Latest constraints on the epoch of reionisation from CMB data

Stéphane Ilić IJCLab (Orsay, France)

L'Univers du pôle A2C: épisode 7, 13/12/2024

• The ACDM paradigm: a (relatively) simple model, with many successes...

Inflation

Formation of light and matter

Light and matter are coupled Light and matter separate

Dark ages

First stars

Galaxy evolution

The present Universe

• The ACDM paradigm: a (relatively) simple model, with many successes...

- ... but rests on some pillars that are "shrouded in darkness":
 - Primordial Universe, inflation
- Dark matter (''CDM'')
- ・ Dark ages & reionisation ・ Dark energy (''ハ'')
- ... and is shaken by some persistent tensions :
- \cdot H₀ discrepancies \cdot σ_8 tensions \cdot ISW excesses \cdot CMB "anomalies"

• The ACDM paradigm: a (relatively) simple model, with many successes...

- ... but rests on some pillars that are "shrouded in darkness":
 - Primordial Universe, inflation
 - Dark ages & reionisation

- Dark matter (''CDM'')
- Dark energy (''\')
- ... and is shaken by some persistent tensions :
 - \cdot H₀ discrepancies \cdot σ_8 tensions \cdot ISW excesses \cdot CMB "anomalies"

The transition from the neutral intergalactic medium (IGM = H + He) left after the Universe recombined at $z\sim1100$ to the fully ionised IGM observed today

First evidence from distant quasars (Gunn & Peterson 1965)

5.42	J1148+5251 z=6.42
5.48	J1020+5254 z=6.45
6.22	J1623+3112 z = 6.22
5.20	J1048+4637 z = 6.20
5.13	J1250+3130 z = 6.13
6.07	J1602+4228 z=6.07
6.05	J1630+4012 z=6.05
6.01	J1137+3549 z=6.01
6.00	J0818+1722 z=6.00
5.99	J1306+0356 z = 5.99
5.95	J1335+3538 z = 5.95
5.93	J1411+1217 z=5.93
5.85	J0540+5504 z = 5.85
5.85	J0005-0006 z = 5.85
5.83	J1436+5007 z = 5.83
5.82	J0836+0054 z=5.82
5.80	J0002+2550 z = 5.80
5.79	J0927+2001 z = 5.79
5.74	J1044-0125 z=5.74
	6800 7000 7200 7400 7600 7800 8000 8200 8400 8500 8600 9000 9200 9400 9600 960

Z =

λ(Å)

Decades later, still many open questions:

- WHEN: When did it happen? How long did it last?
- WHO: What were the sources responsible?
- HOW: How did it proceed? Was it gradual or sudden?
 What was its topology? Was it homogeneous or patchy?

Reionisation & the CMB

Reionisation & the CMB

Probability for a CMB photon to be scattered = $1 - \exp(-\tau)$

Effects of reionisation on the CMB

Impact on all CMB angular power spectra:

Reionisation & the CMB

Kinetic Sunyaev-Zel'dovich (kSZ) effect

Current reionisation constraints

$$\tau = \int_0^{\eta_0} a n_e \sigma_T d\eta$$

Revisiting large-scale CMB constraints

Why studying reionisation with large-scale CMB?

- Amplitude of matter fluctuations (A_s/σ_8) strongly degenerate with reionisation optical depth
- Neutrinos mass and hierarchy: impact of neutrinos hard to estimate without a good handle on the matter power spectrum
- Reionisation can potentially complicate the detection of inflationnary signatures in the CMB

Ilic et al. in prep: PR4 constraints on reionisation

- Reassess in depth sensitivity of Planck on optical depth
- Explore constraints beyond instantaneous reionisation
- Determine the impact of the choice of model

 $\chi_{\rm e}$ = ionisation fraction as a function of the redshift

(Standard) symmetric models, tanh-based

Asymmetric models, phenomenological, emulating e.g. 2 populations of ionising sources

Model-independent approaches :

binned $x_e(z)$, interpolating polynomials (linear & PCHIP) ²⁴

+ Principal Component Analysis

+ Reference 10 bins model

Datasets & Methodology

Data:

Planck Public Release 4, lollipop & hillipop

- low-ell polarization data only
- low-ell & high-ell temperature and polarization data

Theory:

Custom version of Boltzmann code CLASS (github.com/s-ilic/class_reio)

Sampler/pipeline:

Ensemble sampling Markov Chains Monte Carlo via ECLAIR (github.com/s-ilic/ECLAIR) (soon-to-be GPU compatible/accelerated)

Constraints on reionisation parameters

Constraints on τ

Constraints on τ

Constraints on A_s

Constraints on τ

Constraints on τ

Effects of an implicit prior on τ

Influence of model choice on τ prior

Influence of model choice on τ prior

Contours of equal τ value

Influence of model choice on τ prior

Influence of model choice on τ prior

Contours of equal τ value

Contours of equal likelihood value

Profile likelihood method

Given a fixed grid of τ values, find for each of them the best possible model by minimizing the chi-square across all other free parameters

Profile likelihood method

Given a fixed grid of τ values, find for each of them the best possible model by minimizing the chi-square across all other free parameters

Comparison of approaches on τ constraints

Comparison of approaches on τ constraints

Final word and perspectives

- Finishing touches to be applied to Ilic et al. (mostly 10 bins and PCA)
- Some future perspectives:
 - Interplay with neutrinos constraints/models
 - Combination with external datasets:
 Joint Ground-based CMB e.g SPT & ACT
 - > background measurements e.g. BAO
 - LSS measurements
 - >astrophysical measurements

Thank you very much for your attention!

Constraints on τ(z, 30)

$$\tau = \int_0^{\eta_0} a n_e \sigma_T d\eta$$

Constraints on τ(z, 30)

 $\tau = \int_{\mathbf{Z}}^{\eta_0} a n_e \sigma_T d\eta$

Constraints on $\tau(z, 30)$

Constraints on τ(z, 30)

 $\tau = \int_{\mathbf{Z}}^{\eta_0} a n_e \sigma_T d\eta$

V) Further observations

- QSO spectra
- Lyman-alpha forests
- IGM temperature measurements

<u>Neutral hydrogen (21cm) absorption/emission</u>

