# Cherenkov Telescope Array Observatory @IJCLab/A2C/APHE

From the camera of a telescope to the observations of stars

Quentin Luce

Journée A2C - 13/12/2024

# Multi-messenger astrophysics



Federica Bradascio

# **Cherenkov Telescope Array Observatory**



# Extragalactic Background Light, SuperNova Remnants, Alerts, etc.



Gamma-ray cosmology — Conclusions from three decades of extragalactic gamma-ray astronomy and perspectives for CTAO

Thesis of Lucas Greaux

**4D mapping of blazars: from optical to γ-ray emission** Thesis of Julian Hamo





High-energy gamma observation by CTA: origin of the Pevatrons, and development and analysis of the NectarCAM calibration

Thesis of Coline Dubos

# **Medium Size Telescope (MST)**



= 1855 photo-multiplier tubes, with a field of view of  $0.18^{\circ}$  each, for a total field of view of  $8^{\circ}$ 

# Calibration devices of NectarCAM



# **Calibration devices of NectarCAM**





# From the camera of a telescope to the **observations of stars**

# **Phase Interferometry vs Intensity Interferometry**



Angular resolution:

- $\Delta heta \propto rac{\lambda}{d}$
- Cannot be digitized at each telescope
- Need a stability of the optical delay line and of the atmosphere turbulences
- Large baselines (~hundreds of meters)
- Excellent signal to noise ratio



# **Phase Interferometry vs Intensity Interferometry**





First Stellar Intensity Interferometer @Jodrell Bank (University of Manchester)



# Narrabri Stellar Intensity Interferometry (NSII)

#### Initiated by Hanbury-Brown & Twiss

Development of the Narrabri Stellar Intensity Interferometer (in Australia) Distance d = 10-200m between the two telescopes (6.5m diameter) Single PMT with 20% Q.E. at  $\lambda = 440$  nm on each telescope,  $I_{anode} \sim 100 \mu A$ 

#### Measurement of the angular diameter of 32 stars (1963-1974)

Time correlation of 2 PMTs ↔ constructive interference of 2 photons pathways



Competing with Michelson interferometers...



# **NSII - the last intensity interferometer?**

**Revived by current generation IACT** 

Observations during moon time: increase of IACT duty cycle!



#### A vast science case:

Stellar diameters, winds, photosphere; Binary systems, accretion disks; Novae and other transient events; Rapid rotators; Exoplanet imaging; Stellar occultation: trans-Neptunian / Kuiper-belt objects







# **Modifications of the NectarCAM**



Kale Sulanke (DESY), François Toussenel (LPNHE), David Fink (MPP), Eric Delagne (IRFU, CEA/Saclay)

# Transmission of the signal

MAGIC system, implemented in LST-1



#### IDROGEN board (IJCLab) developed for radio astronomy

PAON4, experiment @ Nancay - Credits: Ansari+ 2019





Upcoming: 1 channel with 1 GS/s

Daniel Charlet (IJCLab), Cédric Esnault (IJCLab), Monique Taurigna-Quéré (IJCLab)

# Transmission of the signal



#### IDROGEN board (IJCLab) developed for radio astronomy

PAON4, experiment @ Nancay - Credits: Ansari+ 2019





Upcoming: 1 channel with 1 GS/s

### **Example of science case: looking at limb-darkening**

Credits: QL, Tarek Hassan, Jonathan Biteau

From the expected signal-to-noise ratio:

$$S/N \propto A \cdot \alpha(\lambda_0) \cdot q(\lambda_0) \cdot n(\lambda_0) \cdot |V|^2(\lambda_0, d) \cdot \sqrt{b_{\nu}} \cdot F^{-1} \cdot \sqrt{\frac{T}{2}}$$



# **Example of science case: looking at limb-darkening**

Credits: QL, Tarek Hassan, Jonathan Biteau

|          |   |                   | MEASURED U        |                 |
|----------|---|-------------------|-------------------|-----------------|
| BINARY   |   | В                 | V                 | R               |
| BS Dra   | А | $0.64 \pm 0.04$   | $0.50\pm0.03$     |                 |
|          | в | $0.64 \pm 0.04$   | $0.50\pm0.03$     |                 |
| EE Peg   | A | $0.62\pm0.03$     |                   |                 |
|          | в | $0.75 \pm 0.15$   |                   |                 |
| FS Mon   | A | 0.58              | 0.58              |                 |
|          | В | 0.594             | 0.591             |                 |
| GG Ori   | Α | $0.50 \pm 0.04$   | $0.51\pm0.03$     | $0.23 \pm 0.07$ |
|          | в | $0.50 \pm 0.04$   | $0.51\pm0.03$     | $0.23\pm0.07$   |
| WW Cam   | A |                   | $0.494\pm0.017$   |                 |
|          | в |                   | $0.499 \pm 0.017$ |                 |
| V459 Cas | Α |                   | $0.487\pm0.008$   |                 |
|          | в |                   | $0.487\pm0.008$   |                 |
| MU Cas   | Α |                   | $0.56\pm0.07$     |                 |
|          | В |                   | $0.56 \pm 0.07$   |                 |
| WW Aur   | A | $0.616 \pm 0.056$ | $0.416\pm0.060$   | 0.060           |
|          | B | $0.512 \pm 0.078$ | $0.418\pm0.083$   |                 |
| RW Lac   | Α |                   | 0.55              |                 |
|          | в |                   | 0.57              |                 |

100/ presision w/ solinging hipspice

~2h30 of observations, 4 LSTs + 9 MSTs



Credits: D. Heyrovsy, ApJ 2007



 $\rightarrow$  4 LSTs:  $\rightarrow$  4 LSTs + 9 MSTs:

~10% precision on u, for stars with B mag. < 0.5 and large radii ( $\theta$  > 0.8 mas) ~10% precision on u, for stars with B mag.  $< 1.2 (\theta > 0.2 \text{ mas})$ 

## **Conclusion?**



Measurements of Sirius A in 1956

Simulation of a 'Sirius A'-like star: d=2.6 pc,

angular diameter=6 mas **Planets:** Jupiter size with Saturn-type rings, angular diameter=350 µas 4 Earth-size objects



Next PhD cycles?

# Trugarez!\*

\*Thank you!

# Back-up

# SII at CTAO-North

#### Including MSTs in the SII array improves:

- · Extent of the coverage of spatial frequencies (*uv*-plane)  $\rightarrow$  Order-of-magnitude improved precision on ~100 µas stellar radius
- · Density of uv coverage: never achieved so far! → True capacity for "model-based" imaging (phase is unknown)



Credits: Tarek Hassan

#### **Performance of CTA-N telescopes**

 $\rightarrow$  Based here on Prod6 config. files for Monte-Carlo simulations



+ Semrock 425/26 nm filters (as in MAGIC SII paper)



| CTA-N                                                                                                                       | Large-Sized Telescope<br>(LST) | Medium-Sized Telescope<br>(MST) |        |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|--------|
|                                                                                                                             | Mec                            | hanics                          |        |
| Number of telescopes                                                                                                        | 4                              | 9                               |        |
| Effective mirror area<br>(including <b>shadowing</b> )                                                                      | 370 m²                         | 88 m²                           | Re     |
| Primary reflector diameter                                                                                                  | 23 m                           | 11.5 m                          | 1 🖆 1  |
| Focal length                                                                                                                | 28 m                           | 16 m                            | L J    |
| Optical design                                                                                                              | Parabolic                      | Modified Davies-Cotton          | ă      |
| Arrival time standard deviation                                                                                             | -                              | 0.7 ns                          | 0      |
| Pixel size (imaging)                                                                                                        | 6 arcmin                       | 10 arcmin                       | 5      |
| 95% containment diameter<br>of point spread function<br>In the filter plane at zenith                                       | 56 mm                          | 33 mm                           | IST-S1 |
| Pointing precision                                                                                                          | < 14 arcsec                    | < 7 arcsec                      | די     |
|                                                                                                                             | Optics                         |                                 |        |
| Cone half angle                                                                                                             | 22 deg                         | 20 deg                          | א      |
| Optical efficiency at 420 nm,<br>incl. mirror reflectivity, <del>shadowing</del> ,<br>entrance window, filters, light cones | 0.64                           | 0.73                            |        |
| Normalized spectral distribution<br>with a 420 nm filter, for a 21 deg cone                                                 | С                              | 0.91                            | Ref.   |
|                                                                                                                             | Photo                          | detection                       |        |
| PMT excess noise factor                                                                                                     | 1                              | 21                              | Ref.   |
| PMT quantum efficiency at 420 nm                                                                                            | 3                              | 9%                              | Ref.   |
| PMT transit time standard deviation at 1 p.e.                                                                               | 1.                             | 5 ns                            | Ref.   |
|                                                                                                                             | Ban                            | dwidth                          |        |
| Maximum electronic bandwidth                                                                                                | 650 MHz                        | 600 MHz                         |        |

Credits: Jonathan Biteau

# **Transmission of the signal**



sent through 50/125µm multi-mode fiber (a)  $\lambda = 850$  nm

Distance > 300 m?

**Option 2: Off-the-shelf (equivalent?) as in VERITAS** 



sent through 10 $\mu$ m single-mode fiber (*a*)  $\lambda$  = 1550 nm



# Angular diameter: Target stars



Credits: Lucijana Stanic Adapted from https://target-stars-sii.streamlit.app

## Looking at limb-darkening: Target stars



Number of stars with 10% precision on limb-darkening coefficient in the Northern hemisphere (B mag. < 1.2)

4 LSTs + 9 MSTs: ~10 stars (examples: *α*Lyr, *ε*CMa) for T ~2h30

Credits: Lucijana Stanic Adapted from https://target-stars-sii.streamlit.app