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How to train better networks

1. Preprocessing 

2. Network initialisation 

3. Optimisation of the training 

4. Hyperparameter scans

Some pointers



Data Preprocessing

Why preporcessing?

• input features with di↵erent scales
eg. jet = (charge, nparticles , pT ,M, ⌘,�)

• large value with small spread
eg. pp ! Z ! ll ,mll 2 [80 GeV� 100 GeV]

• weights usually initialized to be sensitive in range [-1,+1]

• classification output in range [0,1]

• training more e�cient/stable if features are also in range [-1, +1]
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Rescaling
Example: pp ! Z ! µ+µ�

Rule of thumb: rescale to µ = 0,� = 1

px�p̄x
�(px )
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Rescaling
Example: pp ! Z ! µ+µ�

Rule of thumb: rescale to µ = 0,� = 1

px�p̄x
�(px )

E 0�Ē 0
�(E 0)

E0 = log(E � 20)
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Rescaling

Example: pp ! Z ! µ+µ�

Exception: Correlated observables

pi,µ�p̄i,µ
�(pi,µ)

pi,µ�p̄i,µ
�(pi,µ)

) Use same scale for pi,µ
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PCA

Principal component analysis

• directions maximizing variance

• eigenvector of covariance matrix

• cov(X ) = XTX

+ facilitates training

+ useful for interpretation

+ can reduce data dimension
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2 Network initialization
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Network initialization

We know how to update weights. But how do we start?

1 wi = 1?

E

2 wi ⇠ N (µ = 0,� = 1)? E

3 Xavier/Glorot initialization wi ⇠ N
⇣
µ = 0,� =

p
2/(nin + nout)

⌘

4 ReLU ! 50% of outputs = 0 ! additional factor 2
) He initialization � =

p
2/nin

5 Glorot & He initialization also available for uniform distributions
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Check for single neuron y = wixi with wi , xi independent:

< y2 > =
X

i

< w2
i x

2
i >

=
X

i

< wi >
2< x2i > + < xi >

2< w2
i > + < w2

i >< x2i >

=
X

i

< w2
i >< x2i >  < wi >=< xi >= 0
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Network initialization

We know how to update weights. But how do we start?

1 wi = 1? E

2 wi ⇠ N (µ = 0,� = 1)? E
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i >=

1

nincoming
to preserve variance through network
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Network initialization
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3 Optimizing the training procedure
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Optimizing the training procedure
Reminder

Convergence depends on learning rate

https://www.jeremyjordan.me/nn-learning-rate/

! Experiment with di↵erent orders of magnitude eg. 10�1 . . . 10�6
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Learn rate decay

Reduce learning rate over time to improve convergence

Time-Based Decay l(t) =
l0

1 + k ⇤ t
Step Decay l(t) = l0 ⇤ �int(t/⌧) with 0 < � < 1

Exponential Decay l(t) = l0 ⇤ e�t/⌧
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Momentum

Problem: One dimension much steeper than the other

gradient descent W t ! W t+1 = W t � ↵rW tL
GD + momentum W t ! W t+1 = W t � ↵vdw

vdw = �vdw + (1� �)rW tL

Intuition: ball picks up momentum

jermwatt.github.io/machine learning refined

enforces dimensions where gradient points in same direction
+ reduces oscillation
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Hyperparameter tuning

How can we find the best settings for the training?
Problem: We can not compute a gradient!

1 by hand ! underrated, helps to build experience

2 Grid search

3 Random (blind)

4 Bayesian optimization (educated guess, advanced)
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Advantage of random vs grid search

Advantages: easy to code, run parallel
Disadvantage: no use of information from previous iterations, curse of

dimensionality

36 / 39



A physicist’s network



ML for big data in particle physics

Generative models

Regression

Classification

Graph networks 

Bayesian networks 

Track reconstruction 
Kaggle challenge

Top tagging 

Amplitude estimation 

Event generation

Jet calibration & uncertainties 

J. Aylett-Bullock, et al. [2106.09474]
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E. Buhmann et al. [2112.09709]

Anomaly detection 

G. Kasieczka et al. [2003.11099]

G. Kasieczka et al. [1902.09914]
Detector simulation

Complete citations  
https://iml-wg.github.io/HEPML-LivingReview/

𝒪(800)

A. Butter et al. [2110.13632]

B. Dillon et al. [2108.04253]
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https://arxiv.org/abs/2106.09474
https://arxiv.org/abs/2112.09709
https://arxiv.org/abs/2003.11099
http://arxiv.org/pdf/1902.09914.pdf
https://arxiv.org/abs/2110.13632


Different types of networks
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Dense networks 
Standard network

Convolutional neural network (CNN) 
Implement equivariance

Pooling layer (max/min/mean/std) 
Implement invariance
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Data determine the network

Data with intrinsic order 
Example: events with structure

Images 
Example: Calorimeter cells

event = [pT,e+, pT,e−, ηe+, ηe−, pT,j]

Unordered sets 
Example: Jet constituents

?



Graph networks
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How to represent a graph

Node Edge

pixels                            
neighbouring pixel   

 node 
 neighbouring node (graph edges) 

→
→

Image vs Graph



Graph networks
1806.01261

 edge convolution →

⃗v′￼i =
1
k

k

∑
j=1

hΘ( ⃗vi, ⃗vij − ⃗vi)

Aggregation function   is independent of h i, j
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Examples 

• Node classification (assign label to a node) 
• Does this hit belong to my track? 

• Graph classification (assign label to graph) 
• Top vs QCD jet 
• B-jet identification 
• Event classification (Signal vs Background) 

• Graph generation 
• Generate new jet 

• Embedding into alternative space for better interpretation

What can we do with graph networks?



Top jet classification
1707.08966
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Calorimeter image: 
Mostly empty & No tracking information 

 CNN not suited →

Instead:  
 Set of particle flow objects 
 They become set of nodes

→
→

Optional: Build graph for instance from nearest neighbors

Data set 

• Top vs QCD 
• Calorimeter image  & Particle Flow objects 
• Pythia8 + Delphes 3 
• FastJet3 anti-kt with R = 1.5 
•  GeV |ηfat | < 1.0, pT,jet = 350 … 450
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Lorentz Layer
Physics inspired layer that acts on nodes [1707.08966]

Transform  Lorentz vectors into physics motivated objects.  

Transformation in place  
 Aggregation over other objects 

Distance  encodes edge information 

Not exactly graph concept, as weights are index dependent

djm

32

At high  :  
PF based network outperforms CNN 

 tracking information is crucial !

pT

→



ParticleNet
[ 1902.08570, H. Qu, L. Gouskos]

• Jet = unordered set of particles 
• Particle cloud (permutation invariant) 
• Translational symmetry 

• K-nearest neighbours define local patch 
 

•  indicates an aggregation function    
(max, mean, sum, …) 

•  is a 3 layer MLP 

• Dynamically update edges for each layer 

• Hyperparameter: 
• # neighbors, latent dim, dropout, 

batchnorm, learning rate, ….

x′￼i = ⊡k
j=1 ϕθ(xi, xij − xi)

⊡

ϕθ
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Lorentz Net
2201.08187, S. Gong et al.

Combination of graph network and physics knowledge 

Lorentz Net encodes Lorentz equivariance Top tagging dataset

 Physics layers enable better performance for smaller datasets→
 are the 4-momenta 
 embedds charge, PID, etc. 

  Minkowski product 
 

 are neural networks

x0

h0

⟨ ⋅ , ⋅ ⟩
ψ( ⋅ ) = sgn( ⋅ ) log( | ⋅ | + 1)
ϕx



Tracking
2012.01249 Review by J. Duarte & J.-R. Vlimant

Physics task:  
reconstruct tracks from hits in tracker

Graph task:  
Edge classification

Which edges truly connect hits from same track?

95.7% purity @ 95.9% efficiency
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Summary

 Choose network architecture according to data structure 

 Graph networks particularly suitable for unordered sets of objects 

 Very efficient training thanks to convolution 

 Various applications from top tagging to track reconstruction 

Including physics based layers makes networks more efficient!


