

Higgs boson property measurements (mass, width, CP) in ATLAS

Elise Le Boulicaut Ennis (Yale), on behalf of the ATLAS Collaboration

Higgs Hunting 2025 [indico]

July 15, 2025

Introduction

- Studying **Higgs boson properties** is essential for probing the Standard Model (SM) with high precision.
- Any deviations from expectations could be signs of new physics.
- Some Beyond the SM (BSM) theories predict effects on the mass, width, and Charge-Parity (CP) of the Higgs boson.

• Will highlight the most recent ATLAS results on Higgs mass, width, and CP.

Mass measurement

https://cds.cern.ch/record/2814946/plots

Introduction

- Higgs mass (m_H) not predicted in the SM.
- Necessary input to calculate other parameters (e.g. couplings).
- Related to the stability of the Electro-Weak vacuum.

• $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$ chosen for their good **resolution**.

Mass measurement in $H \rightarrow \gamma \gamma$

Latest result from 2023: Phys. Lett. B 847 (2023) 138315 using full Run 2 (140 fb⁻¹)

Mass measurement in $H \rightarrow \gamma \gamma$

Latest result from 2023: Phys. Lett. B **847** (2023) 138315 using full Run 2 (140 fb⁻¹)

Mass measurement in $H \rightarrow \gamma \gamma$

Latest result from 2023: Phys. Lett. B 847 (2023) 138315 using full Run 2 (140 fb⁻¹)

Improvements with respect to <u>partial Run 2</u> result:

- Classification into 14 categories, optimized specifically to minimize uncertainty on $m_H \rightarrow$ **6% reduction** (considering statistics and photon energy scale uncertainties only).
- Improved photon reconstruction.
- New auxiliary measurement to constrain E_T -dependent electron energy scale \rightarrow **factor of 4 reduction** in photon energy scale/resolution uncertainty.

Latest result from 2023: Phys. Lett. B **843** (2023) 137880 using full Run 2 (139 fb⁻¹)

Latest result from 2023: Phys. Lett. B 843 (2023) 137880 using full Run 2 (139 fb⁻¹)

Latest result from 2023: Phys. Lett. B **843** (2023) 137880 using full Run 2 (139 fb⁻¹)

Improvements with respect to <u>partial Run 2</u> result:

- Deep Neural Network (NN) to separate signal from background → used to parameterize signal and background models.
- Quantile Regression NN to estimate perevent resolution \rightarrow used to parameterize width of $m_{4\ell}$ response in signal model.
- Improved muon momentum scale → factor
 4 reduction in associated uncertainty.

Mass measurement in $H \to \gamma \gamma$ and $H \to ZZ^*$ ATLAS Yale

Latest combination from 2023: Phys. Rev. Lett. **131** (2023) 251802 using full Run 2 (140 fb⁻¹)

Combine channels:

Stats and systematics ~equal for $H \rightarrow \gamma \gamma$

Stats dominate for $H \rightarrow ZZ^*$

Mass measurement in $H \to \gamma \gamma$ and $H \to ZZ^*$ ATLAS Yale

Latest combination from 2023: Phys. Rev. Lett. **131** (2023) 251802 using full Run 2 (140 fb⁻¹)

Combine channels:

Stats and systematics ~equal for $H \rightarrow \gamma \gamma$ Stats dominate for $H \rightarrow ZZ^*$

0.09% precision achieved!

Width measurement

Introduction

- Theoretical Higgs width: $\Gamma_H = 4.1$ MeV, calculated from **all possible Higgs decays** \rightarrow sensitive to any BSM particle that would interact with the Higgs.
- Not enough resolution to measure Γ_H directly at the LHC \rightarrow **indirect measurement** in $H \rightarrow VV$ (V = W, Z):

$$\mu_{\text{on-shell}} = \kappa_{\text{prod}}^2 \times \kappa_{\text{decay}}^2 \times \frac{1}{\kappa_H}$$
 $\kappa_H = \Gamma_H / \Gamma_H^{SM}$

$$\mu_{\text{off-shell}} = \kappa_{\text{prod}}^2 \times \kappa_{\text{decay}}^2$$

$$\kappa_i = g_i / g_i^{SM}$$

$$\Rightarrow \frac{\mu_{\text{off-shell}}}{\mu_{\text{on-shell}}} = \kappa_H \quad \text{(assuming } \kappa_{i,\text{on-shell}} = \kappa_{i,\text{off-shell}})$$

- Off-shell $H^* \to VV$ slightly enhanced because the vector bosons become on-shell.
- Destructive interference in off-shell regime:
 ggH ↔ non-resonant VV and VBFH ↔ non-resonant VVjj
 ⇒ deficit in events compared to background-only.

Full Run 2 analysis (140 fb⁻¹) from April 2025: <u>arxiv:2504.07710</u> (submitted to Phys Lett. B.)

Full Run 2 analysis (140 fb⁻¹) from April 2025: <u>arxiv:2504.07710</u> (submitted to Phys Lett. B.)

- Different Flavor (DF) and Same Flavor (SF) lepton selections
- 0, 1, and \geq 2 jet selections

Full Run 2 analysis (140 fb⁻¹) from April 2025: <u>arxiv:2504.07710</u> (submitted to Phys Lett. B.)

- Different Flavor (DF) and Same Flavor (SF) lepton selections
- 0, 1, and \geq 2 jet selections

DNN to separate signal (with and without interference) from background → used to define regions in the fit

Full Run 2 analysis (140 fb⁻¹) from April 2025: <u>arxiv:2504.07710</u> (submitted to Phys Lett. B.)

Full Run 2 analysis (140 fb⁻¹) from April 2025: <u>arxiv:2504.07710</u> (submitted to Phys Lett. B.)

Likelihood scan for $\mu_{\text{off-shell}}$:

(Confidence intervals from Neyman construction)

Best-fit: $\mu_{\text{off-shell}} = 0.3^{+0.9}_{-0.3}$ (expected $1.0^{+2.3}_{-1.0}$)

Upper limit: $\mu_{\text{off-shell}} \leq 3.4$ (expected 4.4)

Likelihood scan for $\mu_{\text{off-shell}}$:

(Confidence intervals from Neyman construction)

Take the ratio with $\mu_{on\text{-shell}}$ (see arxiv:2504.07686)

Likelihood scan for κ_H :

Best-fit: $\mu_{\text{off-shell}} = 0.3^{+0.9}_{-0.3}$ (expected $1.0^{+2.3}_{-1.0}$)

Upper limit: $\mu_{\text{off-shell}} \leq 3.4$ (expected 4.4)

Best-fit: $\Gamma_H = 0.9^{+3.4}_{-0.9}$ MeV (expected $4.1^{+8.3}_{-3.8}$ MeV) Upper limit: $\Gamma_H \leq 13.1$ MeV (expected 17.3 MeV) Compare with Run 1: $\Gamma_H \leq 17.2$ MeV (expected 21.3 MeV)

Full Run 2 analysis (140 fb⁻¹) published in May 2025: <u>Rep. Prog. Phys. 88 (2025) 057803</u> Improves upon previous result from 2023 using same dataset (<u>Phys. Lett. B 846 (2023) 138223</u>)

Unique statistical approach to deal with non-linear signal model:

$$\begin{aligned} -2\ln\lambda\left(\mu,\theta,\alpha\right) &= -2\sum_{\text{regions }(I)} \ln\left[\text{Pois}\left(N_{I}|\nu_{I}\left(\mu,\theta,\alpha\right)\right)\right] \\ &-2\sum_{\text{events }(i)} \ln\left[\frac{p\left(x_{i}|\mu,\theta,\alpha\right)}{p_{\text{ref}}\left(x_{i}\right)}\right] \\ &+\sum_{\text{systematics }(m)} \left(\alpha_{m}-a_{m}\right)^{2}. \end{aligned}$$

See <u>talk</u> by Andrea Sciandra on Wednesday

Full Run 2 analysis (140 fb⁻¹) published in May 2025: <u>Rep. Prog. Phys. **88** (2025) 057803 Improves upon previous result from 2023 using same dataset (Phys. Lett. B **846** (2023) 138223)</u>

Unique statistical approach to deal with non-linear signal model:

$$\begin{aligned} -2\ln\lambda\left(\mu,\theta,\alpha\right) &= -2\sum_{\text{regions }(I)} \ln\left[\text{Pois}\left(N_{I}|\nu_{I}\left(\mu,\theta,\alpha\right)\right)\right] \\ &-2\sum_{\text{events }(i)} \ln\left[\frac{p\left(x_{i}|\mu,\theta,\alpha\right)}{p_{\text{ref}}\left(x_{i}\right)}\right] \\ &+\sum_{\text{systematics }(m)} \left(\alpha_{m}-a_{m}\right)^{2}. \end{aligned}$$

Poisson term for total yield in each region

Initial multi-class NN to split events into signal and control regions.

See <u>talk</u> by Andrea Sciandra on Wednesday

Full Run 2 analysis (140 fb⁻¹) published in May 2025: <u>Rep. Prog. Phys. 88 (2025) 057803</u> Improves upon previous result from 2023 using same dataset (<u>Phys. Lett. B 846 (2023) 138223</u>)

$$-2\ln\lambda(\mu,\theta,\alpha) = -2\sum_{\text{regions }(I)} \ln\left[\text{Pois}\left(N_{I}|\nu_{I}(\mu,\theta,\alpha)\right)\right]$$
$$-2\sum_{\text{events }(i)} \ln\left[\frac{p\left(x_{i}|\mu,\theta,\alpha\right)}{p_{\text{ref}}\left(x_{i}\right)}\right]$$
$$+\sum_{\text{systematics }(m)} (\alpha_{m}-a_{m})^{2}.$$

Estimate probability density ratio for each process (e.g. SBI = ggF signal+interference) as a function of 14 kinematic variables (x) using an ensemble of NNs.

Poisson term for total yield in each region

Probability density ratios from Neural Simulation Based Inference (NSBI)

Initial multi-class NN to split events into signal and control regions.

See <u>talk</u> by Andrea Sciandra on Wednesday

Likelihood scans for $\mu_{\text{off-shell}}$:

Best-fit: $\mu_{\text{off-shell}} = 0.87^{+0.75}_{-0.54}$

(expected $1.00^{+1.04}_{-0.95}$)

Significance: 2.5σ (expected 1.3σ)

Compare with <u>previous ATLAS result</u> using **same dataset**:

 $\mu_{\text{off-shell}} = 0.79^{+1.21}_{-0.77}$, 0.8σ significance

Likelihood scans for $\mu_{\text{off-shell}}$:

Combine with $H \to ZZ \to 2\ell 2\nu$ (*Phys. Lett. B* **846** (2023) 138223)

Best-fit: $\mu_{\text{off-shell}} = 0.87^{+0.75}_{-0.54}$

(expected $1.00^{+1.04}_{-0.95}$)

Significance: 2.5σ (expected 1.3σ)

Compare with <u>previous ATLAS result</u> using **same dataset**:

 $\mu_{\text{off-shell}} = 0.79^{+1.21}_{-0.77}$, 0.8σ significance

Best-fit: $\mu_{\text{off-shell}} = 1.06^{+0.62}_{-0.45}$

(expected $1.00^{+0.83}_{-0.83}$)

Significance: 3.7σ (expected 2.4σ)

⇒ Clear evidence for off-shell Higgs production.

Likelihood scans for $\mu_{\text{off-shell}}$:

Combine with $H \to ZZ \to 2\ell 2\nu$ (*Phys. Lett. B* **846** (2023) 138223)

Likelihood scan for κ_H :

Take the ratio with $\mu_{\text{on-shell}}$ (*Eur. Phys. J. C* **80** (2020) 957)

Best-fit: $\mu_{\text{off-shell}} = 0.87^{+0.75}_{-0.54}$

(expected $1.00^{+1.04}_{-0.95}$)

Significance: 2.5σ (expected 1.3σ)

Compare with <u>previous ATLAS result</u> using **same dataset**:

 $\mu_{\text{off-shell}} = 0.79^{+1.21}_{-0.77}$, 0.8σ significance

Best-fit: $\mu_{\text{off-shell}} = 1.06^{+0.62}_{-0.45}$ (expected $1.00^{+0.83}_{-0.83}$)

Significance: 3.7σ (expected 2.4σ)

⇒ Clear evidence for off-shell Higgs production.

Best-fit: $\Gamma_H = 4.3^{+2.7}_{-1.9}$ MeV (expected $4.1^{+3.5}_{-3.4}$)

Charge-Parity measurement

Introduction

- In SM, Higgs is CP-even → CP violation would be a sign of new physics → need to search
 for it in as many interaction vertices as possible. Focusing here on HVV vertex.
- Effective Field Theory (EFT):

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)}$$

- Identify CP-odd dimension-6 terms:
 - HISZ basis: $\tilde{c}_{H\gamma\gamma}$, $\tilde{c}_{H\gamma Z}$, \tilde{c}_{ZZ} , \tilde{c}_{WW} → can all be parameterized by a single parameter \tilde{d} , assuming $\tilde{c}_{H\gamma Z}=0$.
 - Warsaw basis: $c_{H\widetilde{W}}, c_{H\widetilde{B}}, c_{H\widetilde{W}B} \to HVV$ CP analyses mostly sensitive to $c_{H\widetilde{W}}$.
 - ⇒ Deviations from 0 indicate new physics.
- Interference between SM and CP-odd term causes CP violation effects.

Brand new full Run 2 analysis (140 fb⁻¹) from June 2025: <u>arxiv:2506.19395</u> (submitted to JHEP)

Sensitive variable: Optimal observable:

Matrix Elements calculated from kinematics of Higgs and VBF jets.

 \Rightarrow ~40% improvement in expected confidence interval for \tilde{d} compared to using $\Delta \phi_{jj}^{sign}$.

Optimal observable used as fitting variable

Optimal observable used as fitting variable

NN to separate signal (independent of CP) from background \rightarrow used to define signal regions.

Background estimation:

- $Z \rightarrow \tau \tau$: object-level embedding: take $Z \rightarrow \ell \ell$ data and replace the ℓ 's with τ 's. Then use sample in sameflavor CR to constrain $Z \rightarrow \tau \tau$ normalization.
- Mis-identified: data-driven matrix method in $\tau_{lep}\tau_{lep}$ or fake factor method in $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$.
- Top: normalization from CR in $\tau_{lep}\tau_{lep}$.

NN to separate signal (independent of CP) from background \rightarrow used to define signal regions.

Likelihood scan for \tilde{d} :

Likelihood scan for $c_{H\widetilde{W}}$:

△ NLL

CP measurement in VBF $H \rightarrow \tau \tau$

Parameter value

- $\mathsf{VBF}\,H o au au$ $\Lambda = 1 \text{ TeV}$ Best Fit 95% CL interval \tilde{d} (lin. + quad.) 0.014 [-0.012,0.044] (x 10) \tilde{d} (lin. only) (x 10)0.011 [-0.012,0.034] $c_{H\tilde{W}}$ (lin. + quad.) 0.26 [-0.24, 0.83]0.21 [-0.23, 0.70] $c_{H\tilde{W}}$ (lin. only)
- $H \rightarrow \tau \tau$ diff. $\Delta \phi_{ii}$ [JHEP 03 (2025) 010] Expected 95% CL interval $H \to WW^*(\star)$ [2504.07686] linear+quadratic (*) linear only, 4 POI $\Lambda = 1 \text{ TeV}$ Best Fit 95% CL interval (x 10) 0.014 [-0.012,0.044] (x 10) 0.010 [-0.034,0.071] (x 10) 0.000 [-0.026, 0.025] 0.27 [-0.24, 0.83] $c_{H\tilde{W}}$ 0.26 [-0.55, 1.07]0.60 [-0.81,1.54] 0.27 [-0.30, 0.82]-0.20 [-1.00,0.60] Parameter value
- Measurement dominated by statistical uncertainty.
- All CP-sensitive parameters compatible with 0.
- Among the most stringent limits of all channels.

Full Run 2 analysis (140 fb⁻¹) from May 2025: <u>ATL-PHYS-PUB-2025-022</u> First CP study in VH production

Allows to probe HWW vertex specifically \rightarrow only $c_{H\widetilde{W}}$ is relevant

Full Run 2 analysis (140 fb⁻¹) from May 2025: <u>ATL-PHYS-PUB-2025-022</u> First CP study in VH production

Allows to probe HWW vertex specifically \rightarrow only $c_{H\widetilde{W}}$ is relevant

Sensitive variable:

$$Q_{\ell}\cos(\delta^{+}) = \frac{\boldsymbol{p}_{\ell}^{(W)} \cdot (\boldsymbol{p}_{H} \times \boldsymbol{p}_{W})}{|\boldsymbol{p}_{\ell}^{(W)}| \cdot |(\boldsymbol{p}_{H} \times \boldsymbol{p}_{W})|}$$

Each SR separated into $Q_{\ell} \cos(\delta^+) \leq 0$ and $Q_{\ell} \cos(\delta^+) > 0$

WH, $H\rightarrow b\overline{b}$ (μ =0.93)

WH. H→ bb (μ=0.93)

t. s+t char

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

BDT_{VH} output

t, s+t char

Uncertaint

Top(bb)

BDT score for separating VH from background used as fitting variable in signal regions

Backgrounds:

- Normalization of W+jets constrained in control regions defined by ΔR_{bb}
- Normalization of Top backgrounds constrained in control regions defined by ΔR_{hh} and b/c-tagging.

Parameters of interest in the fit: $c_{H\widetilde{W}}$ + WH signal normalization in each p_T^W bin.

 \Rightarrow 95% confidence interval: $c_{H\widetilde{W}} \in [-0.62, 0.85]$ expected: $c_{H\widetilde{W}} \in [-0.58, 0.59]$ (considering only linear order).

See <u>talk</u> by Ricardo Barrue on Wednesday

Summary of ATLAS CP constraints in Run 2 ATLAS Yale

Brand new public plots using 5 full Run 2 analyses (140 fb⁻¹): ATL-PHYS-PUB-2025-031

Summary of constraints on $c_{H\widetilde{W}}$:

Summary of ATLAS CP constraints in Run 2 ATLAS Yale

Brand new public plots using 5 full Run 2 analyses (140 fb⁻¹): ATL-PHYS-PUB-2025-031

Summary of constraints on $c_{H\widetilde{W}}$:

Summary of ATLAS CP constraints in Run 2 ATLAS Yale

Brand new public plots using 5 full Run 2 analyses (140 fb⁻¹): ATL-PHYS-PUB-2025-031

Summary of constraints on $c_{H\widetilde{W}}$:

Summary of constraints on Λ :

Bonus: CP measurement in $H \rightarrow ZZ$

Not an explicit CP measurements but constrains some CP-sensitive operators:

Differential and production mode cross section in $H \to ZZ^* \to 4\ell$ (ATLAS-CONF-2025-002) from April 2025, using 2022-2023 data (56 fb⁻¹):

Summary

Summary of results shown in this talk:

	Mass	Width	СР
$H \rightarrow ZZ$	$m_H^{ZZ^*} = 124.99 \pm 0.19 \text{ GeV}$ (Run 2)	$\Gamma_H = 4.3^{+2.7}_{-1.9} \text{ MeV}$	
$H \to \gamma \gamma$	$m_H^{\gamma\gamma} = 125.17 \pm 0.14 { m GeV}$ (Run 2)		
$H \rightarrow ZZ + H \rightarrow \gamma \gamma$	$m_H = 125.10 \pm 0.11 { m GeV}$ (Run 2)		
$H \to WW$		$\Gamma_H = 0.9^{+3.4}_{-0.9} \text{ MeV}$	
$VBF H \rightarrow \tau\tau$			$\tilde{d} \in [-0.012, 0.034]$ 95% CI $c_{H\widetilde{W}} \in [-0.23, 0.70]$ 95% CI (linear only)
$WH, H \rightarrow bb$			$c_{H\widetilde{W}} \in [-0.62, 0.85]$ 95% CI (linear only)

ATLAS is making full use of the **full Run 2 dataset** and **improved analysis techniques** to reach ever higher sensitivities in Higgs properties!

Backup

Mass measurement in $H \rightarrow \gamma \gamma$

Uncertainty breakdown:

Source	Impact [MeV]
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
E_{T} -dependent electron energy scale	44
$e^{\pm} \to \gamma$ extrapolation	30
Conversion modelling	24
Signal-background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

Summary:

Mass measurement in $H \rightarrow ZZ^*$

Pre-fit $m_{4\ell}$ distributions:

Channel comparison and combination:

Uncertainty breakdown:

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	± 28
Electron energy scale	± 19
Signal-process theory	± 14

Mass measurement in $H \to \gamma \gamma$ and $H \to ZZ^*$ ATLAS Yale

Uncertainty breakdown for Run 2 combination:

Source	Systematic uncertainty on m_H [MeV]
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44
e/γ $E_{\rm T}$ -dependent electron energy scale	28
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \rightarrow \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Run 1 + 2 combination:

Summary including CMS results:

Width measurement in $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Width measurement in $H \rightarrow ZZ \rightarrow 4\ell$

EW

Signal Interfering background

Likelihood ratio as test statistic:

$$t_{\mu} = -2 \ln \frac{\lambda \left(\mu, \widehat{\widehat{\alpha}}(\mu)\right)}{\lambda \left(\widehat{\mu}, \widehat{\alpha}\right)},$$

Probability density equation:

$$\begin{split} p\left(x|\mu_{\text{off-shell}}^{\text{ggF}},\mu_{\text{off-shell}}^{\text{EW}}\right) &= \frac{1}{\nu\left(\mu_{\text{off-shell}}^{\text{ggF}},\mu_{\text{off-shell}}^{\text{EW}}\right)} \\ &\times \left[\mu_{\text{off-shell}}^{\text{ggF}}\nu_{\text{S}}^{\text{ggF}}p_{\text{S}}^{\text{ggF}}\left(x\right) \right. \\ &+ \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}\nu_{\text{B}}^{\text{ggF}}p_{\text{B}}^{\text{ggF}}\left(x\right) \\ &+ \nu_{\text{B}}^{\text{ggF}}p_{\text{B}}^{\text{ggF}}\left(x\right) + \mu_{\text{off-shell}}^{\text{EW}}\nu_{\text{S}}^{\text{EW}}p_{\text{S}}^{\text{EW}}\left(x\right) \\ &+ \sqrt{\mu_{\text{off-shell}}^{\text{EW}}}\nu_{\text{I}}^{\text{EW}}p_{\text{I}}^{\text{EW}}\left(x\right) \\ &+ \nu_{\text{B}}^{\text{EW}}p_{\text{B}}^{\text{EW}}\left(x\right) + \nu_{\text{NI}}p_{\text{NI}}\left(x\right) \right], \quad (3) \end{split}$$

Bonus: width measurement in $t\bar{t}t\bar{t}$

Full Run 2 analysis (140 fb⁻¹) published in February 2025: *Phys. Lett. B* **861** (2025) 139277

Constraint on Higgs boson total width from combination of on-shell Higgs production and $t\bar{t}t\bar{t}$ production:

See <u>talk</u> by Yangfan Zhang on Tuesday 95% CL upper limit: $\Gamma_H \leq 450$ MeV (expected 75 MeV) $\rightarrow 2\sigma$ tension with SM, driven by measured $t\bar{t}t\bar{t}$ cross-section, which is 1.8σ above the SM.

CP measurement in VBF $H \rightarrow \tau \tau$

Sensitive variable: Optimal observable:

$$\mathcal{OO} = \frac{2\mathcal{R}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd})}{\mathcal{M}_{SM}^{*2}}$$

Momentum fractions calculated from kinematics of Higgs and VBF jets

Sum over all / possible initial and final quark flavors

Matrix Elements are fixed calculations taking quark flavors as inputs.

CP measurement in VBF $H \rightarrow \tau \tau$

Uncertainty breakdown:

Systematic source	Uncertainty [%]
$\text{Jet}/E_{\text{T}}^{\text{miss}}$ reconstruction	± 20
Signal theory	± 15
Background theory	± 11
Normalisation factors	+6.0 -5.5
Misidentified τ -leptons	± 4.8
τ -leptons reconstruction	± 4.0
Sample size	± 3.0
Leptons reconstruction	± 2.4
Luminosity	± 0.4
Flavour tagging	± 0.3
Embedding	± 0.2
Total systematic uncertainty	± 30
Total statistical uncertainty	± 95

Sensitivity of Optimal Observable compared to alternative variables:

Region definition:

