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1 Introduction

2 Machine learning basics

The goal of machine learning is to learn a complex function to describe some kind of data as
good as possible. In that sense physicist have been doing machine learning ever since they fit a
linear function to data to described classical mechanics. Nevertheless the combination of huge
amounts of available data at the LHC, in cosmology and astrophysics with latest advancement
in computing capacaties have made machine learning in fundamental physics an exciting re-
search topic. The following notes will give a very brief introduction into the basics of machine
learning. These notes are not meant to be self explanatory but to be used as accompanying
material to a lecture.

2.1 Building and training Neural Networks

A neural networks is a parametrized function fθ that maps input data x to an output y

fθ : x → y with x ∈ RDi , y ∈ RDo , (1)
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where Di/o refers to the dimension of the input and output. The network parameters are
referred to as weights and typically come in big numbers (ChatGPT 4 is estimated to have
around 1.8 · 1012 parameters). The underlying encoding of neural networks is not arbitrary.
They make use of the ability of GPUs to perform highly efficient matrix multiplications. A
network is therefore build of multiple layers l, each corresponding to one multiplication of
their respective input vector with a weight matrix W . Naively a dense neural network would
apply a series of weight matrices to the input data vector.

x (l) =W (l)x (l−1) + b(l) with 1≤ l ≤ Nlayers, x = x0, y = xNlayers (2)

The bias bl , a trainable weight vector, enables the mapping of the zero vector to a non-zero
output and turns the linear functions into affine functions. However, applying a series of affine
functions simply yields an affine function.

x (N) =W (N) ·
�

W (N−1) · . . . ·
�

W (2) ·
�

W (1)x (0) + b(1)
�

+ b(2)
�

+ . . .+ b(N−1)
�

+ b(N) (3)

=fW x (0) + b̃ (4)

It is therefore crucial to apply a non-linear function σ, the so-called activation function, to
achieve the expressibility that makes neural networks to powerful. The activation function is
applied after each affine function. The output of a layer is hence given by

x (l) = σ(l)(W (l)x (l−1) + b(l)) with 1≤ l ≤ Nlayers, x = x0, y = xNlayers (5)

Note that so far the indizes have refered to the layer of the network. In order to implement
a network it is useful to formulate the above equation in index notation using the usual sum-
mation convention. Eq. (6) then reads

x (l)i = σ
(l)(W (l)

i j x (l−1)
j + b(l)i ) with 1≤ l ≤ Nlayers, x = x0, y = xNlayers (6)

While the full equation describes a layer, for a single index i the expression corresponds to a
single node or neuron, the name giver of the neural network.

We have now assembled the minimal ingredients to build a deep neural network. In prac-
tice we have to choose three hyper parameters in order to fix the architecture, given the input
data: the depth of the network, ie. the number of layers Nlayers, the width of the network, ie.
the number of nodes per layer Nnodes, and the type of activation function. While theoretically
any non-linear function would be a possible option, there are several well-performing standard
choices.

• ReLU (Rectified Linear Unit). The ReLU function

ReLU(x) =max(0, x) =

¨

0 if x < 0

x if x ≥ 0
(7)

maps every number to its non-negative component. For non negative values it serves as aan
identity mapping while negative values are mapped to zero. This function is very popular
due to its low computing costs and the simple form of its derivative. Obviously it should
now be used in the final layer if the prediction should include negative values.

• Sigmoid. The sigmoid function

σ(x) =
1

1+ e−x
(8)

maps real numbers to the interval [0,1]. It is particularly usefull as a final layer in classifi-
cation task where the output of the network corresponds to a probability p ∈ [0, 1]

• GeLu, Leaky ReLU,... Other activation functions can be more suitable depending on the
problem. GeLu and leaky ReLU allow for a treatment of negative values. Moreover GeLU is
differentiable and smooths for all real numbers.
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2.2 The likelihood or How to formulate a loss function

Given the neural network we build in Sec. 2.1 the next step is to train the network so that it
performs the desired task. The training of the network is governed by the loss function. The
network is trained to minimize the loss function by adjusting its parameters. There are two
main approaches to build a lossfunction: Likelihood based or variational inference. In this
case we will focus likelihood based approaches. The goal of the training is to maximise the
probability of the network parameters θ given the training data xtrain. While we have no direct
access to this information we can relate it to known quantities using Bayes’ theorem.

p(θ |xtrain) = p(xtrain|θ )
p(θ )

p(xtrain)
(9)

We can now consider the three contributions individually:

• p(xtrain) is called the evidence. Since it is independent of the network parameters. Since
we will train the network to minimize the negative logarithm of the likelihood, the evidence
simply adds a constant contribution to the training. It can hence be ignored.

• p(θ ) is the prior over the network weights. There are no first principles based arguments for
a correct prior. A common choice is to assume a Gaussian prior on θ . Applying the logarithm
leads to a contribution proportional θ2 to the loss term, also known as L2−regularization.
An alternative choice consists in the Bernoulli distribution which leads to the implementa-
tion of Dropout, randomly setting weights to zero during the training.

• p(xtrain|θ ) is the likelihood of the network parameters. As the only term that connects
the data to the network parameters, maximizing the conditional probability of θ is often
equivalent to maximizing the likelihood, as long as the regularization is not too severe.

Instead of maximizing the likelihood, it is numerically more stable to minimize the negative
loglikelihood. Hence the final loss function will take the following form

L= − log (p(xtrain|θ ))− log (p(θ )) (10)

Regression Given the derived form of the loss function we have to postulate a functional
form of the likelihood. Motivated by the central limit theorem, we assume a Gaussian likeli-
hood.

− log p(xtrain|θ ) =
∑

j≤ntrain

|y j − fθ (x j)|2

2σ2(x j)
+ log(σ(x j)) + log(

p
2π). (11)

Classification One of the most common tasks in machine learning is classification, ie. as-
signing a class label like “top jet”, “QCD jet” or “lepton” to data. The output of the network
should give the probability of a sample to belong to a certain class. In binary classification,
the classification into two classses A and B the loss function is called binary cross-entropy. It
is derived from the KL-divergence of the distribution of the two classes. It reads

L= −
∑

x∼pA

log( fθ (x))−
∑

x∼pB

log(1− fθ (x)) with 0≤ fθ (x)≤ 1 (12)

= −
∫

dx pA(x) log( fθ (x)) + pB(x) log(1− fθ (x)) (13)
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The second line makes the transition towards the continuous limit.

Instead of giving a derivation for the loss let us consider what condition will be fulfilled
once we arrive at the minimum. Taking the functional derivative yields

δL
δ fθ

= 0= −
∫

dx
pA(x)
fθ (x)

+
pB(x)

1− fθ (x)
(14)

⇔
pA(x)
pB(x)

=
fθ (x)

1− fθ (x)
(15)

Back propagation

dL
dθ
=

dL
d y

d y
dz(n)

dz(n)

dσ(n−1)

dσ(n−1)

dz(n−1)

dz(n− 1)
dσ(n−2)

. . . (16)

3 How to train better networks

Please check out the slides for details.

Stochastic gradient descent

Training, validation and test data

The learning rate and optimizers

Regularization

Initialization

Data representation
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