

Situation du développement de la source ASTERICS du projet NEWGAIN

J. Angot¹, H. Allain², G. Brunet³, T. Cadoux², M. Dubois³, H. Felice², D. Goupillière⁴, P. Graffin², Q. Hars¹, V. Kleymenov², M. Kusulja¹, E. Lagorio¹, F. Lemagnen³, D. Simon², A. Sinanna², P. Sole¹, <u>T. Thuillier¹</u>, R. Touzery², S. Trieste², A. Trudel³, R. Vallcorba Carbonnel², F. Vezzu¹

1. LPSC, 2. CEA Irfu, 3. GANIL, 4. LPC

Journée du GDR SCIPAC

Saclay, le 18/12/24

Sommaire

Le projet NEWGAIN

- Motivations
- Le nouvel injecteur
- Le lot de tâche « Source d'ions et plateforme HT »

Sources ECR pour les nuls

- Spécifications pour la source ASTERICS et réponse au besoin
- Avancées du projet
- Planning projet

Motivation du projet NEWGAIN au GANIL

NEW GAnil INjector : un nouvel injecteur d'ions pour SPIRAL2 avec A/Q=7

- Etendre les intensités fournies par l'injecteur A/Q=3 au-delà des masses A~60-80
 - Physique "SHE" et "N=Z" avec les reactions fusion-evaporation, expérience S3
- Anticiper des études de physique ultérieures avec U
 - Mécanique de réaction deep-inelastic, fusion-fission et fusion-evaporation en cinématique inverse.

>> NEWGAIN

NEW GANIL INJECTOR

Financement ANR-Equipex+ acquis

L'Injecteur NEWGAIN

Composition de l'injecteur

- Source + Plateforme HT
- LBE
- RFQ 10 keV/A

• LME

Interconnexion avec LBE1 existante

• Injection d'ions depuis la source A/Q=3 (PHOENIX V3)

Fonctionnement simultané des 2 injecteurs

Modèle 3D RFQ, CEA

NEWGAIN Le lôt de tâche « Source et plateforme HT »

Principe d'une Source d'ions ECR

>> NEWGAIN

Loi de confinement magnétique vs fréquence ECR

Superposition d'un miroir magnétique axial et radial hexapolaire

• La surface ECR (|B|=B_{ECR}) est fermée

 $I \sim n_{plasma} \sim f_{MO}^2 \sim B_{ECR}^2$

>> NEWGAIN

- « Minimum-B » , « bouteille magnétique »
- Loi magnétique: intensité des pics de champs définis par rapport à B_{ECR}

hexapole

 $B_r \sim 2 \times B_{ECR}$

Ζ

Spécifications pour la source d'ions

Besoin en faisceau d'ions métalliques avec A/Q=7

(1) 40 Ca, 48 Ca, 50 Ti, 54 Cr, 50 Cr, 58 Ni, 70 Zn jusqu'à 15 pµA (2) Xe, Pb, Bi and U $\geq 6 - 10$ pµA

Risque projet pour la source à minimiser

>> NEWGAIN

NEW GANIL INJECTOR

Que dit l'état de l'art des sources d'ions?

Analyse des spécifications :

Besoin d'une source d'ions supraconductrice à 28 GHz <u>au-delà des performances actuelles</u>

Mais comment faire une nouvelle source supra plus performante, tout en contrôlant le risque du projet?

Production d'ions et volume de plasma

>> NEWGAIN

Minimisation du risque de l'aimant supra

Etude de l'aimant dirigée par le CEA DACM

Augmenter le volume en faisant une homothétie d'un aimant de source existant opérationnel : la Source VENUS FRIB et sa technologie « bladders and keys »

- Réglage des pré-contraintes mécaniques appliquées aux bobines
- Remplacement individuel possible d'une bobine d'hexapole

Mise sous pression

Aimant VENUS

T. Thuillier

>> NEWGAIN

irfu

cea

Aimant supraconducteur ASTERICS

Technologie « Sextupole in Solenoid »

- Dernière iso-B fermée 2 T (+0.15 T/VENUS)
- Cable supraconducteur Nb-Ti

>> NEWGAIN

NEW GANIL INJECTOR

B _{PEAK} and Temperature Margin					
	Sextupole	Solen. INJ	Solen. MID	Solen. EXT	
Bpeak (T)*	6.75	5.73	4.12	5.33	
Current (A)	428	175	-179	190	
Temperature margin (K)**	1.11	1.81	2.59	1.95	

AG du GDR SCIPAC, SACLAY, 18/12/2024

Aimant Cryostaté et son Satellite

Paramètre	Valeur	VS VENUS
ECR frequency	28 GHz	
Max Axial Mirror Peak Field	3.7 – 0.1 – 2.5 T	
Radial Peak Field	2.55 T	
Chamber length	600 mm	+20%
Chamber radius	91 mm	+20%
Chamber volume	15.6 liter	+100%
ECR Length @ B _{min} =0.3 T	220 mm	+20%
ECR volume @ B _{min} =0.3 T	1.9 liter	+66%
Cooling power@ 4.2 K	10.8 W	
SC Cable	Nb-Ti	

Fabrication maquette bobine hexapole de type racetrack à Saclay

• Acquérir de l'expérience

>> NEWGAIN

NEW GANIL INJECTOR

Cable supradoncuteur Nb-Ti livré par FURUKAWA (JPN)

- 43 km pour les solénoïdes
- 20 km pour l'hexapole

Appel d'offre aimant clos le 2/12/24

 AO jugé infructueux=> phase de négociation directe avec les 3 candidats (Bilfinger, Sigmaphi, ASG)

Racetrack coil built for practising at CEA in 2023

irfu

cea

T. Thuillier

>> NEWGAIN

NEW GANIL INJECTOR

Situation Mécanique source (2/2)

Ensemble injection

>> NEWGAIN

NEW GANIL IN IECTOR

- Ajout de 4 plaques de 5 mm de tungstène pour casse le flux d'X émis par le plasma
- 2 ports pour fours métalliques DN35 pour des runs longs de physique
- 1 port pour endoscope (surveillance du plasma)

GRENOBLE | MODANE

AG du GDR SCIPAC, SACLAY, 18/12/2024

Situation Plateforme HT

Instrumentation

LBE

Source ASTERICS

Instrumentation source

Phase APD

- Implantation au sol validée
- Circulation et accès figés
- CAO en cours
- Fin APD ~fin 2025

Simulation extraction des ions en cours

• Etude paramétrique de la géométrie pour minimiser l'émittance du faisceau avec IBSIMU

laboratoire commun CEA/DRF SPIRE CNRS/IN2P3

CAO en cours de consolidation

Situation Ligne Basse Energie

CAO en cours de consolidation

MERCI POUR VOTRE ATTENTION

RESERVE

Techno bladder and keyd

Pad

Selected beam

e.g. ²³⁸U³⁴⁺

CAO, D. Goupillière

Goals

>> NEWGAIN

- Maximum transmission (large diameter)
- Uniform transverse electric field gradient
- Avoid electrical breakdowns
- Stop secondary electrons (-50 V on axis)

Electrostatic simulations

• Max. field value 14 kV/cm

▲ 1.4×10⁶

×10⁶

1.2

10 keV/u