

LHCb data analysis hands-on

IDPASC 2025 - Orsay, France

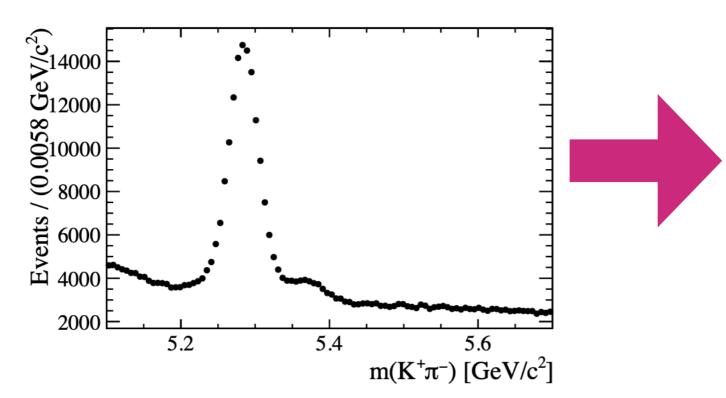
Christina Agapopoulou (IJCLab/CNRS)

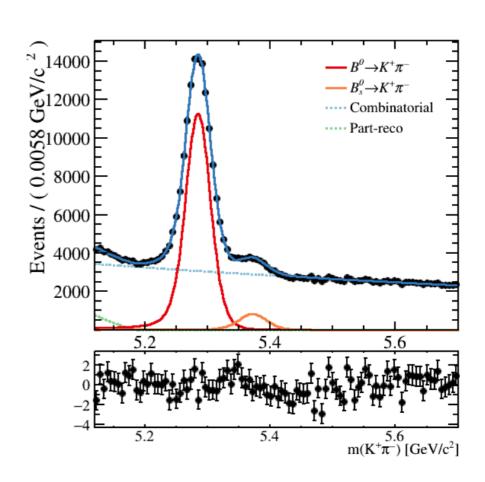
On today's menu: Fits

Why we fit

- We want to say something about our data... this can be:
 - Extract a parameter that tells us something about our theory (SM)
 - Discover a new particle
 - Precisely test the Standard Model
- How do we do it?
 - Find a discriminating variable that gives access to the information that we want: typically the inv.
 mass, but can also be angles, BDT scores etc
 - Create a model that describes the data. For this we need:
 - A model for our signal
 - Models for our backgrounds

Extract parameters of interest and their uncertainties





Finding the model

Ideally we can guess the model from the underlying physics. For example:

- Particles: resonance + some smearing (loss from Bremsstrahlung, detector resolutions etc): Gaussian core + power-law tails -> Crystal-ball (can be one or two-sided)
- Energy loss of charged particle transversing some material: Landau function
- But there's not always a 1-1 correspondence of our process to an analytic function
 - The reality is that some trial-and-error may be required
 - Empiric functions and kernel estimators are very useful tools
 - Alternative models can be considered as cross-checks / syst. Uncertainties

estimators...

- You already covered estimators in your statistics lecture this morning
- Some very nice ones are: ML and χ^2 , but which one should we be using?

Maximum Likelihood or χ^2 – What should you use?

- χ² fit is fastest, easiest
 - Works fine at high statistics
 - Gives absolute goodness-of-fit indication
 - Make (incorrect) Gaussian error assumption on low statistics bins
 - Has bias proportional to 1/N
 - Misses information with feature size < bin size
- Full Maximum Likelihood estimators most robust
 - No Gaussian assumption made at low statistics
 - No information lost due to binning
 - Gives best error of all methods (especially at low statistics)
 - No intrinsic goodness-of-fit measure, i.e. no way to tell if 'best' is actually 'pretty bad'
 - Has bias proportional to 1/N
 - Can be computationally expensive for large N
- Binned Maximum Likelihood in between

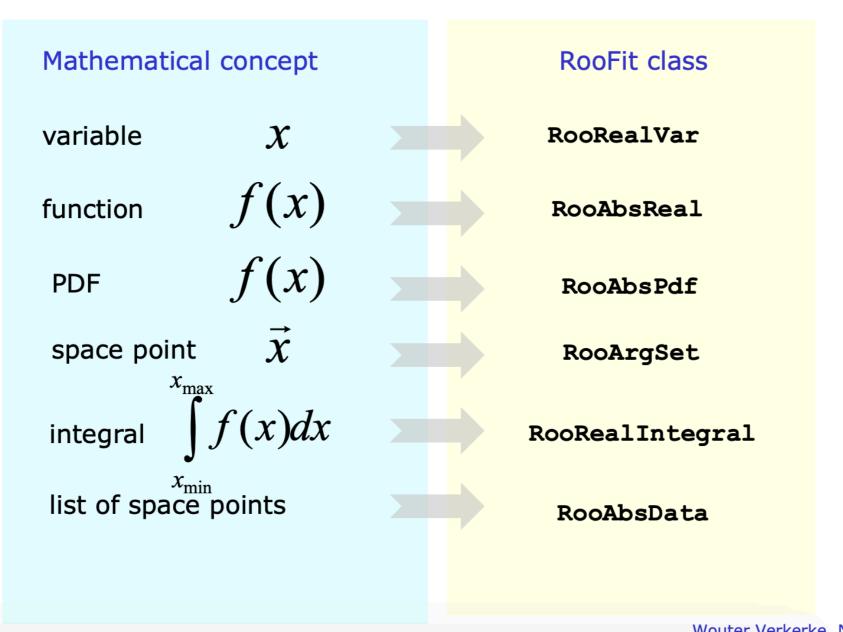
$$-\ln L(p)_{\text{binned}} = \sum_{\text{bins}} n_{\text{bin}} \ln F(\vec{x}_{\text{bin-center}}; \vec{p})$$

- Much faster than full Maximum Likihood
- Correct Poisson treatment of low statistics bins
- Misses information with feature size < bin size
- Has bias proportional to 1/N

RooFit basics

RooFit core design philosophy

Mathematical objects are represented as C++ objects



Wouter Verkerke, NIKHEF

Minimisation

Let's say we've chosen our estimator - we then need to find the best (minimum) value

(Default estimator is ML in RooFit)

Minuit

Watch for correlated parameters, find ways to avoid them

E.g.: instead of using two correlated parameters, take the 1st one and the ratio of the two.

Fix some of them (iteratively) or constrain allowed ranges / starting values

A brief description of MINUIT functionality

MIGRAD

https://web2.ba.infn.it/~pompili/teaching/data_analysis_lab/Verkerke-RooFit-part2.pdf

- Find function minimum. Calculates function gradient, follow to (local) minimum, recalculate gradient, iterate until minimum found
 - To see what MIGRAD does, it is very instructive to do RooMinuit::setVerbose(1). It will print a line for each step through parameter space
- Number of function calls required depends greatly on number of floating parameters, distance from function minimum and shape of function

HESSE

- Calculation of error matrix from 2nd derivatives at minimum
- Gives symmetric error. Valid in assumption that likelihood is (locally parabolic)

$$\hat{\sigma}(p)^2 = \hat{V}(p) = \left(\frac{d^2 \ln L}{d^2 p}\right)^{-1}$$

 Requires roughly N² likelihood evaluations (with N = number of floating parameters) Good approximation for large number of events

Beware of local minima:

starting values might matter

Wouter Verkerke, NIKHEF

MINOS

- Calculate errors by explicit finding points (or contour for >1D) where Δ -log(L)=0.5
- Reported errors can be asymmetric
- Can be very expensive in with large number of floating parameters

Useful in low-stats case

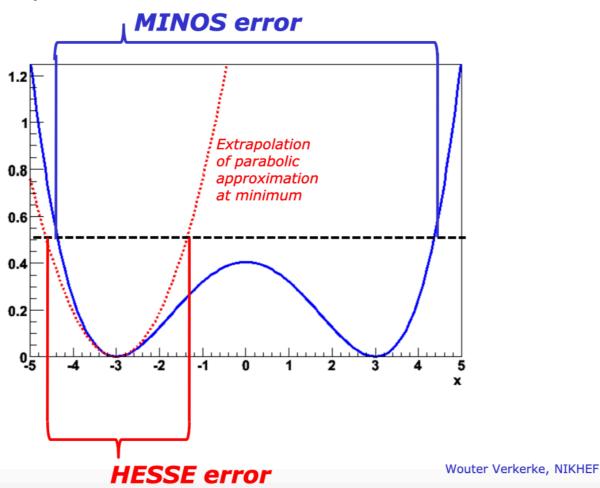
Minimisation

Minuit

https://web2.ba.infn.it/~pompili/teaching/data_analysis_lab/Verkerke-RooFit-part2.pdf

Illustration of difference between HESSE and MINOS errors

 'Pathological' example likelihood with multiple minima and non-parabolic behavior



Enough talking, let's get coding!