

Prospects of the CUPID and CROSS experiments

Mariia Buchynska on behalf of the CROSS and CUPID collaborations

0νββ decay

Observation would imply:

- Violation of lepton number conservation ($\Delta L = 2$)
- Majorana nature of neutrinos => provide information of the neutrino mass scale and ordering

$0\nu\beta\beta$ decay

$$\frac{1}{T_{1/2}^{0\nu\beta\beta}} \sim G^{0\nu}(Q, Z) \cdot \left| M^{0\nu} \right|^2 \cdot \left\langle m_{\beta\beta} \right\rangle^2$$

(in case of light neutrino exchange mechanism)

Observation would imply:

- Violation of lepton number conservation ($\Delta L = 2$)
- Majorana nature of neutrinos => provide information of the neutrino mass scale and ordering

Bolometric technique

CUORE

- ➢ located at LNGS ∼ 3600 m.w.e.
- ➢ 988 TeO₂ crystals arranged in 19 towers
- 742 kg of TeO₂ (natural Te, I.A. ~34%), 206 kg of ¹³⁰Te
- operation at ~10 mK
- A analysed exposure:

 ~ 2 ton · yr TeO₂
 (~0.6 ton · yr ¹³⁰Te)

 $\begin{array}{l} no \ evidence \ of \ 0\nu\beta\beta \ decay\\ Half \ life \ limit: \ T_{1/2}^{0\nu} > 3.8\cdot 10^{25}yr \ (90\% \ C.l.)\\ m_{\beta\beta} < (70\mathchar`-240) \ meV \ (depending \ on \ NME) \end{array}$

BI = $(1.42 \pm 0.02) \cdot 10^{-2}$ ckky -> dominated by contributions of surface α

Proof of the feasibility of the ton-scale bolometric experiment Available large cryogenic infrastructure

arXiv:2404.04453 [nucl-ex]

From CUORE to CUPID

- $\succ \alpha$ events are rejected due to lower light yield of α particles
- → moving from ¹³⁰Te ($Q_{\beta\beta} = 2527$ keV) to ¹⁰⁰Mo ($Q_{\beta\beta} = 3034$ keV, $Q_{\beta\beta} > 2615$, endline of natural radioactivity from ²⁰⁸Tl);
 - natural I.A. of ¹⁰⁰Mo ~ 9.7% (for TeO ~34%) -> enrichment required

CUPID-Mo

- located in the Laboratoire
 Souterrain de Modane
 (France) ~ 4800 m.w.e.
- 20 scintillating bolometers arranged in 5 towers (single module: Li₂¹⁰⁰MoO₄ (~97% ¹⁰⁰Mo) and Ge light detector)

- > total mass of crystals is ~4.2 kg corresponding to ~2.3 kg of 100 Mo
- ~ 1.5 years of data taking

Ονββ decay	$T_{1/2}^{0\nu} > 1.8 \cdot 10^{24} \text{ yr } (90\% \text{ C. l.})$
limits	$m_{\beta\beta} < (0.28-0.49) eV$

Energy resolution (FWHM): **6.6(1) keV** @ 2615 keV **More than 99.9% a particles rejection efficiency** Total BI: $2.7^{+0.7}_{-0.6}(\text{stat})^{+1.1}_{-0.5}(\text{syst}) \times 10^{-3} \text{ counts/keV/kg/yr}$

Li₂¹⁰⁰MoO₄ scintillating bolometers demonstrate excellent performance and high radiopurity

CUPID baseline structure

CUORE cryostat and shielding + additional muon-veto system & neutron shields

Test of the CUPID tower

BDPT

(baseline design prototype tower)

- 28 LMOs
- 30 Ge light detectors without NTL effect
- Tested at LNGS, Italy in July-October, 2022

Results:

- Detectors successfully reached baseline temperature ~15 mK
- Baseline stable over the time
- LMO performance: median FWHM_{2615 keV} = 6.2 keV
- median light yield: 0.34 keV/MeV
- $\succ \alpha \text{ vs } \beta, \gamma \text{ discrimination capability:}$

$$DP = \frac{|LY_{\beta,\gamma} - LY_{\alpha}|}{\sqrt{\sigma_{\beta,\gamma}^2 + \sigma_{\alpha}^2}} = 3.2$$

 some excess noise on the LD -> changes to the LD assembly structure for the next test

S. Quitadamo, S. Ghislandi. Evaluation of the CUPID First Tower Prototype performance. Poster presented at Neutrino 2024; June 16-22, 2024; Milano; Italy

Next test: VSTT (Vertical Slice Test Tower)

 \succ Preparation for the new test are currently ongoing

What's new?

- Light detectors with NTL amplification
- Changes to the LD holding system to mitigate the noise

Neganov-Trofimov-Luke light detectors

One of the dominant background source in CUPID are random coincidences of $2\nu\beta\beta$ events (pile-up events)

For rejection of the pile-up events we need

•

fast signals

high signal-to-noise ratio

rise time can be reduced to 0.5ms by choosing optimal working point on the light detector

exploit the Neganov-Trofimov-Luke (NTL) effect for signal amplification

- q elementary charge
- η amplification efficiency

 $V_{el} = V^+ - V^-$ - potential between the electrodes E_0 - energy of the ionizing particle

 G_{NTL} - gain

<u>NIMA 940 (2019) 320</u>

Operation challenges

- Extra noise production after
 - certain voltage threshold \rightarrow need to search for the optimal V_{el}
- Limitation of the applied voltage: after certain threshold of V_{el} there is leakage current and we heat up the cryostat

CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity)

Aims at the development of a new bolometric technique to search for $0\nu\beta\beta$ decay in ¹⁰⁰Mo and ¹³⁰Te nuclei using $Li_2^{100}MoO_4$ and ¹³⁰TeO₂ crystals.

Main objectives:

- production and use of Li₂¹⁰⁰MoO₄ crystals
- protocol for the production of radiopure 130 Te-enriched TeO₂ bolometers
- R&D on metal-coated bolometers for discrimination between bulk and near surface interactions
- R&D on NTL Light Detectors
- Development of fully equipped underground facility to test advanced bolometers

Location and underground facility

- LSC (Laboratorio Subterráneo de Canfranc), Canfranc, Spain
- A pulse tube based dilution refrigerator was installed and commissioned in April 2019
 - Can provide baseline temperature ~10 mK
 - Experimental volume of 60 cm length and 30 cm diameter
- External and internal lead shielding
- Anti-radon system
- Muon veto

CROSS detectors structure

- Cubic Li₂¹⁰⁰MoO₄ (LMO) and ¹³⁰TeO₂ crystals (45 mm side) and square Ge or Si wafers (45 mm side, thickness < 1 mm)
- Temperature sensors: (NTD) Ge thermistors glued at crystals and Ge wafers with bi-component epoxy or UV-cured glue
- Light detectors are kept with 3D-printed polylactic acid (PLA) clamps on the crystal
- Cu-to-LMO mass ratio is minimized to 6% to decrease radioactivity from surface of close elements
- Heaters are glued on the crystals with bi-component epoxy and used to inject pulses of the same amplitude to optimize and stabilize detectors
- The electrical contacts to the sensors are provided with thin (25 um or 50 um) Au or Al bonding wires

arXiv:2405.18980 (2024)

Metal coating for surface events discrimination

Tests performed with Al, Pd, and Al-Pd coatings

$\frac{\text{Results for small crystals } (2 \times 2 \times 1 \text{ cm}^3 \text{ Li}_2\text{MoO}_4 \text{ crystal with Al-Pd}}{\text{grid})}$

- ➤ discrimination power of surface α-s: DP ≥ 4.5σ
- β surface events selection efficiency (with Al-Pd): ~93%
- baseline resolution is not affected and remains at keV level (with Al-Pd)

Difficulties with transfering this technology to larger samples $(4.5 \times 4.5 \times 4.5 \text{ cm}^3)$

- dramatic reduction of the sensitivity and a modification of the pulse shape for all the pulses for LMO crystals
- for TeO₂ sensitivity and pulse shape of the pulses are almost unaffected, but no discrimination capability

For now, this technology is discarded from the final demonstrator

R&D on NTL Light Detectors

Objectives

- Discrimination of α 's
- Rejection of pileup events produced by the random coincidence of two $2\nu 2\beta$ events

Current tests

- optimization of the electrodes geometry
- tests of Si wafers
- estimation of detector performance: leakage current, signal-to-noise ratio
- work on the pile up rejection:
 - searching for the best working point for pile-up events rejection
 - estimation of pile-up rejection capability based on detectors performance

Effective area (area under the electrodes)

Factor ~ 1.7 difference in gain at the same voltage

Recent test in Canfranc. Detectors structure

<u>10-crystal structure:</u>

- $6 \text{Li}_2 \text{MoO}_4$ crystals (2 reference high purity $\text{Li}_2^{100} \text{MoO}_4$ crystals and 4 natural crystals from a US company that are under investigation)
- 2 bare ¹³⁰TeO₂ crystals
- 2 ¹³⁰TeO₂ crystals with thin metallic coating (Al for one and Al-Pd for other)
- 10 NTL light detectors with circular electrodes geometry

Operation temperatures: 17–27 mK

Measurements:

- Calibration measurements with ²³²Th source
- Background measurements
- Tests on pile-up rejection capability

Recent test in Canfranc. Crystals performance

Energy spectrum of the reference $\text{Li}_2^{100}\text{MoO}_4$ crystal. Energy resolution @ 2615 keV ²⁰⁸Tl line is (5.7 ± 0.3) keV

Confirmation of the radiopurity of the TeO crystals (~1 mBq/kg activity of ²¹⁰Po) by bolometric measurements together with excellent energy resolution

Recent test in Canfranc. NTL LD performance

CROSS demonstrator

Structure

- 3 towers with 7 floors each
- each floor has 2 crystal + 2 NTL-LD
- each crystal, except the bottom ones, will face 2 NTL-LD
- top floor consists of TeO₂ crystals, that will work also as shielding to others crystals due to higher density

In total: $36 \text{ Li}_2^{100} \text{MoO}_4$ ($32 \text{ }^{100} \text{Mo-enriched}$) and 6 TeO_2 (all $^{130} \text{Te-enriched}$) Total mass of $^{100} \text{Mo: } 4.7 \text{ kg}$

Main objectives

- \blacktriangleright Test the performance of LMO and TeO₂ crystals
- Test the performance of light detectors with different geometry and made from different material
 - Si NTL LD with spiral electrodes geometry
 - Ge NTL LD with spiral electrodes geometry
 - Ge NTL LD with circular electrodes geometry
- Studies on pile-up events rejection efficiency
- Probe of the assembly structure

Preparation for the demonstrator is ongoing

Installation and commissioning in early 2025. Data taking is planned for 2 years

CROSS background and sensitivity

Background predicted by MC simulations

One of the dominant contributions to the BI are muon induced

events \rightarrow BI index highly depends on the way these events are rejected

- With rejection only events that have coincidences between 2 muon veto sectors BI = (7.2±0.9)·10⁻³ ckky
- With additional rejection of the events that were detected in 1 muon veto sector and 1 bolometer BI = (2.8±0.5) · 10⁻³ ckky

Sensitivity

Assuming 2 years live time of the experiment, the CROSS experiment will be able to set a limit (at 90% confidence level) on the $^{100}\text{Mo}~0\nu\beta\beta$ decay:

- half-life $T_{1/2}^{0\nu} > 8.5 \cdot 10^{24} \text{ yr}$ and $\langle m_{\beta\beta} \rangle < (0.131-0.221) \text{ eV}$ (assuming BI = 10⁻³ ckky)
- half-life $T_{1/2}^{0\nu} > 1.2 \cdot 10^{25}$ yr and $\langle m_{\beta\beta} \rangle < (0.110-0.186)$ eV (assuming BI = 10⁻² ckky)

Current limits on ¹⁰⁰Mo $0\nu\beta\beta$:

- CUPID-Mo: half-life $T_{1/2}^{0\nu} > 1.8 \cdot 10^{24} \text{ yr}$
- AMORE-I: half-life $T_{1/2}^{0\nu} > 2.9 \cdot 10^{24} \text{ yr}$ arXiv:2407.05618 (2024)

CUPID background and sensitivity

CUPID background goal: **BI = 10⁻⁴ counts/keV/kg/year** in the ROI

CUPID: phased approach

1/3 of all crystals

Start of data taking in 2030

Full CUPID

Start of data taking in 2034

CUPID Stage I has world-leading science reach

Conclusions

CROSS is developing cutting-edge technologies to reduce background noise in 0ν2β decay detection using bolometers and advanced NTL light detectors

NTL LDs

- demonstrate excellent energy resolution: $\sigma_{bsl} = 10 \text{ eV}$
- good discrimination of α 's
- signals with the rise time ~ 0.5ms were achieved, that together with high SNR due to NTL effect and geometry improvement allows to better reject pile-up events

Crystals

- LMOs show excellent energy resolution (FWHM = 5.7 keV at 2615 keV)
- high radiopurity of TeO₂ crystals together with good energy resolution is confirmed

CROSS demonstrator is competitive experiment on the $^{100}Mo~0\nu\beta\beta$

Preparation for the CUPID experiment is ongoing: technologies for single $\text{Li}_2^{100}\text{MoO}_4$ module are validated, R&D on NTL LDs is in progress

- ➤ 42 NTL LDs will be tested in the CROSS demonstrator
- full CUPID tower test with NTL LDs is planned at LNGS

> CUPID experiment allows us to fully explore the inverted ordering region and normal ordering region for m_{lightest} > 10 meV

- ➤ with the phased approach we can obtain early competitive physics results
- ➤ on a longer time scale mass-scaling is possible (CUPID-1T)

Thank you for your attention!