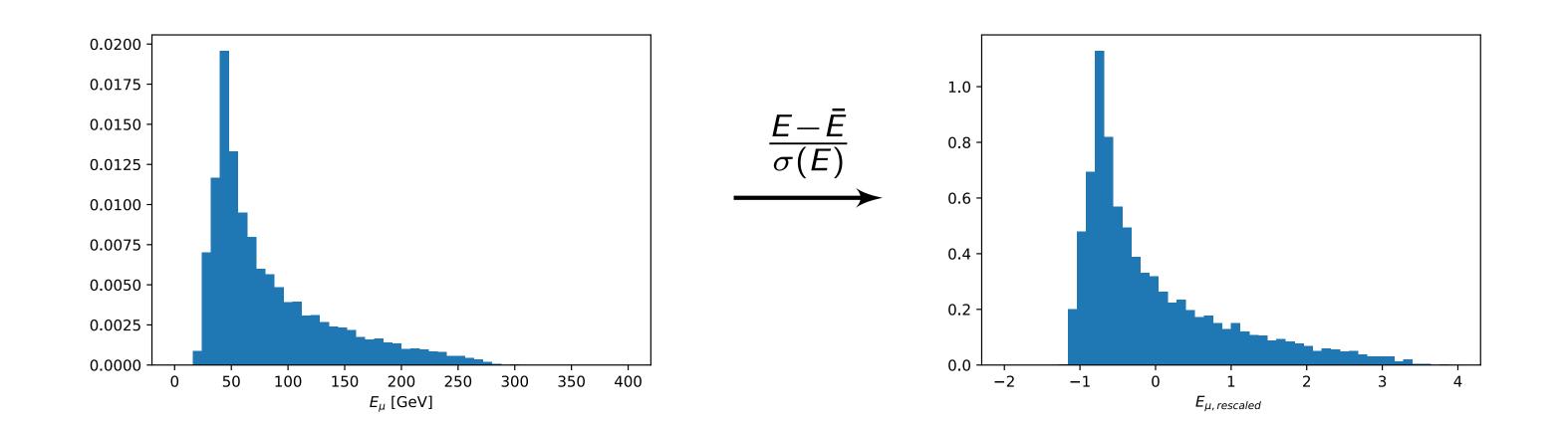
Rule of thumb: rescale to $\mu=0,\sigma=1$



Example: $pp \rightarrow Z \rightarrow \mu^{+}\mu^{-}$

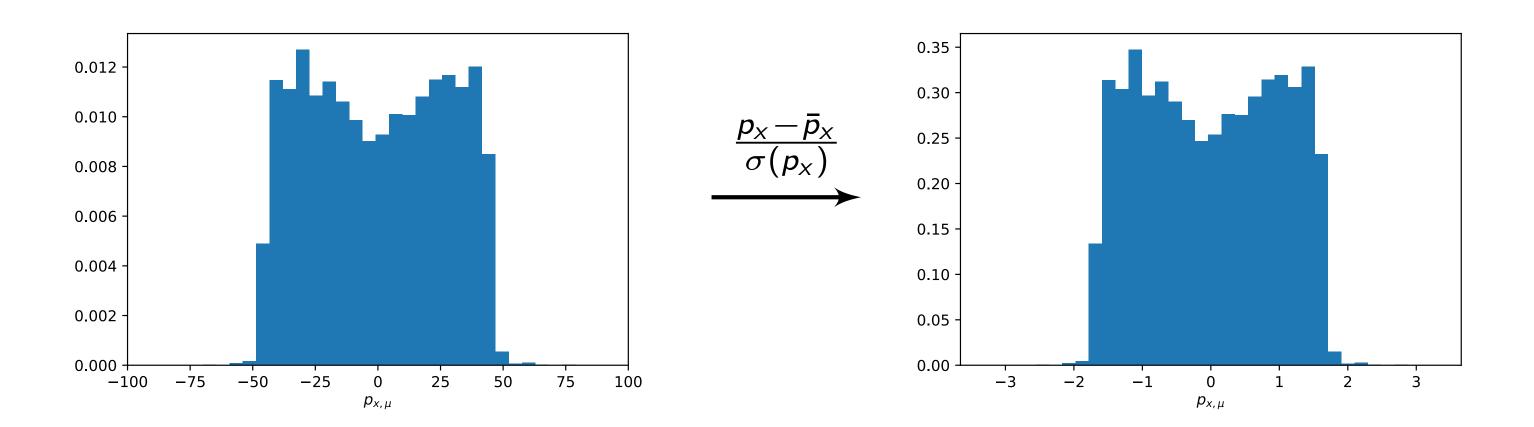
Rule of thumb: rescale to $\mu={\rm 0},\sigma={\rm 1}$

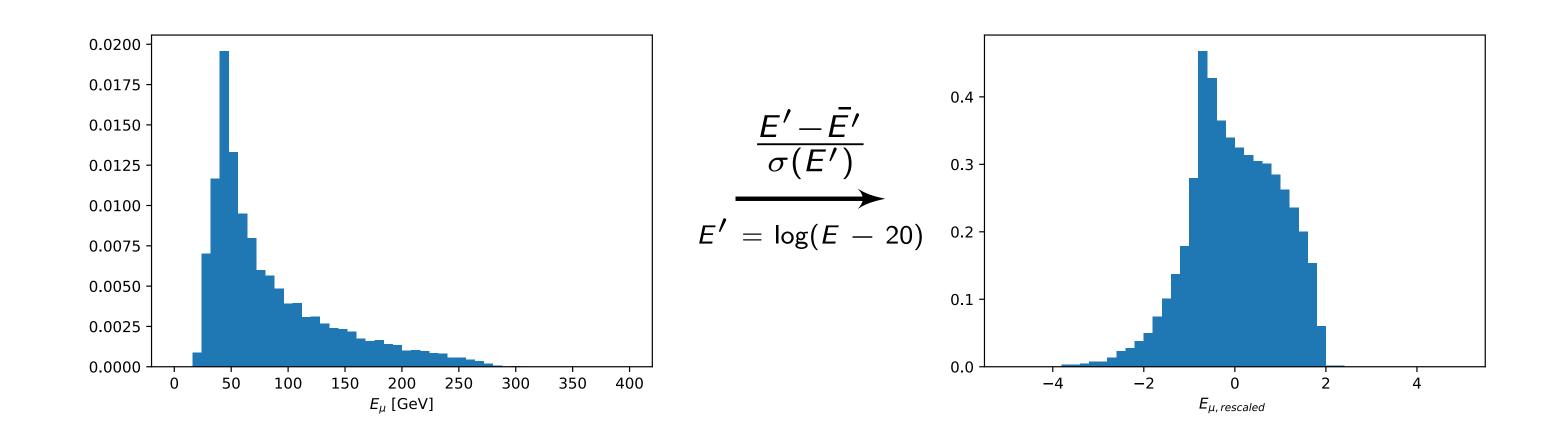




Example: $pp \rightarrow Z \rightarrow \mu^+ \mu^-$

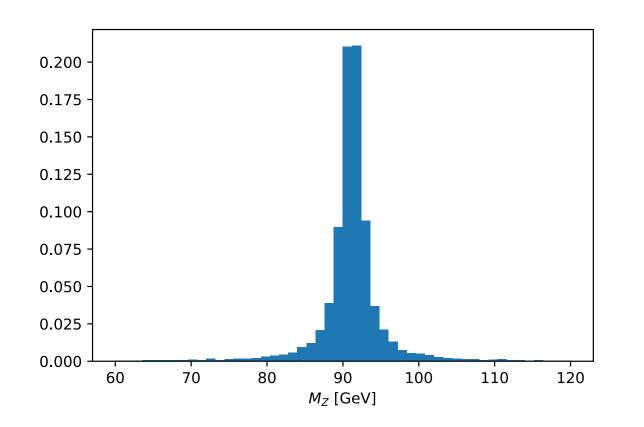
Rule of thumb: rescale to $\mu=0, \sigma=1$



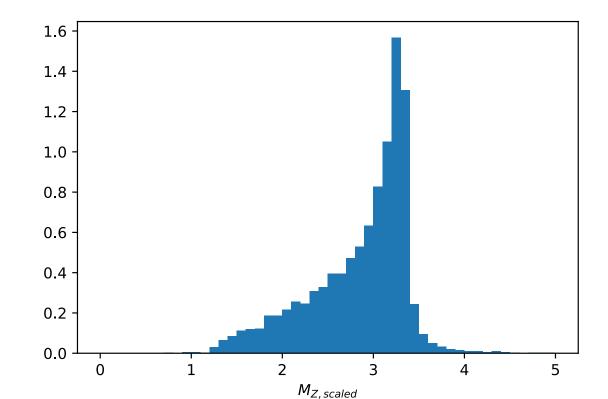


Example: $pp \rightarrow Z \rightarrow \mu^+ \mu^-$

Exception: Correlated observables

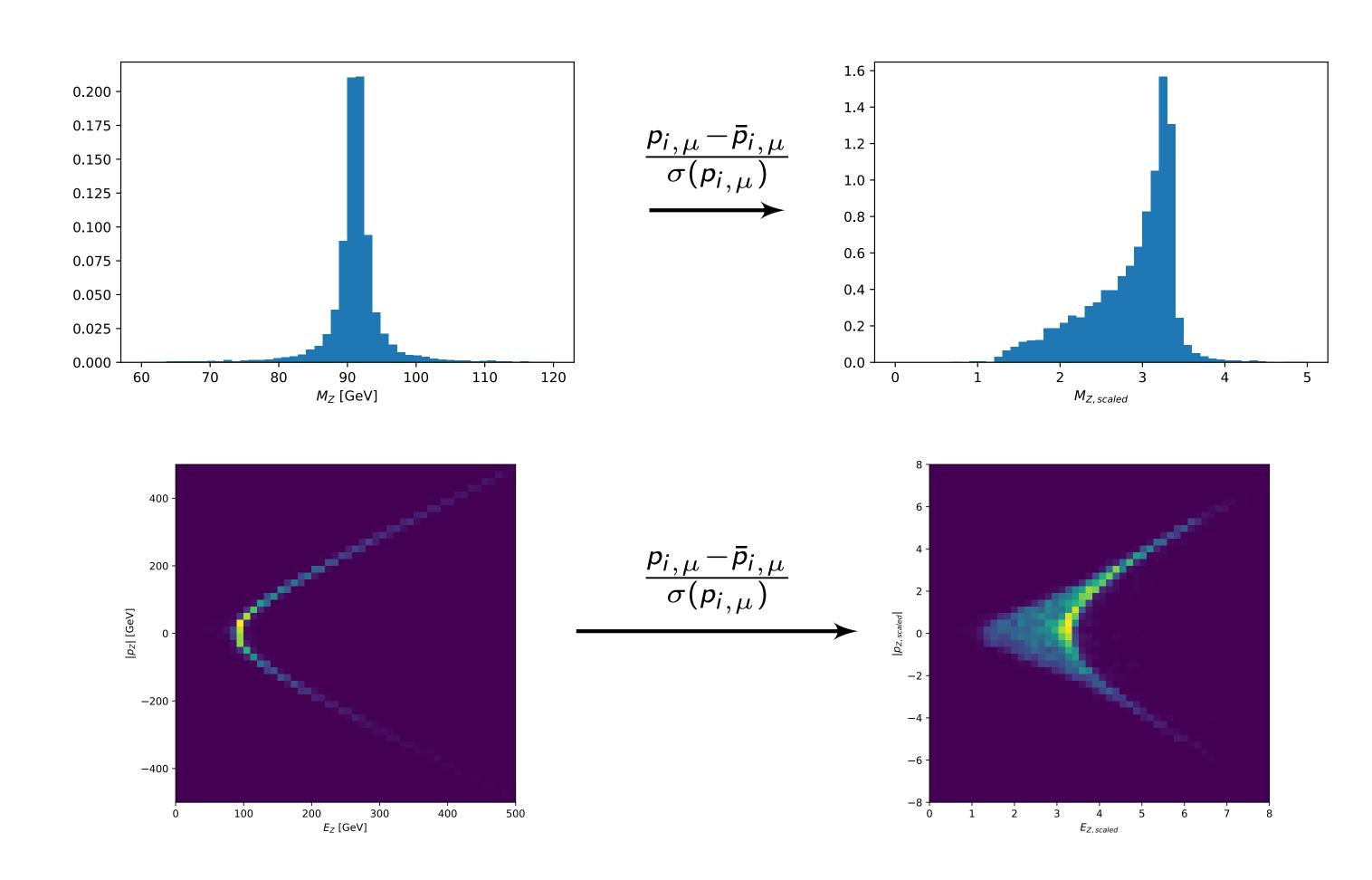


$$\frac{p_{i,\mu} - \bar{p}_{i,\mu}}{\sigma(p_{i,\mu})}$$



Example: $pp \rightarrow Z \rightarrow \mu^+ \mu^-$

Exception: Correlated observables

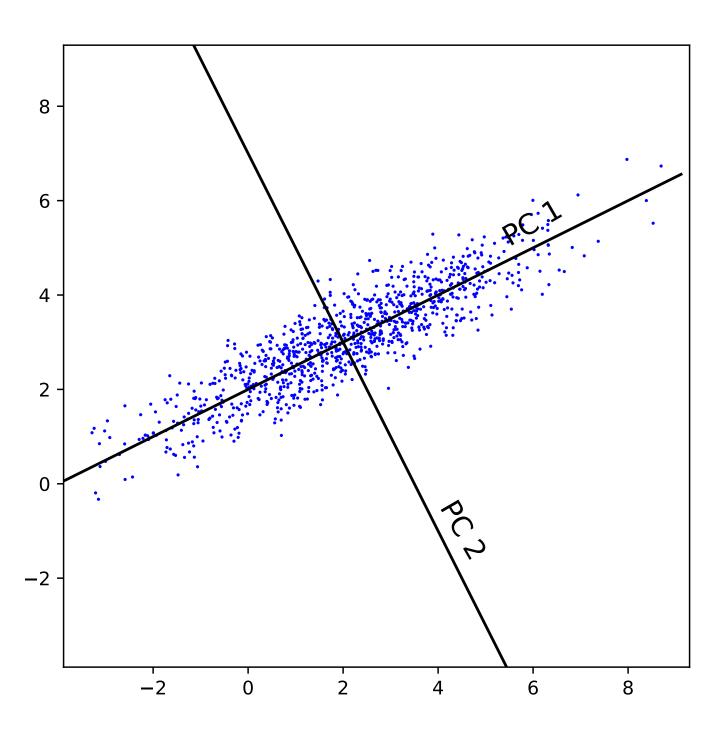


 \Rightarrow Use same scale for $p_{i,\mu}$

PCA

Principal component analysis

- directions maximizing variance
- eigenvector of covariance matrix
- \bullet cov $(\boldsymbol{X}) = \boldsymbol{X}^T \boldsymbol{X}$
- + facilitates training
- + useful for interpretation
- + can reduce data dimension



We know how to update weights. But how do we start?

1
$$w_i = 1$$
?

We know how to update weights. But how do we start?

1
$$w_i = 1$$
?

symmetric initialization \Rightarrow symmetric updates \Rightarrow identical weights z

We know how to update weights. But how do we start?

- 1 $w_i = 1?$
- 2 $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?

Check for single neuron $y = w_i x_i$ with w_i, x_i independent:

$$< y^{2} > = \sum_{i} < w_{i}^{2} x_{i}^{2} >$$

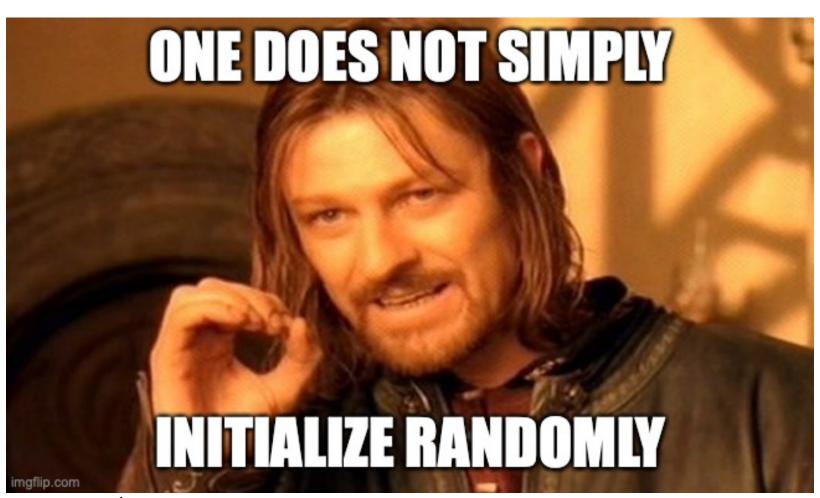
$$= \sum_{i} < w_{i} >^{2} < x_{i}^{2} > + < x_{i} >^{2} < w_{i}^{2} > + < w_{i}^{2} > < x_{i}^{2} >$$

$$= \sum_{i} < w_{i}^{2} > < x_{i}^{2} > + < w_{i} > = < x_{i} > = 0$$

$$= n_{incoming} < w_{i}^{2} > < x_{i}^{2} > \text{ diverges!}$$

We know how to update weights. But how do we start?

- 2 $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?



$$\rightarrow < w_i^2 > = \frac{1}{n_{incoming}}$$
 to preserve variance through network

We know how to update weights. But how do we start?

- 1 $w_i = 1?$
- 2 $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?
- 3 Xavier/Glorot initialization $w_i \sim \mathcal{N}\left(\mu = 0, \sigma = \sqrt{2/(n_{in} + n_{out})}\right)$
 - caveat 1: Same argument for backpropagation \rightarrow average $(n_{in}+n_{out})/2$
 - caveat 2: only for \approx linear activation function eg. tanh

We know how to update weights. But how do we start?

- $w_i = 1?$
- 2 $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?
- 3 Xavier/Glorot initialization $w_i \sim \mathcal{N}\left(\mu = 0, \sigma = \sqrt{2/(n_{in} + n_{out})}\right)$
- **ReLU** \rightarrow 50% of outputs = 0 \rightarrow additional factor 2 \Rightarrow He initialization $\sigma = \sqrt{2/n_{in}}$

4 **–** 1 **4**

We know how to update weights. But how do we start?

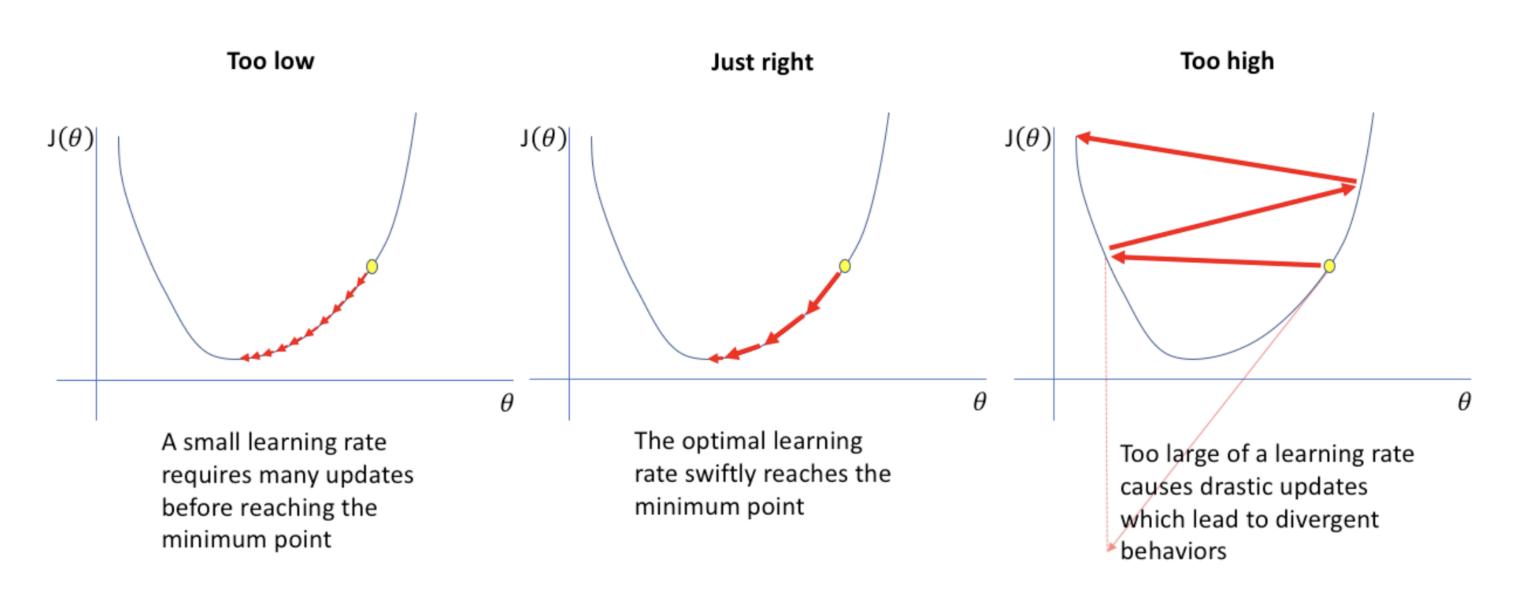
- 1 $w_i = 1?$
- 2 $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?
- 3 Xavier/Glorot initialization $w_i \sim \mathcal{N}\left(\mu = 0, \sigma = \sqrt{2/(n_{in} + n_{out})}\right)$
- ReLU \rightarrow 50% of outputs = 0 \rightarrow additional factor 2 \Rightarrow He initialization $\sigma = \sqrt{2/n_{in}}$
- 5 Glorot & He initialization also available for uniform distributions

3 Optimizing the training procedure

Optimizing the training procedure

Reminder

Convergence depends on learning rate



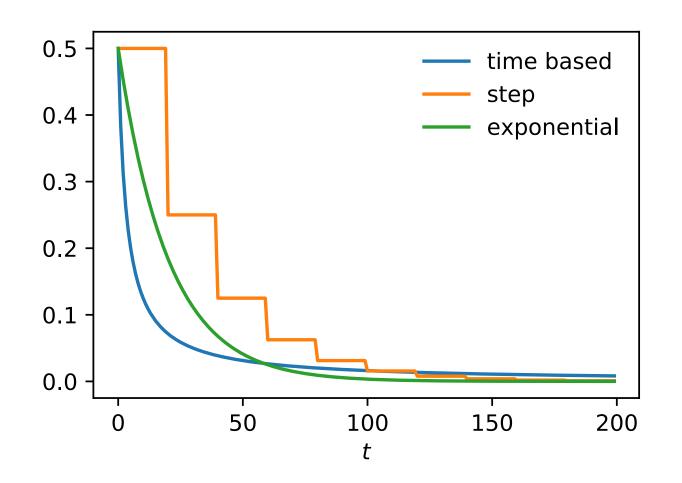
https://www.jeremyjordan.me/nn-learning-rate/

 \rightarrow Experiment with different orders of magnitude eg. $10^{-1}\dots10^{-6}$

Learn rate decay

Reduce learning rate over time to improve convergence

Time-Based Decay
$$I(t) = \frac{I_0}{1+k*t}$$
 Step Decay
$$I(t) = I_0 * \lambda^{int(t/\tau)} \quad \text{with } 0 < \lambda < 1$$
 Exponential Decay
$$I(t) = I_0 * e^{-t/\tau}$$

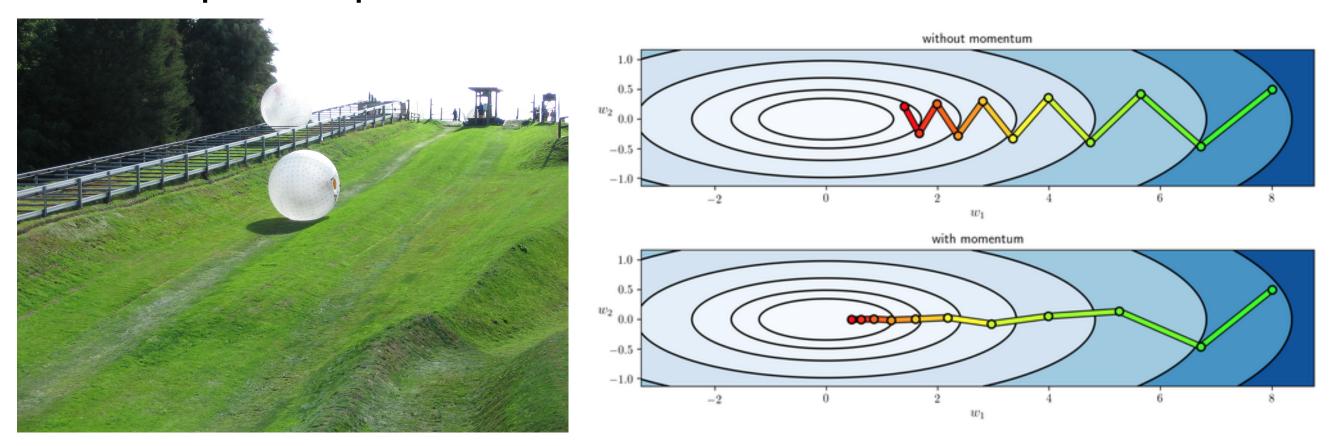


Momentum

Problem: One dimension much steeper than the other

gradient descent
$$m{W}_t o m{W}_{t+1} = m{W}_t - lpha
abla_{m{W}_t} \mathcal{L}$$
 GD + momentum $m{W}_t o m{W}_{t+1} = m{W}_t - lpha v_{dw}$ $v_{dw} = eta v_{dw} + (1-eta)
abla_{m{W}_t} \mathcal{L}$

Intuition: ball picks up momentum



jermwatt.github.io/machine_learning_refined

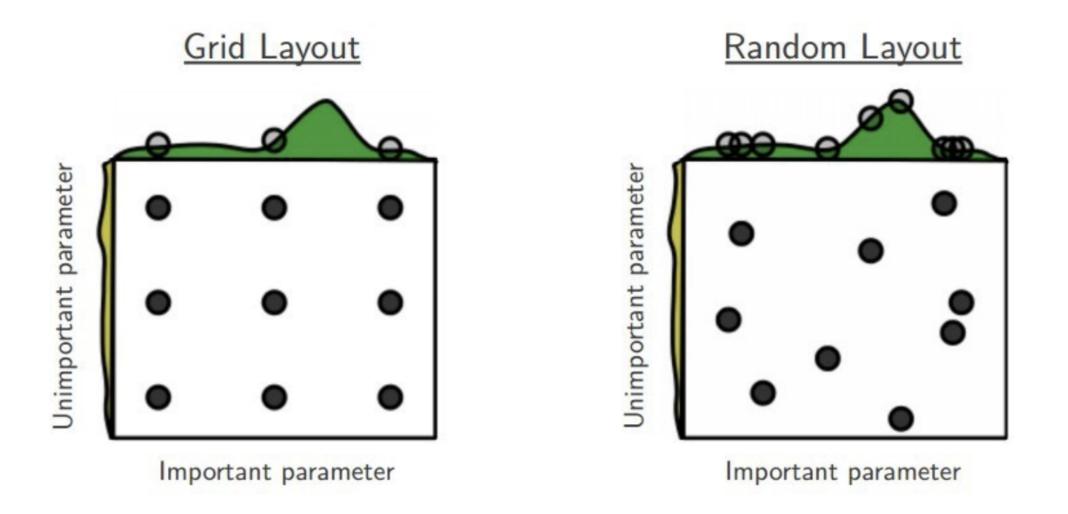
enforces dimensions where gradient points in same direction + reduces oscillation

Hyperparameter tuning

How can we find the best settings for the training? Problem: We can not compute a gradient!

- ullet by hand o underrated, helps to build experience
- 2 Grid search
- 3 Random (blind)
- 4 Bayesian optimization (educated guess, advanced)

Advantage of random vs grid search

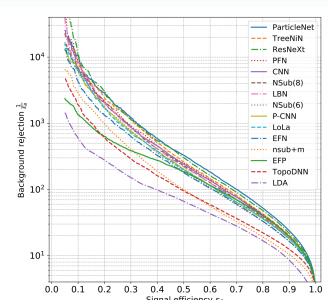


Advantages: easy to code, run parallel
Disadvantage: no use of information from previous iterations, curse of
dimensionality

A physicist's network

ML for big data in particle physics

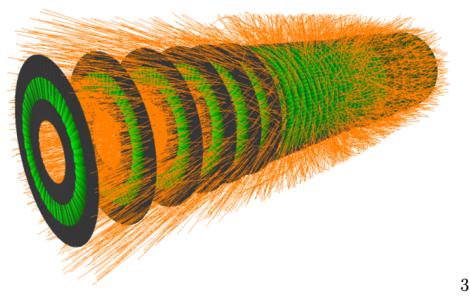
Top tagging



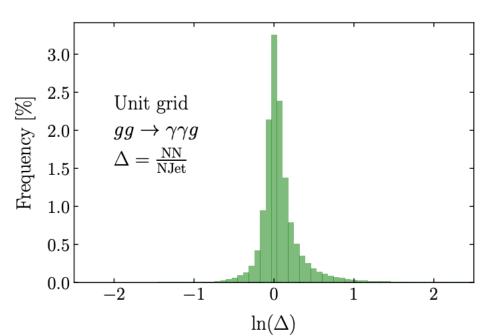
G. Kasieczka et al. [1902.09914]

Track reconstruction

Kaggle challenge

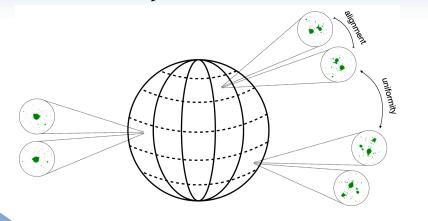


Amplitude estimation



J. Aylett-Bullock, et al. [2106.09474]

Anomaly detection



B. Dillon et al. [2108.04253]

Generative models

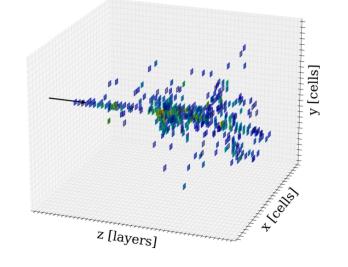
Graph networks

Bayesian networks

Regression

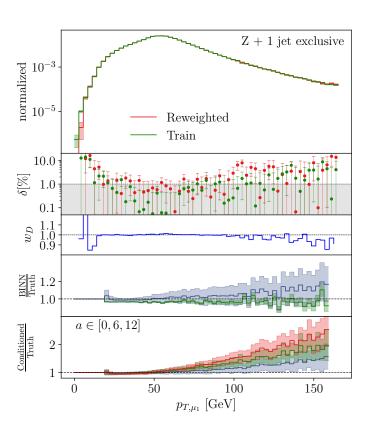
Classification

Detector simulation



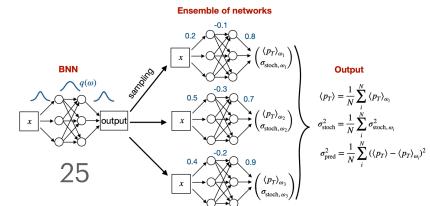
E. Buhmann et al. [2112.09709]

Event generation



A. Butter et al. [2110.13632]

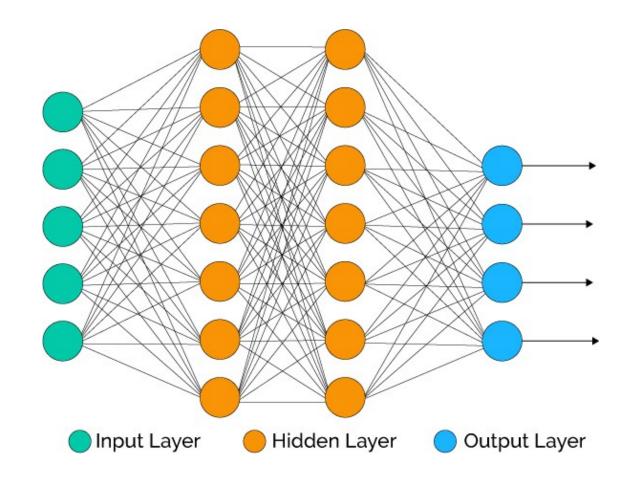
Jet calibration & uncertainties

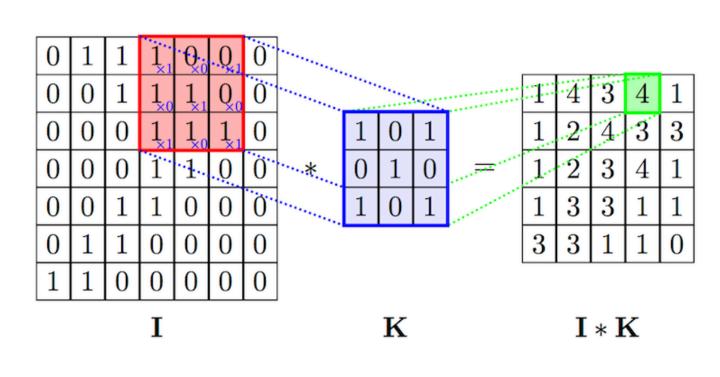


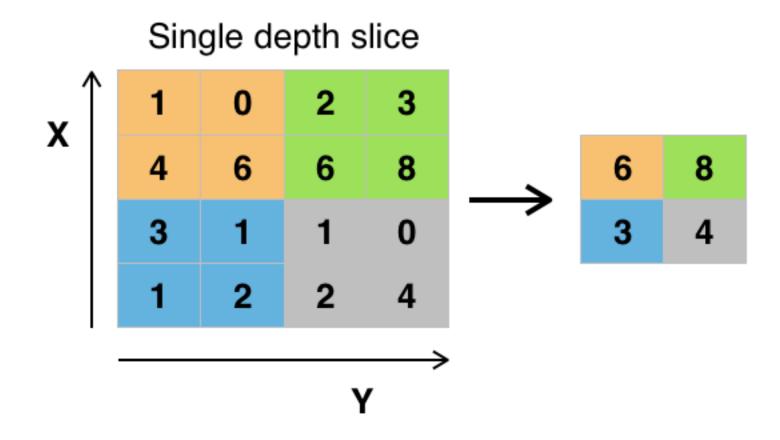
G. Kasieczka et al. [2003.11099]

Complete citations $\mathcal{O}(800)$ https://iml-wg.github.io/HEPML-LivingReview/

Different types of networks







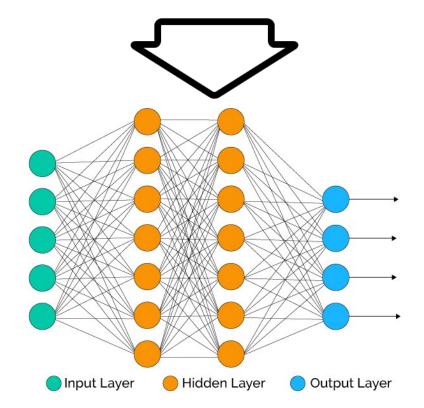
Dense networks Standard network Convolutional neural network (CNN)
Implement equivariance

Pooling layer (max/min/mean/std)
Implement invariance

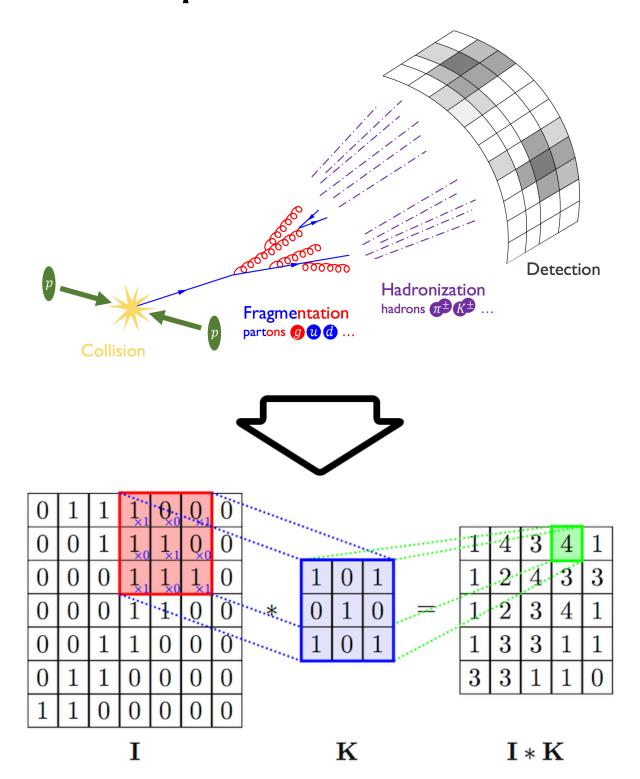
Data determine the network

Data with intrinsic order Example: events with structure

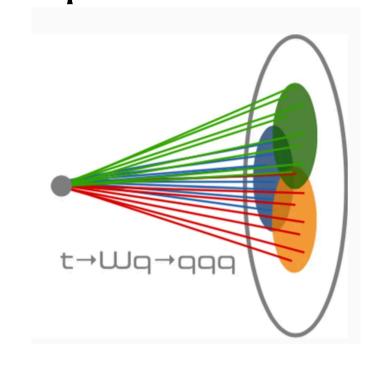
$$event = [p_{T,e^+}, p_{T,e^-}, \eta_{e^+}, \eta_{e^-}, p_{T,j}]$$



Images Example: Calorimeter cells



Unordered sets
Example: Jet constituents



Graphnetworks

How to represent a graph

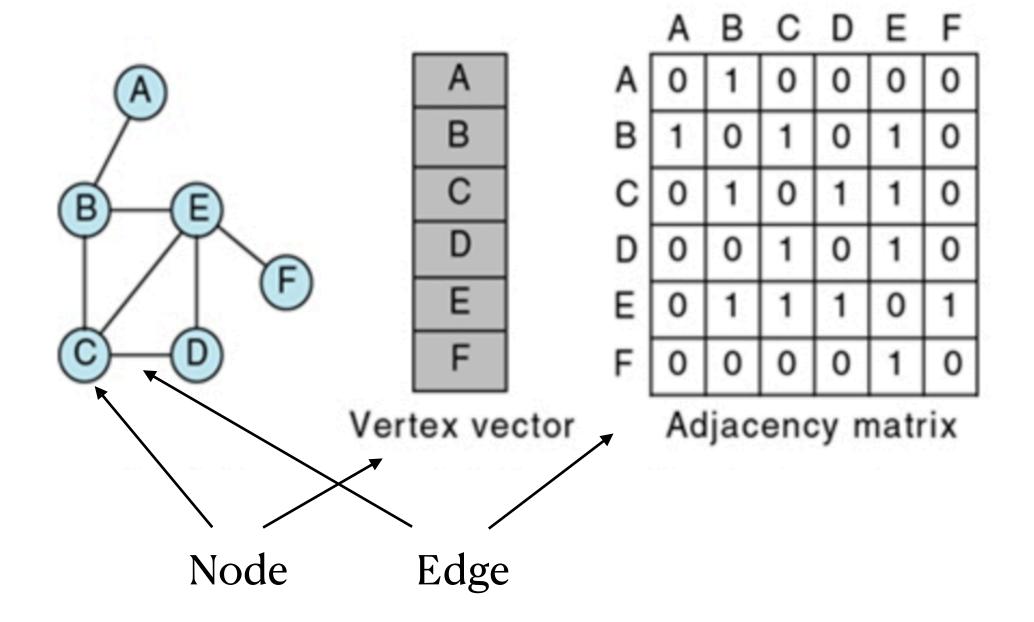
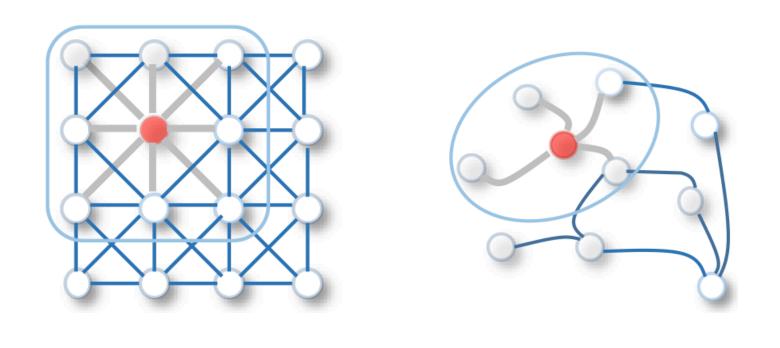


Image vs Graph



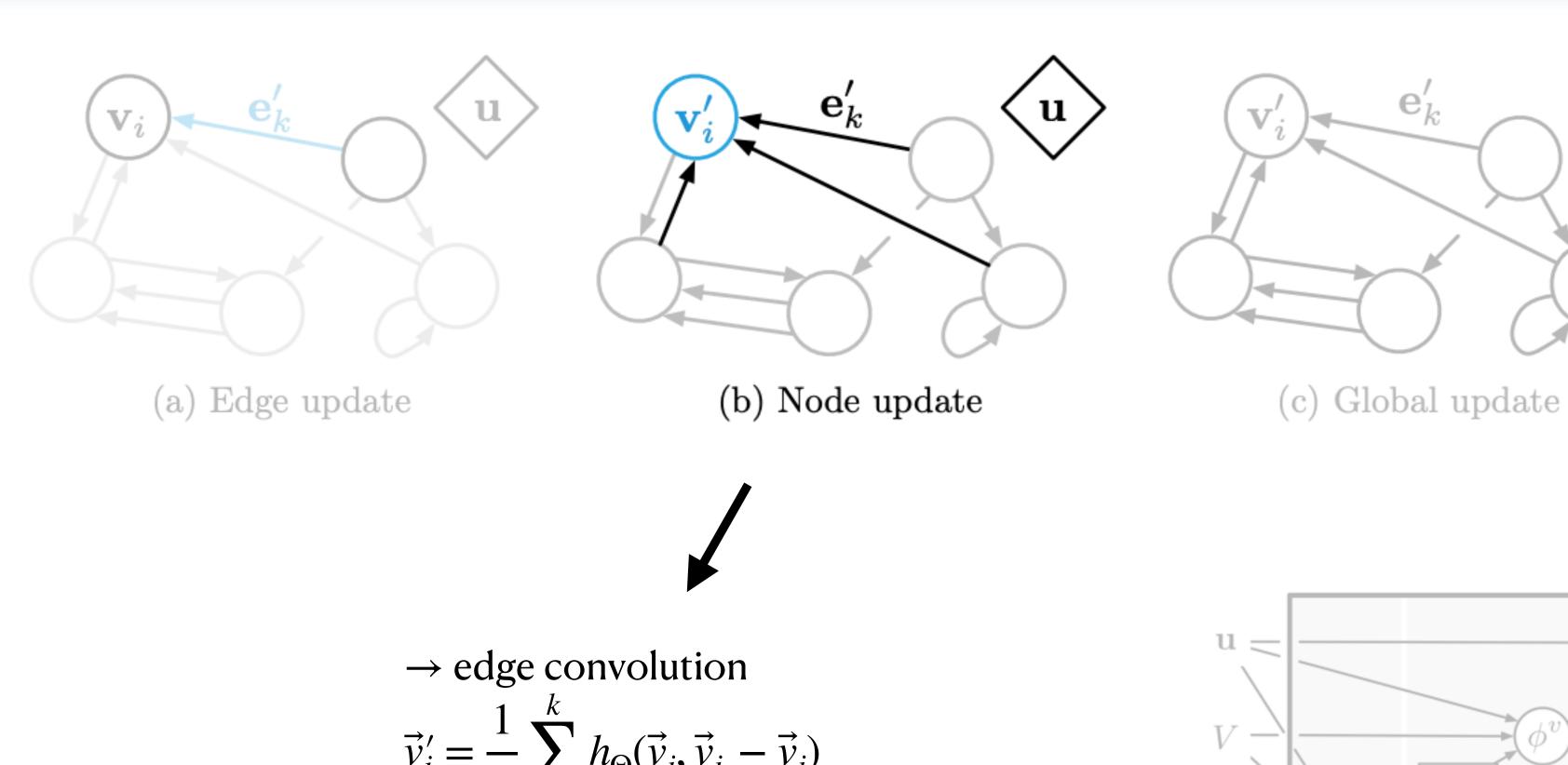
pixels neighbouring pixel

 \rightarrow node

→ neighbouring node (graph edges)

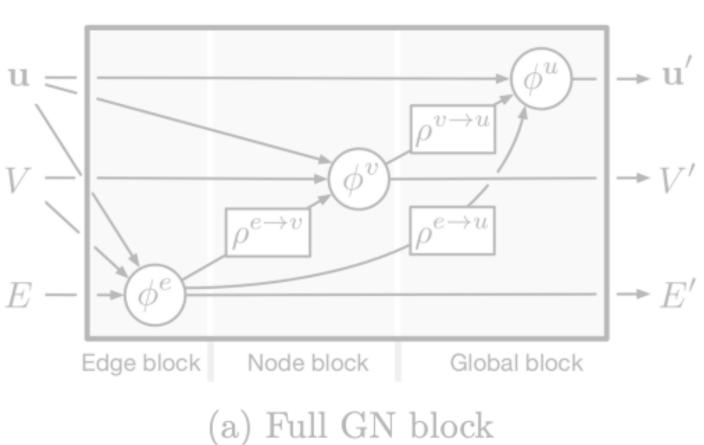
Graphnetworks

1806.01261



Aggregation function

h is independent of i, j



What can we do with graph networks?

Examples

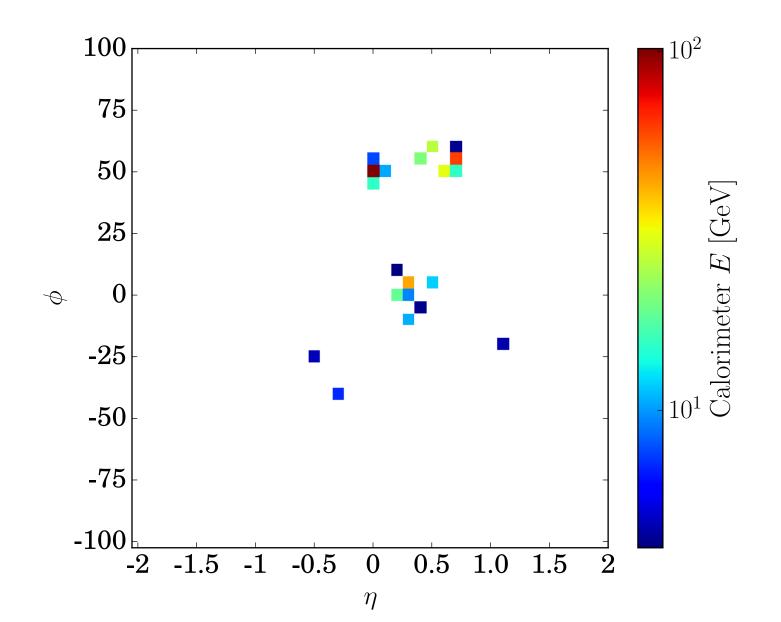
- Node classification (assign label to a node)
 - Does this hit belong to my track?
- Graph classification (assign label to graph)
 - Top vs QCD jet
 - B-jet identification
 - Event classification (Signal vs Background)
- Graph generation
 - Generate new jet
- Embedding into alternative space for better interpretation

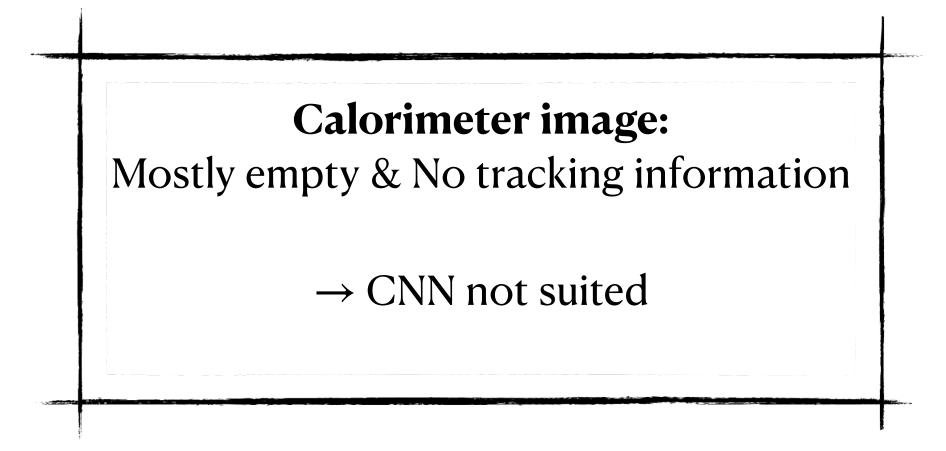
Top jet classification

1707.08966

Data set

- Top vs QCD
- Calorimeter image & Particle Flow objects
- Pythia8 + Delphes 3
- FastJet3 anti-kt with R = 1.5
- $|\eta_{fat}| < 1.0, p_{T,jet} = 350 \dots 450 \text{ GeV}$





Instead:

- → Set of particle flow objects
- → They become set of nodes

Optional: Build graph for instance from nearest neighbors

Lorentz Layer

Physics inspired layer that acts on nodes [1707.08966]

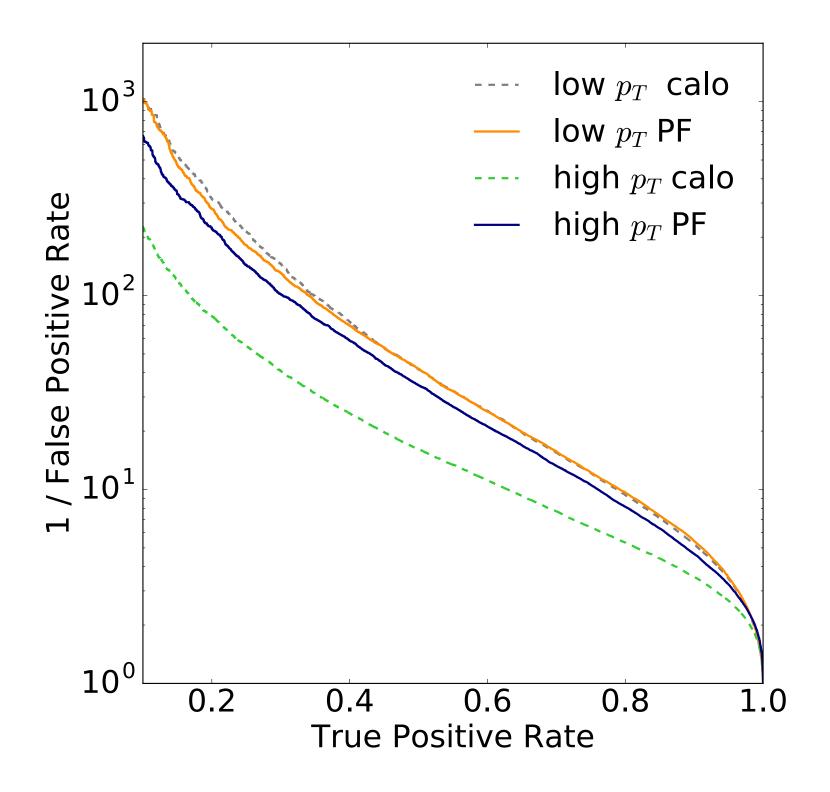
Transform Lorentz vectors into physics motivated objects.

$$ilde{k}_j \stackrel{\mathsf{LoLa}}{\longrightarrow} \hat{k}_j = \left(egin{array}{c} m^2(ilde{k}_j) \ p_T(ilde{k}_j) \ w_{jm}^{(E)} E(ilde{k}_m) \ w_{jm}^{(d)} d_{jm}^2 \end{array}
ight)$$

$$d_{jm}^2 = (\tilde{k}_j - \tilde{k}_m)_{\mu} g^{\mu\nu} (\tilde{k}_j - \tilde{k}_m)_{\nu}$$

Transformation in place Aggregation over other objects Distance d_{jm} encodes edge information

Not exactly graph concept, as weights are index dependent



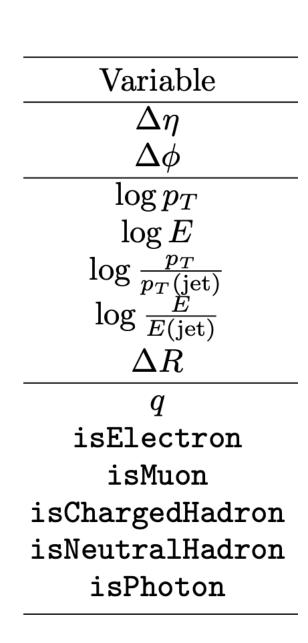
At high p_T :

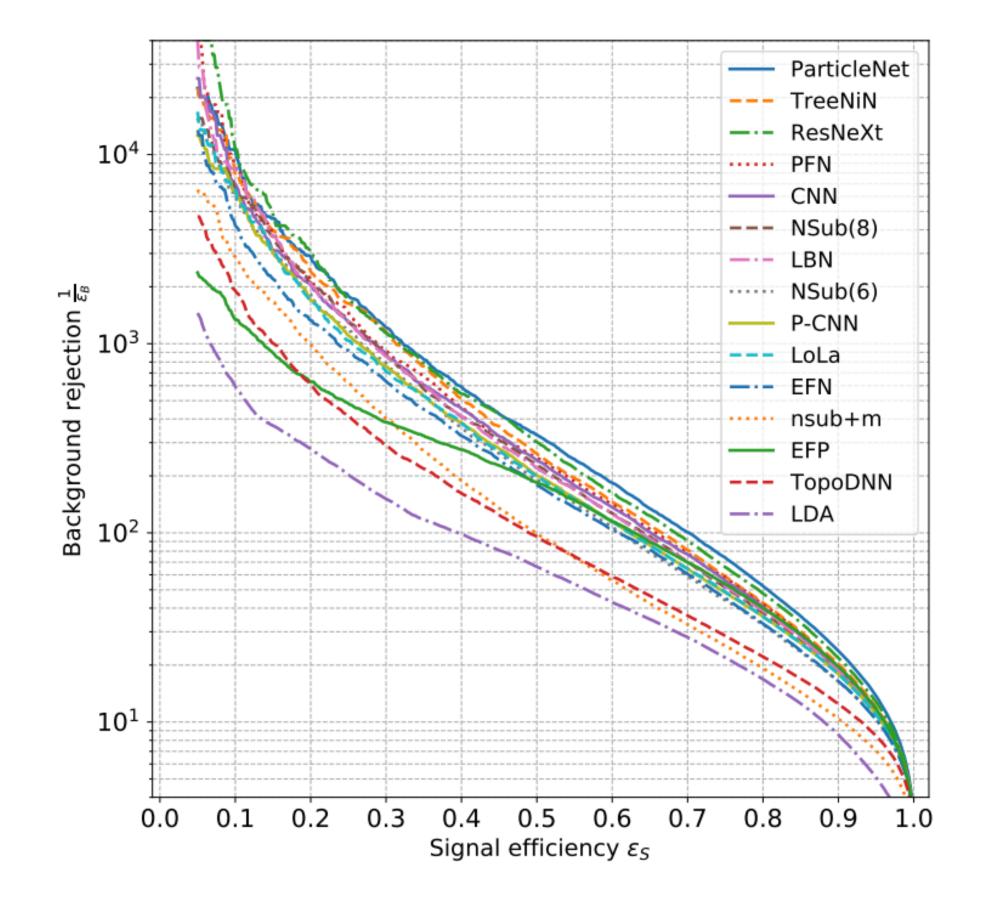
PF based network outperforms CNN \rightarrow tracking information is crucial!

ParticleNet

[1902.08570, H. Qu, L. Gouskos]

- Jet = unordered set of particles
- Particle cloud (permutation invariant)
- Translational symmetry
- K-nearest neighbours define local patch $x_i' = \boxdot_{j=1}^k \phi_\theta(x_i, x_{i_i} x_i)$
 - indicates an aggregation function (max, mean, sum, ...)
 - ϕ_{θ} is a 3 layer MLP
- Dynamically update edges for each layer
- Hyperparameter:
 - # neighbors, latent dim, dropout, batchnorm, learning rate,





Lorentz Net

2201.08187, S. Gong et al.

Combination of graph network and physics knowledge

Lorentz Net encodes Lorentz equivariance

$$x_i^{l+1} = x_i^l + c \sum_{j \in [N]} \phi_x(m_{ij}^l) \cdot x_j^l$$

$$m_{ij}^{l} = \phi_e \left(h_i^l, h_j^l, \psi(\|x_i^l - x_j^l\|^2), \psi(\langle x_i^l, x_j^l \rangle) \right)$$

 x^0 are the 4-momenta h^0 embedds charge, PID, etc. $\langle \cdot, \cdot \rangle$ Minkowski product $\psi(\cdot) = \operatorname{sgn}(\cdot) \log(|\cdot| + 1)$ ϕ_x are neural networks

Top tagging dataset

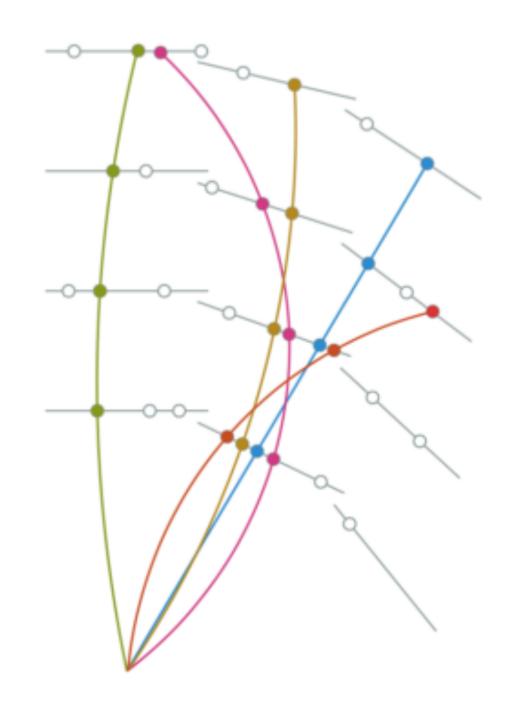
Training Fraction	Model	Accuracy	AUC	$1/\varepsilon_B$ $(\varepsilon_S = 0.5)$	$1/\varepsilon_B$ ($\varepsilon_S = 0.3$)
0.5%	ParticleNet	0.913	0.9687	77 ± 4	199 ± 14
	LorentzNet	0.929	0.9793	176 ± 14	$\boldsymbol{562 \pm 72}$
1%	ParticleNet	0.919	0.9734	103 ± 5	287 ± 19
	LorentzNet	$\boldsymbol{0.932}$	0.9812	$\boldsymbol{209 \pm 5}$	697 ± 58
5%	ParticleNet	0.931	0.9807	195 ± 4	609 ± 35
	LorentzNet	0.937	0.9839	293 ± 12	1108 ± 84

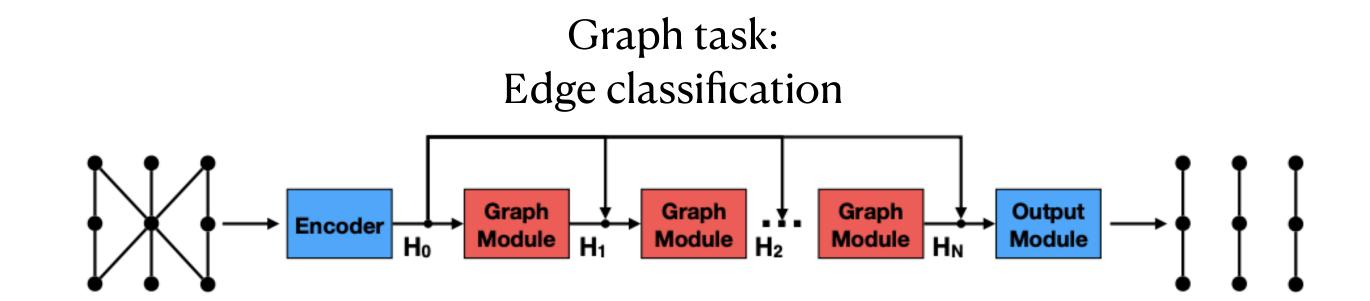
→ Physics layers enable better performance for smaller datasets

Tracking

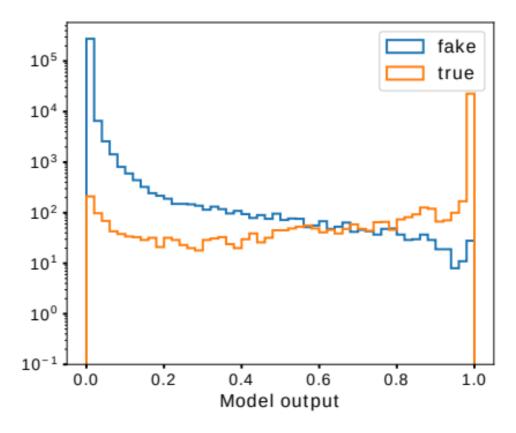
2012.01249 Review by J. Duarte & J.-R. Vlimant

Physics task: reconstruct tracks from hits in tracker





Which edges truly connect hits from same track?



95.7% purity @ 95.9% efficiency

Summary

- Choose network architecture according to data structure
- Traph networks particularly suitable for unordered sets of objects
- Very efficient training thanks to convolution
- Various applications from top tagging to track reconstruction

Including physics based layers makes networks more efficient!