

WP2: Low Level RF controls 10.01.2025

DESY, HZB, CNRS

Convener & deputy: Holger Schlarb (DESY) & Julien Branlard (DESY)

Main contacts with other partners: Axel Neumann (HZB), Christophe Joly (CNRS)

Task 2.1: Coordination of R&D on LLRF – M1-M48

Task 2.2: Efficient field control for high loaded-quality factor cavities — M1-M48

Task 2.3: Vibration analysis and detuning control of cavities — M1-M36

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners— M13-M48

Task 2.5: Energy efficient supervisory control and fault diagnosis— M1-M48

Task 2.1: Coordination of R&D on LLRF - M1-M48

- A couple of meetings took place since last status update
- → Status update of the different labs
- → Reporting about iSAS project activities (website, next in-person meeting)
- Communication structure established
- → Email distribution list
- → Shared repository (meeting minutes, status reports, presentations)
- Identified test possibilities in each lab
- → Test stands, facilities, type of cavities, tuning systems, power sources, etc.

Task 2.1: Coordination of R&D on LLRF – M1-M48

Opened position to support R&D activities including iSAS

- → candidate found, position about to be finalized
- → reporting about 15A5 project activities (website, next in-person meeting)
- Communication structure established
- → Email distribution list
- → Shared repository (meeting minutes, status reports, presentations)
- Identified test possibilities in each lab
- → Test stands, facilities, type of cavities, tuning systems, power sources, etc.

Task 2.2: Efficient field control for high loaded-quality factor cavities — M1-M48

- Identify optimal loaded-quality factor (Q_L) to achieve efficient field control for various operation scenarios.
- → Investigated impact of choice of Q₁ on efficiency through simulation
- → Challenges for <u>long pulsed</u> and <u>CW</u> are different (in particular efficient filling)
- Evaluate methods for changing Q_i (at the cavity coupler and waveguide level).
- → Tests done at HoBiCat (HZB) with 3-stub tuner
- → Modify test stand (DESY) for operation with SSA : done and approved by TUEV
- \rightarrow Currently preparing for tests with high Q_L (end of 2024, beginning of 2025)
- → 2x 8kW SSA purchased for further tests at AMTF
- Investigate benefits of advanced ML-based combined RF and mechanical feedback controllers.
- → Started investigation to model transfer function PZT→ RF (ongoing)
- → New position awarded at HZB + PhD at DESY.
- Demonstrate RF-efficient control in continuous wave (CW) and long pulse (LP) operation.
- → i.e. Final demonstrator (milestone) expected towards the end of iSAS timeframe

Task 2.2: Efficient field control for high loaded-quality factor cavities — M1-M48

This month, installation of the Q-tuner (waveguide Qext adjustment) at our tests stand IS operation

- → high power with LLRF tests planned for end of Jan. 2025
- \rightarrow Investigated impact of choice of Q_1 on efficiency through simulation
- → Challenges for <u>long pulsed</u> and <u>CW</u> are different (in particular efficient filling)
- Evaluate methods for changing Q_L (at the cavity coupler and waveguide level).
- → Tests done at HoBiCat (HZB) with 3-stub tuner
- → Modify test stand (DESY) for operation with SSA : done and approved by TUEV
- \rightarrow Currently preparing for tests with high Q_L (end of 2024, beginning of 2025)
- → 2x 8kW SSA purchased for further tests at AMTF
- Investigate benefits of advanced ML-based combined RF and mechanical feedback controllers.
- → Started investigation to model transfer function PZT→ RF (ongoing)
- → New position awarded at HZB + PhD at DESY.
- Demonstrate RF-efficient control in continuous wave (CW) and long pulse (LP) operation.
- → i.e. Final demonstrator (milestone) expected towards the end of iSAS timeframe

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

- Characterize environmental disturbances and transfer to the cavity perturbation.
- → Test using ext. geophones at CMTB (PhD thesis Uni. Lodz, thesis submitted)
- → First tests with beam at SeaLab (BerLinPro) planned for October '24 (microphonics evaluation)
- Investigate and develop detuning counter measures based on advanced feedforward, feedback and active noise cancellation including AI methods.
- → Successfully demonstrated Luenberger Observer to estimate bandwidth and detuning
- → Demonstrated in pulsed and CW
- → Module implemented in firmware, (currently verification phase), test in the field beg. of 2025

Task 2.3: Vibration analysis and detuning control of cavities – M1-M36

- 1. Looking into an approach using a real-time power PC (simulation + feasibility study)
- 2. Setting up real CW data acquisition (i.e. guaranteeing phase continuous data buffers)
- → First tests with beam at SeaLab (BerLinPro) planned for October '24 (microphonics evaluation)
- Investigate and develop detuning counter measures based on advanced feedforward, feedback and active noise cancellation including AI methods.
- → Successfully demonstrated Luenberger Observer to estimate bandwidth and detuning
- → Demonstrated in pulsed and CW
- → Module implemented in firmware, (currently verification phase), test in the field beg. of 2025

Task 2.4: Integrated LLRF control using Ferro-Electric Fast Reactive Tuners—M13-M48

- Integrate a ferro-electric fast reactive tuner (FE-FRT) with a digital LLRF system
- → Hardware development 2026/27 within WP1
- → Simulation on effect and operation range can be carried out
- → When type and actuation is defined, digital interface can be defined
- Demonstrate microphonics compensation using a FE-FRT at a horizontal test stand
- → Depends on WP1 outcome
- → Development of Matlab/Simulink model of RF control loop to simulate resonance control for PERL (ICJLab) ongoing
- → FE-FRT can be included in model

Task 2.5: Energy efficient supervisory control and fault diagnosis— M1-M48

- Develop schemes to adjust solid state amplifier (SSA) parameters for efficient RF generation.
- → Contacted Cryoelectra GmbH to assess feasibility and interest
- → IB meeting during German holiday (neither Holger nor myself can attend)
- Investigate RF control parameters for energy-efficiency optimization using ML methods
- → Developed improved algorithm for more efficient Lorentz force detuning compensation
- → Double sine (instead of single) and smooth start to limit AC power and current on piezo
- → Tested and deployed at XFEL
- Develop fault diagnosis and anomaly detection of LLRF systems using ML approaches
- → 1st milestone delivered and approved : (D35) ML implementation plan
- → Demonstration of quench detection in CW using Luenberger Observer
- → Implementation of real-time fault detection on FPGA, firmware done, test phase
- → Implementation of a real-time fault detection on server, deployed in 1 RF station at XFEL (observation phase)

Task 2.5: Energy efficient supervisory control and fault diagnosis— M1-M48

- 1. ML-based fault detection developed in FPGA
- 2. Deployed at XFEL last week \rightarrow gathering experience in next 6 months
- → IB meeting during German noilday (neither Holger nor myself can attend)
- Investigate RF control parameters for energy-efficiency optimization using ML methods
- → Developed improved algorithm for more efficient Lorentz force detuning compensation
- → Double sine (instead of single) and smooth start to limit AC power and current on piezo
- → Tested and deployed at XFEL
- Develop fault diagnosis and anomaly detection of LLRF systems using ML approaches
- → 1st milestone delivered and approved : (D35) ML implementation plan
- → Demonstration of quench detection in CW using Luenberger Observer
- → Implementation of real-time fault detection on FPGA, firmware done, test phase
- → Implementation of a real-time fault detection on server, deployed in 1 RF station at XFEL (observation phase)

WP2 – LLRF: points of attention

- Personnel setback
- → key person for R&D left DESY in Fall 2024
- → mitigation: opened replacement position but challenging to find qualified personnel
- Dependence of iSAS R&D on laboratory schedule
- → availability of test stands is not always predictable (delay, warm up, etc..)
- → mitigation: compiled a list of tests capabilities in partner labs
- Future hardware development on going
- → Evolution step:

Development of next generation digitizers (heterodyne detection mode)

→ Revolution step:

First successful test of CSI (carrier suppression interferometer) integration with LLRF system at test stand with cavity

WP2 – LLRF: plans to achieve milestones & deliverables

WP2 Low Level RF Co	ontrols																												
2.1 Coordination of R&D on LLRF						П			Ш	П				П	П			П				Ш	П	П					
2.2 Efficient field control for high loaded-quality factor cavities						Ш			Ш	Ш				Ш	Ш			Ш	М				Ш	Ш	D				
2.3 Vibration analysis and detuning control of cavities							Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ц	Ш	Ш	М	Ш	D	Ш	Щ	Ш	Ш	Ш	L			
2.4 Integrated LLRF control using Ferro-Electric Fast Reactive Tuners							Ц	Ш	Щ	Щ	Ц	Щ	Щ	Щ	Ц	Ш	Ш	Щ	Ш	┸	Ш	Щ	Ш	N	1	D			
2.5 Energy efficient supervisory control and fault diagnosis									Ш	Ш				Ш	М	Ш		Ш	D			М	Ш	Ш	D				
										1		DEGM			-	D			DII				1						
D2.1 ML bas	D2.1 ML based MC Report on microphonics study & ML-based mitigation								L	2	DESY R			PU		3	86	┨											
D2.2 SSA	D2.2 SSA Report on interface study of LLRF with SSA										2	DESY R			PU		3	86											
D2.3 LLRF	D2.3 LLRF control Report on LLRF RF control studies										2	DESY R				рĮ	J	4	18										
D2.4 FRT ba	D2.4 FRT based MC Report on integration of FE-FRT in LLRF											2	HZB R					PU		4	18	1							
D2.5 Anomaly det. Report on anomaly detection & LLRF optimization										2	D	ES	SY		R			PΙ	J	4	8	1							
M2.1 De	M2.1 Demonstration of anguary officient SSA anguation W/D2										30	,	Test report/publication							1									
									\neg	<u> </u>						┨													
M2.2 Demonstration of detuning control techniques WP2								33		Test report/publication						╛													
M2.3 Demonstration of RF control for CW/LP ops								V	V P	2			36	,	Test report/publication														
M2.4 Demonstration of ML and anomaly detection								7	WP	2			42	,	Test report/publication]							
M2.5 Demonstration of FE-FRT Microphonics compensation W							NP	2			4 5	'	Test report/publication							1									

- → Deliverables and Milestones are still fine and in reach
- → To support the WP2 program additional position will be open: 1) at DESY ~Q4/24 2) HZB done

WP2 – LLRF: budget plans

WP	WP Subject	CNRS	CERN	ESS	DESY	VUB	CEA	НΖВ	INFN	UKRI	UL	EPFL	EU- budget kEUR	Matching personnel kEUR	Matching materials kEUR	Total budget kEUR
	Technology Areas															
WP.1	Ferro-Electric Fast Reactive Tuners							LEAD					989,3	784,0	277,8	2051,1
WP.2	Low-Level RF Controls				LEAD								498,9	612,0	204,0	1314,9
WP.3	Nb3Sn-on-Cu films for 4.2-K cavity operation								LEAD				8/1,4	616,0	232,0	1719,4
WP.4	HOM Dampers & Fundamental Power Couplers	LEAD											572,2	620,0	296,0	1488,2
	TOTAL FOR iSAS Technology R&D												2931,8	2632	1009,8	6573,6

→ No deviations