

Higgs boson property measurements (mass, width, CP) - CMS

Amrutha Krishna (Northeastern University, Boston, USA), on behalf of the CMS collaboration

15 July 2025 Higgs Hunting 2025

Introduction

Introduction

Introduction

- Precision measurement of m_H :
 - Only free parameter in the Higgs sector of the SM; all other Higgs properties depend on it.
 - Precise measurement of m_H using the high resolution decay channels: $H \to ZZ^* \to 4l$ and $H \to \gamma\gamma$.
- Precision measurement of Γ_H :
 - Predicted to be ~4.07 MeV for m_H = 125 GeV; any deviation points to invisible, BSM decays.
 - Direct measurement from the resonance limited by the detector resolution (~1 GeV), indirect measurement strategies used for better precision.
- Measurement of CP properties :
 - SM Higgs is CP-even; Probing CP-violating, anomalous couplings (ACs) in several Higgs production and decay channels.
 - Important to explain matter/anti-matter asymmetry in universe.

- Run 2 analysis using 36 fb⁻¹ (2016) data: Phys. Lett. B, 805 (2020)
- Improved precision compared to previous analyses due to refinements in E_{γ} calibrations and better understanding of systematics:
 - Three-step residual scale and resolution corrections to E_{γ} using $Z \to ee$ events with electrons reconstructed as photons.
 - Scale (resolution) corrections in bins of η , R₉, $p_T(\eta, R_9)$ with dedicated systematic uncertainties, including a residual uncertainty for any non-closure of corrections.

• A method to estimate **systematic uncertainty** on E_{γ} scale **from non-uniformity in light collection** due to radiation damage along ECAL crystal depth using optical simulation.

- Analysis performed using ggH and VBF production modes, VH and ttH are not considered as they add complexity to the analysis with negligible improvement in precision.
- 4 ggH + 3 VBF categories defined using a BDT that discriminates signal from background.
- Result:

$$m_H = 125.78 \pm 0.18 \ (stat.) \pm 0.18 \ (syst.) \ GeV$$

- Analysis performed using ggH and VBF production modes, VH and ttH are not considered as they add complexity to the analysis with negligible improvement in precision.
- 4 ggH + 3 VBF categories defined using a BDT that discriminates signal from background.
- Result:

$$m_H = 125.78 \pm 0.18 \; (stat.) \pm 0.18 \; (syst.) \; GeV$$

- Analysis performed using ggH and VBF production modes, VH and ttH are not considered as they add complexity to the analysis with negligible improvement in precision.
- 4 ggH + 3 VBF categories defined using a BDT that discriminates signal from background.
- Result:

$$m_H = 125.78 \pm 0.18 \; (stat.) \pm 0.18 \; (syst.) \; GeV$$

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual p_{T} dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18

Towards full Run-2 $H \rightarrow \gamma \gamma m_H$ measurement

- Strategy to mitigate the syst. unc. from non-uniformity of light collection in ECAL:
 - Shower maximum of photons deeper than electrons of the same E by 0.85X₀ in PbWO₄.
 - Bias in photon energy scale due to non-uniform radiation damage along crystal depth and applying Z → ee derived calibrations to photons.
 - Correct photon energy scale in data using a dedicated light collection efficiency (LCE) model (<u>CMS-DP-24-045</u>).

- $S^e(S^{\gamma})$ = ECAL response to electrons (photons)
- $E_{dep}(z)$ = shower profile as a function of crystal depth (z) in non-irradiated PbWO₄ simulated using Geant4
- R/R_0 = ECAL crystal transparency measured per-run with a laser-based monitoring system
- Uncertainty in F evaluated from discrepancies between the LCE model and light output measurements on irradiated PbWO₄ in lab tests.
 - 20% in barrel and 35% in endcaps
- Significant reduction in the impact of this systematic uncertainty expected in full Run 2 mass measurement.

m_H and Γ_H measurements in $H \to ZZ^* \to 4l$

- Full Run 2 analysis corresponding to 138 fb-1 of data (PRD 111 (2025) 092014).
- High precision through refinement of calibrations and analysis strategy:
 - $4l~(4\mu, 4e, 2e2\mu, 2\mu2e)$ tracks constrained to a common vertex compatible with beam spot: 3-8% improvement in mass resolution depending on lepton flavor.
 - On-shell mass constraint applied to one Z boson.
 - Event categorization based on relative mass uncertainty of the four-lepton system ($\delta m_{4l}/m_{4l}$): 10% improvement in Higgs mass resolution.

More details on the analysis methodology in Neha's talk!

m_H and Γ_H measurements in $H \to ZZ^* \to 4l$

- Maximum likelihood fit to m_{4l} and a background-reducing kinematic discriminant $D_{bk\varrho}^{kin}$.
- Most precise single channel measurement:

$$m_H = 125.04 \pm 0.11 \; (stat.) \pm 0.05 \; (syst.) \; GeV \longrightarrow \begin{array}{c} Stat. \\ limited \end{array}$$

m_H and Γ_H measurements in $H \to ZZ^* \to 4l$

- Maximum likelihood fit to m_{4l} and a background-reducing kinematic discriminant $D_{bk\varrho}^{kin}$.
- Most precise single channel measurement:

$$m_H = 125.04 \pm 0.11 \; (stat.) \pm 0.05 \; (syst.) \; GeV \longrightarrow \begin{matrix} \text{Stat.} \\ \text{limited} \end{matrix}$$

- Direct Γ_H from fitting the invariant mass distribution of 4l with a Breit-Wigner (BW) convoluted with a double sided Crystal Ball (DCB) function.
- Result:

 Γ_{H} < 50 (330) MeV at 68% (95%) C.L.

Off-shell Γ_H measurements in $H \to ZZ \to 4l$

• Utilizes the different dependence of on-shell and off-shell crosssections on the width.

$$\frac{\sigma_{gg\to H\to ZZ^*}^{on-shell}}{\sigma_{gg\to H^*\to ZZ}^{off-shell}} \propto \frac{g_g^2 g_Z^2/m_H \Gamma_H}{g_g^2 g_Z^2/4m_Z^2} \propto \Gamma_H$$

- Assumes identical on-shell/off-shell couplings, i.e., no new physics alters the coupling in off-shell case.
- Significant destructive interference between H signal and non-resonant 4l production in the off-shell region.
- Interference and cross contamination from on-shell H taken into account in the PDF describing data.
- Events separated based on production mode: VBF, VH & ggH.
- Two **kinematic discriminants** built to tag interference (D_{int}) and background events (D_{bkg}).
- Likelihood fit performed using observables: m_{4l} , D_{int} , D_{bkg} .

Off-shell Γ_H measurements in $H \to ZZ \to 4l$

Measurement compatible with SM:

$$\Gamma_H = 2.9^{+2.3}_{-1.7} \ MeV$$

• Combination with off-shell $2l2\nu$ channel (Nature Physics 18, 1329-1334, 2022):

$$\Gamma_H = 3.0^{+2.0}_{-1.5} MeV$$

- **SM dependency studied** by introducing a heavy quark Q in the ggH loop.
 - An unconstrained coupling strength κ_Q included in the PDF parametrization using EFT-based MC templates.
 - Value of κ_Q constrained by on-shell/off-shell data and bounds on Γ_H is less stringent but consistent with $\kappa_Q=0$.
 - Stricter constraints on κ_Q possible with future combinations with other on-shell measurements.
- $\mu_{off-shell} = 0$ excluded with a CL corresponding to 3.8σ

AC measurements in $H \rightarrow \gamma \gamma$

- New full Run-2 analysis (<u>CMS-PAS-HIG-24-006</u>).
- **HVV** ACs through $H \to \gamma \gamma$ events produced via VBF and VH modes, and **Hgg** AC through ggH + 2 jets events.
- As per usual practice, AC measurements expressed in terms of cross-section fractions (systematic uncertainties cancel out):

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} sign(a_i/a_1)$$

- Analysis categories defined and optimized using MELA paired with ML discriminants to maximize the sensitivity to a CP-odd signal.
- Four HVV and one Hgg AC cross-section ratios measured using a simultaneous maximum likelihood fit to the $m_{\gamma\gamma}$ spectra across all categories.
- Results consistent with SM as well as with previous measurements.

Parameter	Expected/ (10^{-4})	Observed/ (10^{-4})
	95% CL H $\rightarrow \gamma\gamma$	95% CL H $ ightarrow \gamma \gamma$
f_{a3}	[-5.4,5.4]	[-1.5,1.5]
f_{a2}	[-8.8,10]	[-5.5,1.2]
$f_{\Lambda 1}$	[-0.48,1.2]	[-0.36, 0.17]
$f_{\Lambda 1}^{\mathbf{Z} \gamma}$	[-9.5,9.9]	[-2.5,4.8]

Some of the most stringent limits to date!

See Federica's <u>talk</u> for more details!

Other AC searches

- Search for anomalous HVV and Hgg couplings using H → WW production (VBF, VH, ggH + 2 jets) and decay (different-flavor dilepton final states) (EPJC 84, 779 (2024)).
- MELA-based kinematic discriminants to increase the sensitivity at the production vertex.
- AC measurements in terms of cross-section fractions.
- Additionally, a simultaneous measurement of four HVV ACs
 performed in the SMEFT framework.
- All results are consistent with the SM.

- AC search using ttH(bb) and tH production (JHEP 02 (2025) 097).
- top-Higgs coupling parametrized with purely CP-even (κ_t) and CP-odd $(\tilde{\kappa_t})$ terms.
 - Best-fit values after combination with other H decay channels: $(\kappa_t, \tilde{\kappa}_t) = (0.82, -0.65)$

Summary

- Presented results of Higgs boson mass and natural width measurements in CMS using $H \to ZZ \to 4l$ and $H \to \gamma\gamma$ channels.
 - Most precise single channel m_H measurement using full Run2 $H \to ZZ \to 4l$ data:

$$m_H = 125.04 \pm 0.11 \text{ (stat.)} \pm 0.05 \text{ (syst.) } GeV$$

• Best constraints on Γ_H from indirect off-shell/on-shell cross-section ratio measurement in $H \to ZZ \to 4l$ channel:

$$\Gamma_H = 3.0^{+2.0}_{-1.5} \ MeV$$

- Presented studies towards reducing systematic uncertainty due to non-uniformity of light collection in full Run2
 H → γγ mass measurement.
- Results of CP-violating, anomalous couplings searches presented in several Higgs production and decay channels — consistent with SM expectation of purely CP-even interactions.

Backup

- Multi-step residual scale and resolution corrections to E_{γ} (following ECAL calibration and multivariate regression), using $Z \to ee$ events with electrons reconstructed as photons.
 - Per LHC-fill corrections to account for shift in E_{γ} scale due to ECAL radiation damage.
 - Scale & resolution corrections derived simultaneously in fine bins of R_9 (shower shape variable to distinguish converted/unconverted photons) and η .
 - Final scale corrections derived in bins of η and p_T to address residual non-linearity in ECAL response and differences in e/γ energy spectra between $Z \to ee$ and $H \to \gamma\gamma$ decays.
- Systematic uncertainty on E_{γ} scale and resolution corrections evaluated by varying R₉ and $Z \rightarrow ee$ event selections.
- Scale corrections re-applied to data and their deviation from unity applied as a residual uncertainty due to nonclosure of corrections.
- Estimated systematic uncertainty on E_{γ} scale from non-uniformity in light collection due to radiation damage along ECAL crystal depth
 - derived from optical simulation and validated with test beam data on irradiated crystals.

- Parametric signal model per production mode, category and right/wrong vertex scenario from MC $-m_{\gamma\gamma}$ distributions fitted with a sum of upto 4 Gaussians.
- Background models from fits to data side-bands discrete profiling of plausible PDFs in the final likelihood fit.

FNUF corrections

- Shower maximum of photons deeper than electrons of the same E by 0.85X₀ in PbWO₄.
- Bias in photon energy scale due to **non-uniform** radiation damage along crystal depth and applying $Z \rightarrow ee$ derived calibrations to photons.
- Light collection efficiency (LCE) as a function of crystal depth (z), transparency loss (R/R₀) and η simulated using Fluka + Litrani.

- MELA discriminants paired with ML algorithms for maximum sensitivity. For eg., VBF events divided into two bins in each of the following three discriminants:
 - D_{0-}^{VBF} (MELA-based, CP-even/CP-odd separation),
 - D_{NNBSM}^{VBF} , D_{NNbkg}^{VBF} (DNN-based, VBF sig/bkg separation, SM VBF/BSM separation)
- Categories optimized by scanning each discriminant to maximize the sensitivity to a CP-odd signal.

$$a_1^{ ext{WW}} = a_1^{ ext{ZZ}}, \ \delta c_{ ext{z}} = rac{1}{2} a_1^{ ext{ZZ}} - 1,$$

$$a_2^{\mathrm{WW}} = c_{\mathrm{w}}^2 a_2^{\mathrm{ZZ}},$$

$$a_3^{
m WW}=c_{
m w}^2a_3^{
m ZZ},$$

$$rac{\kappa_1^{
m WW}}{(\Lambda_1^{
m WW})^2} = rac{1}{c_{
m w}^2 - s_{
m w}^2} \Biggl(rac{\kappa_1^{
m ZZ}}{(\Lambda_1^{
m ZZ})^2} - 2 s_{
m w}^2 rac{a_2^{
m ZZ}}{m_{
m Z}^2} \Biggr) \, ,$$

$$rac{\kappa_2^{
m Z\gamma}}{(\Lambda_1^{
m Z\gamma})^2} = rac{2 s_{
m w} c_{
m w}}{c_{
m w}^2 - s_{
m w}^2} \Biggl(rac{\kappa_1^{
m ZZ}}{(\Lambda_1^{
m ZZ})^2} - rac{a_2^{
m ZZ}}{m_{
m Z}^2} \Biggr) \, ,$$

$$c_{
m zz} = -rac{2s_{
m w}^2 c_{
m w}^2}{e^2} a_2^{
m ZZ},$$

$${ ilde c}_{
m zz} = -rac{2 s_{
m w}^2 c_{
m w}^2}{e^2} a_3^{
m ZZ},$$

$$c_{\mathrm{z}\square} = rac{m_{\mathrm{Z}}^2 s_{\mathrm{w}}^2}{e^2} \, rac{\kappa_{\mathrm{1}}^{\mathrm{ZZ}}}{(\Lambda_{\mathrm{1}}^{\mathrm{ZZ}})^2},$$

