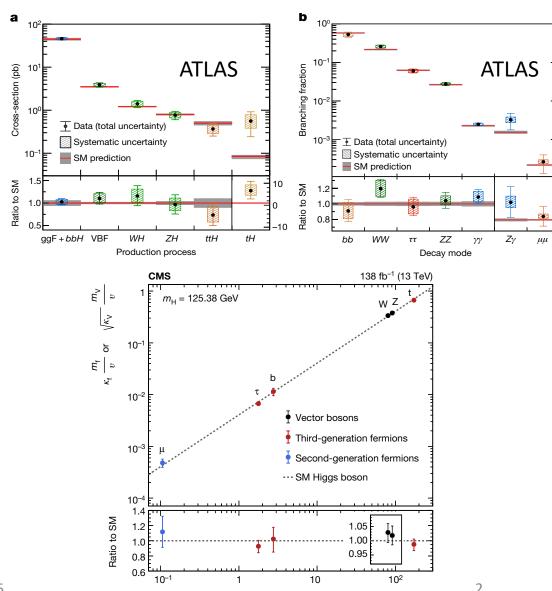
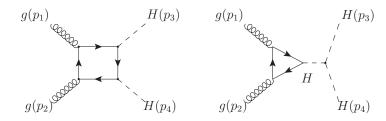


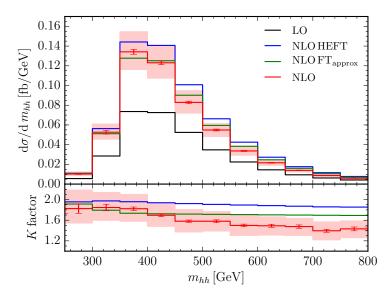
Recent Developments in Higgs Boson Theory

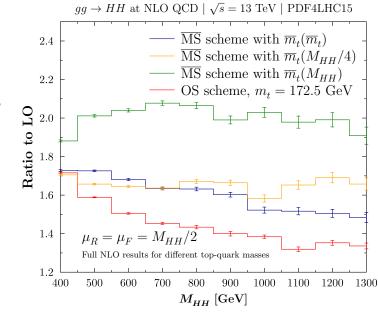

Thomas Gehrmann
Universität Zürich
Higgs Hunting 2025
Paris, 15.07.2025


Precision Higgs physics

- LHC discovered and established Standard Model Higgs boson
 - multiple production and decay modes
- HL-LHC: turning to precision studies
 - precision measurements of couplings
 - search for BSM physics in Higgs sector
- Probing Higgs mechanism
 - measure Higgs boson self-coupling
 - reconstruct Higgs potential
- Close interplay experiment-theory

Higgs pair production

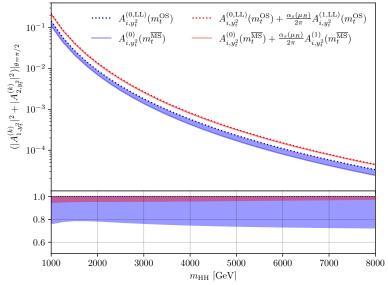

probe Higgs self-interaction: gg → HH

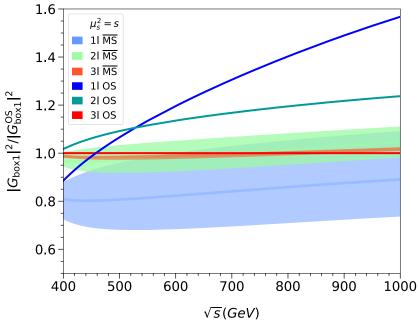


- sensitivity to v_{HHH}
- destructive subprocess interference
- small cross section: $\sigma(HH) \sim 10^{-3} \sigma(H)$
- HL-LHC measurement: combine multiple final states
- sizable NLO corrections

(S.Borowka, N.Greiner, G.Heinrich, S.Jones, M.Kerner, J.Schlenk, T.Zirke)

- sensitive on top quark mass scheme: OS versus MS (J.Baglio, F.Campanario, S.Glaus, M.Mühlleitner, J.Ronca, M.Spira, J.Streicher)
- precision extraction of v_{HHH} questionable

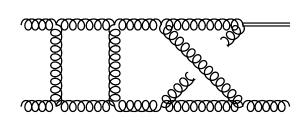



Higgs pair production

• method-of-regions analysis of $gg \rightarrow HH$ amplitudes up to three loops

(S.Jaskiewicz, S.Jones, R.Szafron, Y.Ullrich)

- identify large leading-logarithmic corrections in OS scheme → resummation
- computation of forward three-loop gg → HH amplitudes (J.Davies, K.Schönwald, M.Steinhauser)
 - larger corrections in OS scheme
 - reduced scheme-dependence
 - results converge towards MS result
- amplitude-level results
 - awaiting phenomenological studies

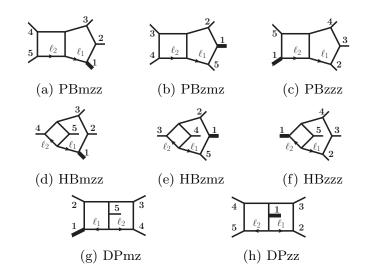


Multi-loop amplitudes

- Higgs boson processes demand technically challenging loop amplitudes
 - gluon fusion: large higher-order corrections
 - several internal and external mass scales (m_H,m_t,m_b,...)
 - high-multiplicity final states (ttH, VBF, VH)
- Driver of technical innovation in multi-loop amplitudes
 - first-ever N3LO QCD result for hadron colliders: gluon fusion cross section (C.Anastasiou, C.Duhr, F.Dulat, F.Herzog, B.Mistlberger)
 - two-loop top quark mass effects in HH and H+jet gluon fusion amplitudes
 - pySecDec (S.Borowka, N.Greiner, G.Heinrich, S.Jones, M.Kerner, G.Luisoni, J.Schlenk, T.Zirke)
 - numerical loop integration (J.Baglio, F.Campanario, S.Glaus, M.Mühlleitner, J.Ronca, M.Spira, J.Streicher)
 - DiffExp (R.Bonciani, V.Del Duca, H.Frellevig, M.Hidding, V.Hirschi, F.Moriello, G.Salvatori, G.Somogyi, F.Tramontano)
 - eikonal expansion for non-factorizable QCD corrections in VBF (K.Asteriadis, C.Bronnum-Hansen, M.M.Long, J.Quarroz, K.Melnikov, A.Penin)

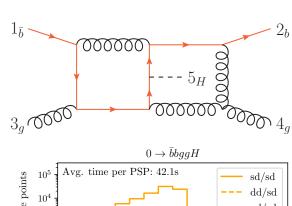
Multi-loop amplitudes

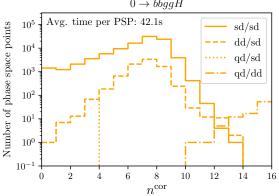
- Current frontier: Higgs boson p_T distribution at N3LO
 - ingredients: two-loop H+2jet (2 \rightarrow 3) and three-loop H+1jet (2 \rightarrow 2) amplitudes

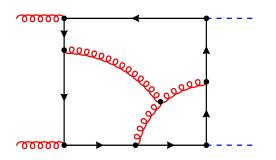

- Current frontier: NNLO QCD corrections to ttH production
 - missing ingredient: two-loop ttH ($2\rightarrow 3$) amplitudes
- Workflow
 - algebraic reduction of amplitudes to small set (1000's) of master integrals
 - computation of master integrals from their differential equations

Challenges

- algebraic complexity: system and expression size in integral reduction
- analytic complexity: function space and evaluation of master integrals

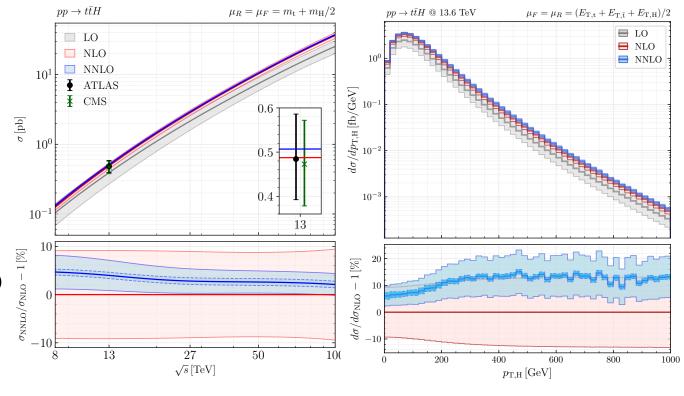

Computer algebra for multi-loop amplitudes


- Innovations in integral reduction
 - reconstruct coefficients from numerical samples over finite prime number field (FinRed: A.von Manteuffel, R.Schabinger; FiniteFlow: T.Peraro)
 - trimming of linear systems (Kira: F.Lange, J.Usovitsch, Z.Wu; Blade: X.Guan, X.Liu, Y.Q.Ma, W.H.Wu)
 - optimization of integral basis for reconstruction (G.De Laurentis, H.Ita, B.Page, V.Sotnikov)
- Innovations in integral computation
 - numerical computation from series expansion (AMFlow: X.Liu, Y.Q.Ma)
 - optimized analytical function basis
 - two-loop pentagon functions (S.Abreu, D.Chicherin, H.Ita, B.Page, V.Sotnikov, W.Tschernow, S.Zoia)
 - three-loop graded transcendental functions (J.Henn, P.Jakubcik, J.Lim, C.Mella, N.Syrrakos, L.Tancredi, W.Torres Bobadilla, TG)

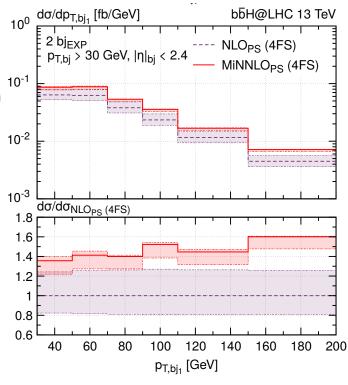


Multi-loop amplitude results

- Two-loop amplitudes for qqH production
 - closed fermion loop contributions to qq→ttH (B.Agarwal, G.Heinrich, S.Jones, M.Kerner, S.Klein, J.Lang, V.Magerya, A.Olsson; F.Febres Cordero, G.Figueiredo, M.Kraus, B.Page, L.Reina)
 - full amplitudes for qq→bbH and gg→bbH (m_b=0) (S.Badger, H.Bayu Hartanto, R.Poncelet, Z.Wu, Y.Zhang, S.Zoia)
 - test-case for ML surrogate approximations (V.Breso, G.Heinrich, V.Mageyra, A.Olsson)
- Three-loop amplitudes for H+jet production
 - leading colour amplitudes for gg \rightarrow Hg and gq \rightarrow Hq (X.Chen, X.Guan, B.Mistlberger)
- Three-loop amplitudes for HH production
 - expansion in masses or transverse momenta for gg→HH (J.Davies, K.Schönwald, M.Steinhauser)



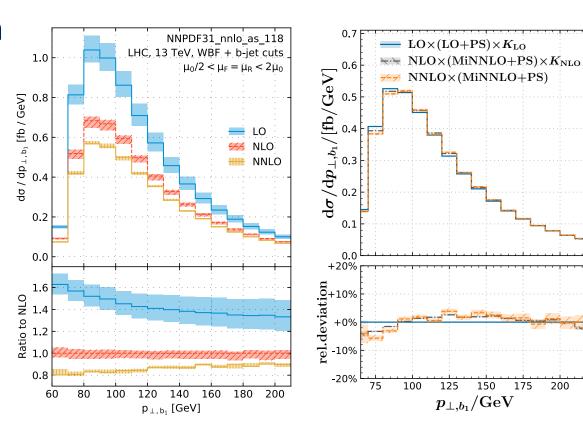
ttH production: NNLO QCD corrections


- enable precision ttH studies at HL-LHC
 - top quark Yukawa coupling
 - new physics searches
- use approximation to two-loop amplitude
 - genuine (IR-subtracted) two-loop finite remainder small
 - estimate from expansions and assign error

(S.Devoto, M.Grazzini, S.Kallweit, J.Mazzitelli, C.Savoini)

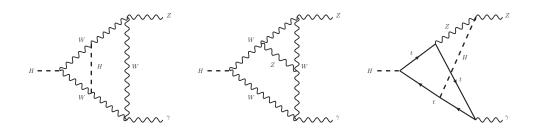
bbH production: NNLO+PS

- associated Higgs production with bottom quark pair
 - production rate at LHC comparable to ttH, experimentally challenging
 - background to HH searches
 - enhanced in BSM scenarios
- NNLO+PS computation (C.Biello, J.Mazzitelli, A.Sankar, M.Wiesemann, G.Zanderighi)
 - in 4FNS (massive b-quarks)
 - massification of massless two-loop amplitude (S.Badger, H.Bayu Hartanto, R.Poncelet, Z.Wu, Y.Zhang, S.Zoia)
 - using MiNNLOPS for parton shower matching
 - NLO+PS discrepancy 4FNS/5FNS substantially reduced


Vector boson fusion

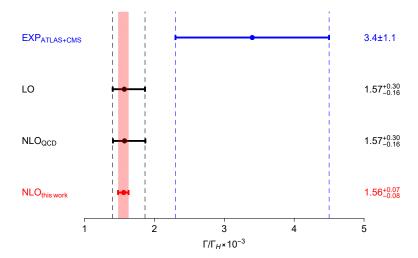
- detection of VBF Higgs production in H → bb channel
 - requires stringent cuts (e.g. ATLAS: p_{T,bjet}>65 GeV)
 - cuts induce large perturbative corrections

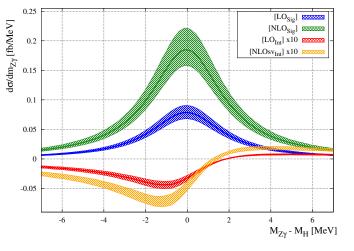
(K.Asteriadis, A. Behring, K.Melnikov, I.Novikov, R.Röntsch)


- fixed-order description insufficient
 - dominant effects from final-state radiation off b-quarks
 - match to parton shower

(A.Behring, K.Melnikov, I.Novikov, G.Zanderighi)

Dalitz decays: $H \rightarrow l^+l^-\gamma$


- dominated by loop-induced $H \rightarrow Z\gamma$
- NLO electroweak corrections
 - small effect, reduce theory uncertainty (Z.Q.Chen, L.B.Chen, C.F.Qiao, R.Zhu)



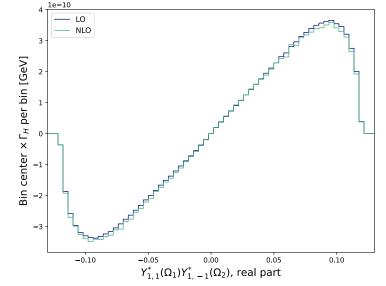
• signal-background interference

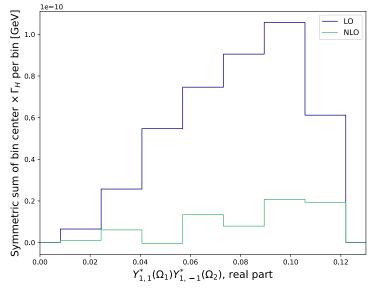
(F.Buccioni, F.Devoto, A.Djouadi, J.Ellis, J.Quevillon, L.Tancredi

- small distortion of distributions
- negligible effect on mass peak

Decay interferometry

Higgs boson decays to weak gauge bosons


$$H \rightarrow ZZ^* \rightarrow e^+e^-\mu^+\mu^-$$
 and $H \rightarrow WW^* \rightarrow I^+\nu I^-\nu$

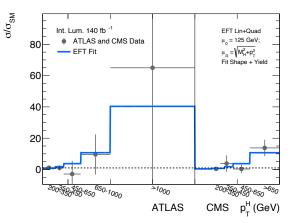

- form an entangled two-qutrit state (A.Barr)
- lepton and neutrino helicity unmeasurable: event-by-event test of entanglement not feasible
- reconstruct spin-density matrix of diboson system (quantum tomography) (J.Aguilar-Saavedra, J.Bernal, J.Casas, J.Moreno)
- uses decomposition of final-state lepton distribution in spherical harmonics
- most promising channel H \to ZZ* \to e⁺e⁻ μ ⁺ μ ⁻
- simple spin-density matrix at LO

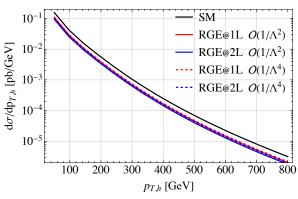
Decay interferometry

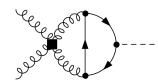
- precision study of spin-density matrix of H \rightarrow ZZ* \rightarrow e⁺e⁻ μ ⁺ μ ⁻
 - partial wave coefficients very sensitive to NLO EW corrections (M.Del Gratta, F.Fabbri, P.Lamba, F.Maltoni, D.Pagani; D.Goncalves, A.Kaladharan, F.Krauss, A.Navarro)
 - Bell-inequality tests require careful selection of reference frame, observables and cuts


	LO	NLO	NLO / LO
$A_{2,0}^1$	-0.592(1)	-0.509(2)	0.860(2)
$A_{2,0}^2$	-0.591(1)	-0.565(2)	0.956(2)
$C_{2,1,2,-1}$	-0.937(2)	-0.943(4)	1.006(3)
$-C_{1,1,1,-1}$	-0.94(1)	-0.16(2)	0.17(2)
$A_{2,0}^1/\sqrt{2}+1$	0.5817(7)	0.640(1)	1.101(2)
$C_{2,2,2,-2}$	0.581(3)	0.568(4)	0.977(6)
$-C_{1,0,1,0}$	0.59(1)	0.03(2)	0.06(4)
$C_{2,0,2,0}$	1.418(3)	1.400(5)	0.987(3)
$C_{1,0,1,0} + 2$	1.41(1)	1.97(2)	1.39(1)

New physics searches in the Higgs sector

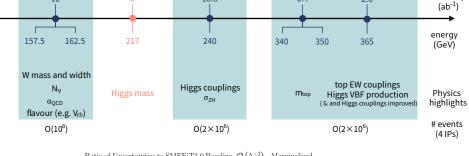

- Another Higgs boson decaying to γγ at 95 GeV?
 - ATLAS and CMS report ~2σ excess at same mass value
- Triggered substantial theory activity
 - 2HDM and its extensions (U.Haisch, A.Malinauskas; D.Azevedo, T.Biekötter, P.Ferreira; T.Biekötter, S.Heinemeyer, G.Weiglein)
 - triplet scalar (S.Ashanujjaman, S.Banik, G.Coloretti, A.Crivellin, B.Mellado, A.T.Mulaudzi)
 - NMSSM (J.Cao, X.Jia, Y.Yue, H.Zhou, P.Zhu)
 - Georgi-Machacek model (T.K.Chen, C.W.Chiang, S.Heinemeyer, G.Weiglein)
 - MRSSM (J.Kalinowski, W.Kotlarski)
 - Left-right symmetric models (P.Bhupal Dev, R.N.Mohapatra, Y.Zhang)
- Usually predicting other light states



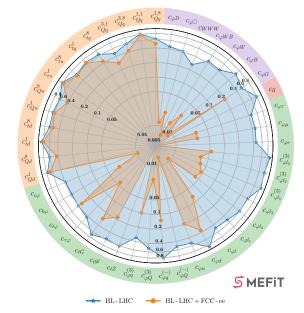

m_₄ [GeV]

Anomalous couplings: SMEFT

- Model-independent framework to quantify BSM effects
- Important constraints from Higgs observables
 - e.g. transverse momentum distribution (M.Battaglia, M.Grazzini, M.Spira, M.Wiesemann)
- Consistent treatment: SMEFT renormalization group
 - global one-loop analysis (F.Maltoni, G.Ventura, E.Vryonidou; J.ter Hoeve, L.Mantani, J.Rojo, A.Rossia, E.Vryonidou)
 - two-loop analysis in Higgs sector (S.Di Noi, R.Gröber, M.Mandal)
- Two-loop SMEFT computations in progress
 - field renomalization (C.Duhr, A.Vasquez, G.Ventura, E.Vryonidou)
 - two-loop matching and impact on Higgs production (U.Haisch)



FCC-ee as Higgs boson factory


- FCC-ee project at CERN
 - ultrahigh-luminosity e⁺e⁻ collider
 - under consideration
 - start of operation ~2045
- Unique Higgs boson precision studies
 - produce 2M Higgs bosons
 - reconstruct all decay channels
 - tightly constrain SMEFT operators (E.Celada, T.Gianni, J.ter Hoeve, L.Mantani, J.Rojo, A.Rossia, M.Thomas, E.Vryonidou)
 - including Higgs self-coupling (V.Maura, B.Stefanek, T.You)
- Require new level of precision theory

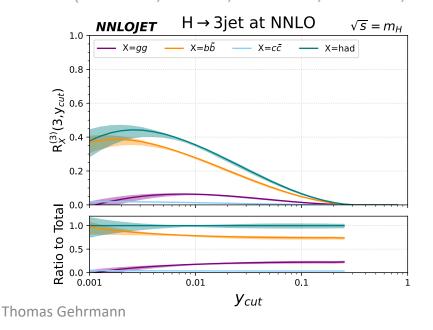
Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

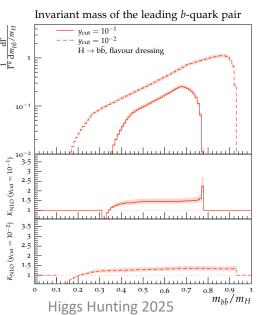
FCC-ee physics runs ordered by energy

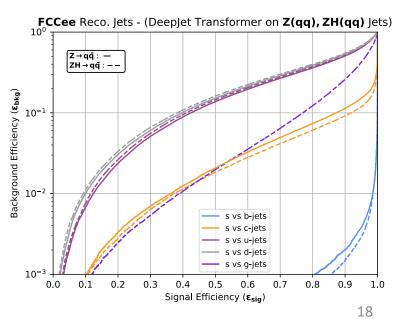
Additional opportunities

Z lineshape

flavour


rare decays


 $O(10^{13})$


Yukawa

QCD Higgs physics at FCC-ee

- Hadronic Higgs decays at FCC-ee
 - dominant contributions from $H \rightarrow bb$, $H \rightarrow cc$, $H \rightarrow gg$
 - discriminate decay modes through jet rates, event shape distributions and flavour tagging (B.Campillo Aveleira, E.Fox, A.Gehrmann-De Ridder, N.Glover, M.Marcoli, C.Preuss, TG)
 - possibly resolve H → ss using transformer-based neural networks (F.Blekman, F.Canelli, A.De Moor, K.Gautam, A.Ilg, A.Macchiolo, E.Ploerer)

Outlook

- Theory and experiment prepare for precision Higgs physics program
- Important progress on precision theory predictions
 - Predictions for increasingly complex final states
 - Resolving long-standing issues and puzzles
 - Higgs physics is driver of innovation in multi-loop amplitude technology
- Exciting opportunities ahead
 - Quantum information in Higgs decay
 - Model independent new physics searches in SMEFT
 - Precision Higgs physics at FCC-ee
- Looking forward to an exciting Higgs Hunting 2025