Cosmological Perturbations: A Wheeler-DeWitt

Quantum-Gravity Perspective
Based on arXiv:2412.19782 w/ Federico Piazza

SiMEON VAREILLES,
Centre de Physique Théorique (CPT), Marseille

Workshop CoBALt, Orsay
26 June, 2025.

1/11


arXiv:2412.19782

Introduction

Perturbative vs.  Non-Perturbative (WdW)

m Usually, perturbations are m Canonical quantization of
quantized on a fixed classical gravity approach, quantize
background ggy satisfying both geometry and matter —
Einstein’s equations Wheeler—-DeWitt equation

g;w :921,4-59“” ,H\Il[guuvﬁb} =0
m The perturbation wavefunction m This is a constraint equation

satisfies a time-dependent

. " — not an evolution equation.
Schrédinger equation: q

It reflects full invariance under

i 0ppp({0q},t) = f{(t)w},({(sq}’t) time reparametrizations.

m Time t is defined by the m No external time, time
background solution — it is emerges relationally (e.g.,
external to the quantum using a field as a clock).
system.
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General Framework

System of interest

m Working in the minisuperspace approximation. Restrict to
flat-FLRW metrics

ds? = —N2dt? + a®(t)d;;dx" da?

m Integrating the Einstein-Hilbert action over a comoving spatial
volume of size > H 3

M?2 1 -2
TP /d4$ vV —gR + boundary terms ~ /dt a’ <—3%>
*

aH
m With dimensionless "loop coupling” parameter
H2
a = —%
M2

m System with d 4+ 1 dynamical variables: d matter-fields, 1 metric-field,

1 1
I / dt (—quﬂq'" - NHfU(q“))

= oH, ON
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General Framework

Perturbation theory in minisuperspace and time invariance

m Working on shell of the constraint

-G q,uq'u
N=4, ——#=2
2H2U

m Inserting this back into the action gives

I= —\g/dt\/—GW v U

m Manifestly invariant under t — £(t); freedom to choose one of the
field as time (£(t) = ¢°): the system has only d DoFs.

m Working at quadratic order in the zero-mode fluctuation
o' =q" — q'(t) yields a typical Schrodinger equation with time
evolution t that can be written in different gauges.
m Example: p =1lna, ¢
Unitary gauge: 0p =0, dp=2_(,
Spatially-flat gauge: op=0, 0=
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General Framework

WdW Gauge-fixing & relational time

m “Time” is just one choice of
gauge—no absolute clock

m Probabilities are conditional:
P(q*| q°) = "value of field ¢’
given that the clock field reads

O
q".

m Different gauges = different
foliations of (¢°, ¢*)-space
m Minisuperspace example: p =1Ina, ¢

Unitary gauge: 0p =0, dp=2_(,
Spatially-flat gauge: op=0, 0p=1¢p
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General Framework
WdW equation and the WKB ansatz

m Full Wheeler-DeWitt equation (minisuperspace)

<i§D+U@%)m@q:Q D_V__ (GWJ_E)
m Semiclassical WKB ansatz
U(gh) = eaS@") P(g") witha <1
Leading order wavefunction is peaked on classical flow

pu¥ = —i0, ¥ = (9,5) ¥

m Order a® Hamilton—Jacobi equation for S
o"S0,S +2U(¢") =0
m Higher orders Schrodinger-like equation for 1
i(HSo+i08-y)=-909¢
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General Framework

Going with the classical flow

m Many solutions exist for the
HJ function S.

m Work in Lorentzian regime =
choose S € R so ¥ = /%)
has oscillatory (not Euclidean)
behavior.
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General Framework

Going with the classical flow

119
el
m Use the ansatz: U = 9/
m Pick a congruence: Embed a
background g*(¢°) into a
surface-orthogonal bundle of
classical solutions ¢/(¢°).
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General Framework
Going with the classical flow

m Classical hamiltonian ¥
constraint yields

9w ¢"¢" + 2H?U N? = 0

m Inside the tube of solutions,
impose:

L
e
HS ~ =C
"5 H

*

to align the WKB phase with
classical motion p# ~ ¢ for 9
N =1.
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General Framework
Going with the classical flow

m Choose adaptgad coordinates
(q°, ¢%) with ¢* = 0 along all A
trajectories.

m Equation for quantum
amplitude ¥

@( S Dt +;D5Aw) =0(a)
N —

oA —1g4
qV 0o p=H, "0ty

m In generic variables ¢":

O SO ~ H 0 + ¢ 0 1

7/11



General Framework

Matching with perturbation theory

m Perturbations at quadratic ¢'¢’

1 M (t)pipd
j(t)p'p op

o e’
i0p = —§V?1/)p + o 5

s WdW WKB expansion in «

i| 9°S0, +0'So;+ 0S5 [p=-20%
—— 2
442 o=,
m KG-type current with leading order in WKB expansion probability
density .
dP(q'l¢") = [¥(q)|* [0°S| V=G df
m Matching perturbative wavefunction probability density |1 p|?dq

U (1) = (V005 e 0) T (gl )+ Oa)

m /—(G0YS: ensures correct relational time flow

m ¢ /(@ accounts for classical potential term 8/11



Corrections to the Schrédinger equation for a scalar field

Scalar field minimally coupled to FLRW spacetime

m Work in minisuperspace with metric of the form
ds® = —N2dt* + &> dz?

and model the matter content with a scalar field ¢(t). The action

reads '
— 1 3p 3/7 . 2
I = aH*/dte ( N + 9N NHZV (o)

m Perturbations dp = (, ¢ = 0 in unitary gauge satisfy
e P HIV(9)
6 g

m Perturbations d¢ = ¢, dp = 0 in spatially-flat gauge satisfy

a H}V(¢) 52 3 pre (V'(¢)?
6 pedr Optr — 20 H2V (9) ( V(o)

iH, 'O0pp = P

iH ' 0ppp =

- V”(¢)> Y Yp
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Corrections to the Schrédinger equation for a scalar field

Slow-roll quasi-exponential potential €,n < 1

m Considering the first-two slow-roll parameters € = —%, n= ELH < 1,
. . . . — i
allows to build the quasi-exponential potential (x = \/ﬂ)
_ n €N 2 2 2
V(x) = (3—¢)exp|—2¢ 1+E X=X +O(e“,n7)| .

m Unitary gauge: matter x as clock {p,x} — {C(p,x) = p — p(x), x}
m Schrodinger-like equation

XOx =04

— 1
i le—ex (14_%){) 8x+§ os 1p:

ok e8a0 30 [3T€ o2 +

1 .
- = 3 ((p’z —1)02 —p"0; — 27 Ohd; + ag) 0.

O(e9)

m a-corrections may dominate in eternal inflation 2 2> 1
m WdW approach brings higher "time” derivatives 0y, 92 and
non-Gaussian terms e3¢ in this scalar field example. 1o/



Conclusion

Summary and outlook

m Two complementary descriptions:
m Schrddinger evolution of perturbations on classical FLRW
m Wheeler-DeWitt equation: quantize geometry + matter

m Wavefunctions match at leading order:

bp = el @ \/—G0S ¢ + O(a)
m Quantum gravity corrections appear at higher orders in «

m Higher "time" derivatives, cross terms, non-Gaussianities
m Relevant when a/e 2 1, e.g. in single scalar field eternal inflation

m Beyond WKB: Bouncing solutions from relationagl Schrédinger
dynamics = Time as test field, flat FLRW x ~ a2 + radiation:

iaH 0,V () = —3 (a28§ + x_2/3> v

m Interpreted as s-wave scattering off a potential
m Suggests singularity resolution via quantum bounce

m See recent work with F. Piazza arXiv:2505.08703 1111
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