Cosmological Perturbations: A Wheeler–DeWitt Quantum-Gravity Perspective

Based on arXiv:2412.19782 w/ Federico Piazza

SIMÉON VAREILLES,

Centre de Physique Théorique (CPT), Marseille

Workshop CoBALt, Orsay 26 June, 2025.

Perturbative

vs. N

Non-Perturbative (WdW)

■ Usually, perturbations are quantized on a fixed classical background $g^0_{\mu\nu}$ satisfying Einstein's equations

$$\hat{g}_{\mu\nu} = g^0_{\mu\nu} + \hat{\delta g}_{\mu\nu}$$

■ The perturbation wavefunction satisfies a time-dependent Schrödinger equation:

$$i \partial_t \psi_P(\{\delta q\}, t) = \hat{H}(t) \psi_P(\{\delta q\}, t)$$

■ Time t is defined by the background solution — it is external to the quantum system.

lacktriangle Canonical quantization of gravity approach, quantize both geometry and matter ightarrow Wheeler–DeWitt equation

$$\hat{\mathcal{H}}\,\Psi[g_{\mu\nu},\phi]=0$$

- This is a constraint equation
 not an evolution equation.
 It reflects full invariance under time reparametrizations.
- No external time, time emerges relationally (e.g., using a field as a clock).

System of interest

■ Working in the **minisuperspace approximation**. Restrict to flat-FLRW metrics

$$ds^2 = -N^2 dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$

Integrating the Einstein-Hilbert action over a comoving spatial volume of size $\gtrsim H_{\star}^{-3}$

$$\frac{M_P^2}{2} \int d^4x \sqrt{-g}R + boundary \ terms \simeq \frac{1}{\alpha H_{\star}} \int dt \, a^3 \left(-\frac{3\dot{a}^2}{N} \right)$$

■ With dimensionless "loop coupling" parameter

$$\alpha \equiv \frac{H_{\star}^2}{M_P^2}$$

lacksquare System with d+1 dynamical variables: $m{d}$ matter-fields, $m{1}$ metric-field,

$$I = \frac{1}{\alpha H_{\star}} \int dt \left(\frac{1}{2N} G_{\mu\nu} \dot{q}^{\mu} \dot{q}^{\nu} - N H_{\star}^{2} U(q^{\mu}) \right)$$

Perturbation theory in minisuperspace and time invariance

■ Working on shell of the constraint

$$N = \pm \sqrt{\frac{-G_{\mu\nu} \, \dot{q}^{\mu} \dot{q}^{\nu}}{2H_{\star}^2 U}}$$

■ Inserting this back into the action gives

$$I = -\frac{\sqrt{2}}{\alpha} \int dt \sqrt{-G_{\mu\nu} \, \dot{q}^{\mu} \dot{q}^{\nu} \, U}$$

- Manifestly **invariant under** $t \to \tilde{t}(t)$; freedom to choose one of the field as time $(\tilde{t}(t) \equiv q^0)$: the system has only d **DoFs**.
- Working at quadratic order in the zero-mode fluctuation $\varphi^i \equiv q^i \bar{q}^i(t)$ yields a typical Schrödinger equation with time evolution t that can be written in different gauges.
- **Example:** $\rho = \ln a$, ϕ

Unitary gauge:
$$\delta\phi=0,\;\delta\rho=\zeta,$$

Spatially-flat gauge:
$$\delta \rho = 0, \ \delta \phi = \varphi$$

WdW Gauge-fixing & relational time

- "Time" is just one choice of gauge—no absolute clock
- Probabilities are **conditional**: $P(q^i | q^0) = \text{"value of field } q^i$ given that the clock field reads q^0 ".

ρ

- Different gauges = different foliations of (q^0, q^i) -space
- Minisuperspace example: $\rho = \ln a$, ϕ

Unitary gauge:

Spatially-flat gauge:

$$\delta \phi = 0, \ \delta \rho = \zeta,$$

 $\delta \rho = 0, \ \delta \phi = \varphi$

 $\bar{\rho}(\phi)$

 $dP(\varphi|\rho)$

WdW equation and the WKB ansatz

■ Full Wheeler–DeWitt equation (minisuperspace)

$$\left(-\frac{\alpha^2}{2} \Box + U(q^{\mu})\right) \Psi(q^{\mu}) = 0, \qquad \Box \equiv \frac{1}{\sqrt{-G}} \partial_{\mu} \left(G^{\mu\nu} \sqrt{-G} \partial_{\nu}\right)$$

Semiclassical WKB ansatz

$$\Psi(q^{\mu}) = e^{\frac{i}{\alpha}S(q^{\mu})} \, \psi(q^{\mu}) \quad \text{with } \alpha \ll 1$$

■ Leading order wavefunction is peaked on classical flow

$$p_{\mu}\Psi = -i\partial_{\mu}\Psi \approx (\partial_{\mu}S)\,\Psi$$

■ Order α^0 Hamilton–Jacobi equation for S

$$\partial^{\mu} S \partial_{\mu} S + 2U(q^{\mu}) = 0$$

lacktriangle Higher orders Schrödinger-like equation for ψ

$$i\left(\partial^{\mu}S\,\partial_{\mu}\psi + \frac{1}{2}\,\Box\,S\cdot\psi\right) = -\frac{\alpha}{2}\,\Box\,\psi$$

- Many solutions exist for the HJ function *S*.
- Work in Lorentzian regime \Rightarrow choose $S \in \mathbb{R}$ so $\Psi = e^{iS/\alpha}\psi$ has oscillatory (not Euclidean) behavior.

- lacksquare Use the ansatz: $\Psi=e^{iS/lpha}\psi$
- **Pick a congruence:** Embed a background $\bar{q}^{\mu}(q^0)$ into a surface-orthogonal bundle of classical solutions $q_{cl}^{\mu}(q^0)$.

 Classical hamiltonian constraint yields

$$g_{\mu\nu} \, \dot{q}^{\mu} \dot{q}^{\nu} + 2H_{\star}^2 U \, N^2 = 0$$

Inside the tube of solutions, impose:

$$\partial^\mu S \approx \frac{\dot{q}_{\rm cl}^\mu}{H_\star}$$

to align the WKB phase with classical motion $p^{\mu} \sim \dot{q}^{\mu}$ for N=1.

- Choose adapted coordinates (q^0, ζ^i) with $\dot{\zeta}^i = 0$ along all trajectories.
- \blacksquare Equation for quantum amplitude ψ

$$i\left(\underbrace{\partial^{\mu}S\,\partial_{\mu}\psi}_{q^{0}\,\partial_{0}\psi=H_{\star}^{-1}\,\partial_{t}\psi}+\tfrac{1}{2}\,\Box\,S\cdot\psi\right)=\mathcal{O}(\alpha)$$

■ In generic variables φ^i :

$$\partial^{\mu}S\partial_{\mu}\psi \sim H_{\star}^{-1}\partial_{t}\psi + \dot{\varphi}^{i}\partial_{i}\psi$$

Matching with perturbation theory

lacktriangle Perturbations at quadratic $arphi^i arphi^j$

$$i \partial_t \psi_P = -\frac{\alpha}{2} \nabla_i^2 \psi_P + \frac{1}{\alpha} \frac{M_{ij}(t) \varphi^i \varphi^j}{2} \psi_P$$

 \blacksquare WdW WKB expansion in α

$$i\left(\underbrace{\partial^{0}S\partial_{0}}_{\frac{dq^{0}}{dt}\partial_{0}=\partial_{t}}+\partial^{i}S\partial_{i}+\frac{1}{2}\square S\right)\psi=-\frac{\alpha}{2}\square\psi$$

■ KG-type current with leading order in WKB expansion probability density

$$dP(q^i|q^0) = |\psi(q)|^2 |\partial^0 S| \sqrt{-G} d\vec{q}$$

lacktriangle Matching perturbative wavefunction probability density $|\psi_P|^2 dec{q}$

$$\psi(q^i, q^0(t)) = \left(\sqrt{-G\partial^0 S} e^{\frac{i}{\alpha}f(q)}\right)^{-1} \psi_P(q^i, t) + \mathcal{O}(\alpha)$$

- $-\sqrt{-G\partial^0 S}$: ensures correct relational time flow
- \bullet $e^{\frac{i}{\alpha}f(q)}$: accounts for classical potential term

Scalar field minimally coupled to FLRW spacetime

■ Work in minisuperspace with metric of the form

$$ds^2 = -N^2 dt^2 + e^{2\rho(t)} d\vec{x}^2,$$

and model the matter content with a scalar field $\phi(t)$. The action reads

$$I = \frac{1}{\alpha H_{\star}} \int dt \, e^{3\rho} \left(-\frac{3\dot{\rho}^2}{N} + \frac{\dot{\phi}^2}{2N} - NH_{\star}^2 V(\phi) \right)$$

lacktriangle Perturbations $\delta
ho = \zeta, \, \delta \phi = 0$ in unitary gauge satisfy

$$iH_{\star}^{-1}\partial_t \psi_P = -\alpha \frac{e^{-3\rho}}{6} \frac{H_{\star}^2 V(\phi)}{\dot{\phi}^2} \partial_{\zeta}^2 \psi_P$$

lacktriangle Perturbations $\delta\phi=arphi,\ \delta
ho=0$ in spatially-flat gauge satisfy

$$iH_{\star}^{-1}\partial_t\psi_P = -\frac{\alpha}{6}\frac{H_{\star}^2V(\phi)}{\dot{\rho}^2e^{3\rho}}\partial_{\varphi}^2\psi_P - \frac{3}{2\alpha}\frac{\dot{\rho}^2e^{3\rho}}{H_{\star}^2V(\phi)}\left(\frac{V'(\phi)^2}{V(\phi)} - V''(\phi)\right)\varphi^2\psi_P$$

Slow-roll quasi-exponential potential $\epsilon, \eta \ll 1$

■ Considering the first-two slow-roll parameters $\epsilon \equiv -\frac{\dot{H}}{H^2}, \eta \equiv \frac{\dot{\epsilon}}{\epsilon H} \ll 1$, allows to build the quasi-exponential potential $\left(\chi \equiv \frac{\phi}{\sqrt{2\epsilon}}\right)$

$$V(\chi) = (3 - \epsilon) \exp\left[-2\epsilon \left(1 + \frac{\eta}{6}\right) \chi - \frac{\epsilon \eta}{2} \chi^2 + \mathcal{O}(\epsilon^2, \eta^2)\right].$$

- Unitary gauge: matter χ as clock $\{\rho,\chi\} \to \{\zeta(\rho,\chi) = \rho \bar{\rho}(\chi),\chi\}$
- Schrödinger-like equation

$$i \left[\underbrace{e^{-\epsilon \chi} \left(1 + \frac{(3 - \epsilon)\eta}{6} \chi \right) \partial_{\chi} + \frac{1}{2} \, \Box S}_{} \right] \psi =$$

$$- \alpha \frac{1}{\epsilon} e^{-3\bar{\rho}(\chi)} e^{-3\zeta} \left[\underbrace{\frac{3 - \epsilon}{12} \, \partial_{\zeta}^{2} + \underbrace{\frac{1}{4} \left((\bar{\rho}^{\,\prime 2} - 1) \, \partial_{\zeta}^{2} - \bar{\rho}^{\,\prime\prime} \partial_{\zeta} - 2\bar{\rho}^{\,\prime} \partial_{\chi} \partial_{\zeta} + \partial_{\chi}^{2} \right)}_{\mathcal{O}(\epsilon^{0})} \right] \psi \,.$$

- lacktriangleq lpha-corrections may dominate in eternal inflation $\frac{lpha}{\epsilon}\gtrsim 1$
- WdW approach brings higher "time" derivatives ∂_{χ} , ∂_{χ}^2 and non-Gaussian terms $e^{-3\zeta}$ in this scalar field example.

Summary and outlook

- Two complementary descriptions:
 - Schrödinger evolution of perturbations on classical FLRW
 - Wheeler–DeWitt equation: quantize geometry + matter
- Wavefunctions match at leading order:

$$\psi_P = e^{\frac{i}{\alpha}f(q)} \sqrt{-G\partial^0 S} \ \psi + \mathcal{O}(\alpha)$$

- Quantum gravity corrections appear at higher orders in α
 - Higher "time" derivatives, cross terms, non-Gaussianities
 - lacktriangle Relevant when $lpha/\epsilon\gtrsim 1$, e.g. in single scalar field eternal inflation
- Beyond WKB: Bouncing solutions from relational Schrödinger dynamics \implies Time as test field, flat FLRW $x \sim a^{\frac{3}{2}}$ + radiation:

$$i\alpha H_{\star}^{-1}\partial_{t}\Psi(x,t) = -\frac{1}{2}\left(\alpha^{2}\partial_{x}^{2} + x^{-2/3}\right)\Psi$$

- Interpreted as s-wave scattering off a potential
- Suggests singularity resolution via quantum bounce
- See recent work with F. Piazza arXiv:2505.08703