

Observatoire de Versailles Saint-Quentin-en-Yvelines

<u>Uvsq-Sat NG, un satellite dédié à</u> l'observation des gaz à effet de serre

27 January 2025 A.-J. Vieau, M. Meftah et al.

Uvsq-Sat NG

Uvsq-Sat NG aims:

- To continue the <u>Earth Radiation Budget</u> (ERB) research initiated by Uvsq-Sat and Inspire-Sat satellites. It intends to achieve broadband ERB measurements using advanced yet simple technologies.
- To monitor <u>atmospheric gas concentrations</u> (CO₂ and CH₄) on a global scale and explore their correlation with Earth's Outgoing Longwave Radiation (OLR).

→ Uvsq-Sat NG carries multiple payloads, including Earth Radiative Sensors (ERSs) for tracking solar and terrestrial radiation, a Near-Infrared (NIR) Spectrometer for assessing greenhouse gases (GHGs) concentrations, and a high-definition camera (NanoCam) for Earth imaging. The NanoCam helps with geolocating observed scenes and provides an opportunity to estimate the <u>vertical temperature profile</u> <u>of the atmosphere</u> by observing the Earth's limb.

→ We will also endeavor to capture images of the aurora between 60 and 80 geomagnetic latitude both above North and South oval. Nadir pointing or close Nadir pointing is convenient but limb geometry could also be very interesting. The goal is to conduct a study on <u>auroral structures</u>, with a specific emphasis on the less commonly observed sub-auroral features.

Earth Energy Imbalance

Importance of the key components of the Earth energy budget

Earth Energy Imbalance = Incoming solar – [Reflected solar (OSR) + Outgoing longwave radiation (OLR)]

GHG observations

□ Importance of GHG and role in Earth enegy budget

Total column of carbon dioxide [ppmv] for Thursday 28 November 2019. (Credit: Copernicus Atmosphere Monitoring Service, ECMWF)

Carte de Colonne de CO₂ (IASI/Metop-B) mois de décembre 2020

GHG observations

□ System functional overview an atmospheric CO2 and CH4 monitoring system

GHG observations

□ <u>GHG Mission Timelines</u>

Properties	Value	Comments
Orbit	Sun-Synchronous Orbit (SSO)	Maximum altitude of 600 km, LTAN of 06:30
Design life time	Minimum of 2 years in LEO	3 years desired
Launch date	Between Q2 2025 and Q1 2026	Launch vehicle: Falcon 9, Vega-C or Zéphyr
Launch adapter	QuadPack or EXOpod deployer	Payload mass up to 12 kg
CubeSat type	6U XL	Easy-to-assemble modular design
Launch mass	10.0 kg ¹	Maximum with margins
Dimensions	10.0 cm × 36.6 cm × 22.6 cm	Stowed along X, Y, and Z axes
	111.3 cm × 36.6 cm × 38.8 cm	Unstowed including all deployable elements

Uvsq-Sat NG, a new satellite to envision the space of tomorrow. An In-Orbit Demonstrator to prepare the SmallSats constellations of the future.

Uvsq-Sat NG carries multiple payloads, including Earth Radiative Sensors (ERSs) for tracking solar and terrestrial radiation, a Near-Infrared (NIR) Spectrometer for assessing greenhouse gases (GHGs) concentrations, and a high-definition camera (NanoCam) for Earth imaging. The NanoCam helps with geolocating observed scenes.

Table 5. Uncertainties of atmospheric gas concentrations (1–Sigma) for various data retrievals based on different instrumental characteristics.

	Resolution: 1 nm					
SNR	50	100	250	500	1,000	2,000
CO ₂ [ppm]	10.998	5.602	2.204	1.130	0.575	0.277
CH ₄ [ppb]	125.028	66.209	25.245	12.302	6.625	3.108
O ₂ [Ratio]	11.024E-3	5.921E-3	2.433E-3	1.165E-3	0.636E-3	0.299E-3
H ₂ O [cm]	4.746E-3	2.271E-3	0.877E-3	0.441E-3	0.207E-3	0.114E-3
		Resolution: 6 nm				
			Resol	ution: 6 nn	n	
SNR	50	100	Resol	ution: 6 nn 500	n 1,000	2,000
SNR CO ₂ [ppm]	50 33.974	100 16.720	Resol 250 6.426	ution: 6 nn 500 3.154	n 1,000 1.674	2,000 0.808
SNR CO ₂ [ppm] CH ₄ [ppb]	50 33.974 431.491	100 16.720 198.877	Resol 250 6.426 88.926	ution: 6 nn 500 3.154 40.973	n 1,000 1.674 21.593	2,000 0.808 11.317
SNR CO ₂ [ppm] CH ₄ [ppb] O ₂ [Ratio]	50 33.974 431.491 33.139E-3	100 16.720 198.877 16.209E-3	Resol 250 6.426 88.926 5.657E-3	ution: 6 nn 500 3.154 40.973 3.169E-3	n 1,000 1.674 21.593 1.588E-3	2,000 0.808 11.317 0.850E-3

The Levenberg-Marquardt algorithm is used to fit a model that relates the observed dimensionless transmittance functions to the concentrations of the atmospheric gases.

The Monte Carlo method is used to perform multiple simulations with randomized inputs within specified uncertainty bounds. This helps to estimate the range of gases concentrations (CO_2 , CH4, O_2 , H_2O) and their associated uncertainties.

	Uvsq-Sat NG	instrument spectral re	solution: 1 nm			
Surface	Pine forest (a)	Deciduous forest (b)	Ocean (c)	Homogeneous snow (d)		
Continental	0.5 ppm	0.4 ppm	77.6 ppm	0.3 ppm		
Desert	0.5 ppm	0.3 ppm	82.8 ppm	0.3 ppm		
Maritime	0.6 ppm	0.4 ppm	81.4 ppm	0.3 ppm		
Urban	0.5 ppm	0.4 ppm	78.4 ppm	0.3 ppm		
Uvsq-Sat NG instrument spectral resolution: 5 nm						
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow		
Aerosols	(a)	(b)	(c)	(d)		
Continental	1.3 ppm	0.9 ppm	234.5 ppm	0.7 ppm		
Desert	1.7 ppm	0.8 ppm	225.8 ppm	0.6 ppm		
Maritime	1.4 ppm	1.1 ppm	228.6 ppm	0.8 ppm		
Urban	1.3 ppm	0.9 ppm	233.2 ppm	0.7 ppm		

 CO_2 uncertainties (at 1 σ) determination according to the various simulation cases (requirements: 1 ppm).

	Uvsq-Sat NG	instrument spectral re	solution: 1 nm	ı
Surface Aerosols	Pine forest (a)	Deciduous forest (b)	Ocean (c)	Homogeneous snow (d)
Continental	4.9 ppb	3.7 ppb	194.1 ppb	2.5 ppb
Desert	4.4 ppb	3.2 ppb	184.8 ppb	2.4 ppb
Maritime	5.8 ppb	4.2 ppb	202.2 ppb	3.2 ppb
Urban	4.7 ppb	3.4 ppb	193.4 ppb	2.8 ppb
	Uvsq-Sat NG	instru <mark>ment spect</mark> ral re	solution: 5 nm	1
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow
Aerosols	(a)	(b)	(c)	(d)
Continental	12.2 ppb	10.2 ppb	735.6 ppb	7.8 ppb
Desert	10.5 ppb	8.5 ppb	710.8 ppb	7.0 ppb
Maritime	15.5 ppb	12.7 ppb	763.2 ppb	8.8 ppb
Urban	12.2 ppb	10.3 ppb	730.5 ppb	7.1 ppb

 CH_4 uncertainties (at 1 σ) determination according to the various simulation cases (requirements: 10 ppb).

UVSQ-Sat NG

CO₂ CH₄

UVSQ-Sat NG objectives include ensuring continuity of the Earth Radiation Budget (ERB) initiated via the UVSQ-Sat and Inspire-Sat satellites, achieving broadband ERB measurements, and conducting precise and comprehensive monitoring of atmospheric gas concentrations (CH_4 , CO_2) on a global scale. <u>More...</u>

Clavier et al., 2024

100 200 300 400 500 600 700 800 900 1000

RÉPUBLIQUE FRANÇAISE

Ministère de l'Éducation nationale, de l'enseignement supérieur et de la recherche

Ministère de l'Économie, des finances et de la souveraineté industrielle et numérique

2 2 JAN, 2025

portant autorisation à l'Université Versailles Saint-Quentin-en-Yvelines – Laboratoire atmosphères, milieux, observations spatiales (UVSQ-LATMOS) pour faire procéder au lancement par la société SpaceX depuis les États-Unis d'Amérique et assurer la mise en œuvre de l'opération de maîtrise dans l'espace extra-atmosphérique du satellite UVSQ-SAT NG

ARRÊTÉ du

La Ministre de l'Éducation nationale, de l'enseignement supérieur et de la recherche et le Ministre de l'Économie, des finances et de la souveraineté industrielle et numérique,

Vu la loi n°2008-518 du 3 juin 2008 modifiée relative aux opérations spatiales ;

Vu le décret n°2009-643 du 9 juin 2009 modifié relatif aux autorisations délivrées en application de la loi n°2008-518 du 3 juin 2008 relative aux opérations spatiales ;

Vu l'arrêté du 31 mars 2011 modifié relatif à la réglementation technique en application du décret n°2009-643 du 9 juin 2009 relatif aux autorisations délivrées en application de la loi n°2008-518 du 3 juin 2008 relative aux opérations spatiales ;

Vu la demande d'autorisation déposée par l'UVSQ-LATMOS enregistrée le 20 novembre 2024 ;

Vu l'avis du Président du Centre national d'études spatiales (CNES) par intérim en date du 14 janvier 2025 ;

Vu l'avis du Ministre des Armées en date du 17 janvier 2025 ;

Conclusions

Our main scientific goal is:

- To observe essential climate variables with a constellation of small satellites.
- To observe Auroras ...

The INSPIRE goals are:

- To initiate a Space Program, and to teach courses related to Space.
- To have Laboratory facilities for hardware development and specialized personnel for teaching.
- To have facilities for building and testing CubeSat/small Instruments.
- To have ground stations for satellite operations.

Our positions are:

- To Design for simplicity and robustness:
 - Assume designs will fail and then prove they will work.
 - Design the satellite for easy assembly and disassembly.
 - Have respectable margins, robust safe modes, few deployables, graceful performance. degradation, and frequent preventative satellite resets.
- To Build an experienced team—it matters:

 A successful team has veteran member(s) and frequent informal peer reviews (discussions) with proven subject matter experts.

Thank you for your attention