

Higgs boson coupling measurements at ATLAS experiment

Fábio Lucio Alves on behalf of the ATLAS Collaboration
Higgs Hunting 2025, July 15-17
Orsay (IJClab) and Paris (LPNHE)

Motivation

More than 10 years of the Higgs Boson discovery at LHC:

- Measurements of the Higgs Boson properties (mass, spin, width, cross sections, couplings) with increased precision
 - Consistency with SM predictions intensively tested
- ... that is the moment to perform the combination!
 - The combination of single Higgs analyses allows us to test the Higgs sector and constrain the strength of the interaction between the Higgs and the SM particles
 - Higgs boson rates (cross section x BR) and κ —framework

Credit: CERN webpage

Higgs Boson production and decay at LHC

Higgs Production processes:

- Gluon-gluon fusion (ggF) (dominant production mode)
- Vector-boson fusion (VBF)
- Association with a vector boson (VH)
- Association with top and bottom quark pair (ttH/bbH)

Higgs Decay channels:

- $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$
 - Low BR and high mass resolution
- $H \to b\bar{b}$, $H \to W^{\pm}W^{\mp}$, $H \to \tau^{+}\tau^{-}$ and $H \to c\bar{c}$
 - High BR and low mass resolutions
- Rare decays: $H \to \mu^+ \mu^-$ and $H \to Z\gamma$
 - \bullet BR = 2.17 × 10–4 (at mH = 125.09 GeV)
 - \bullet BR = 1.54 × 10–3 (at mH = 125.09 GeV)

Recap of ATLAS Run2 measurements (Nature)

Production cross sections (free parameter in the fit, BR fixed to SM values):

- ggF and VBF observed in Run1, precision in Run2 7% and 12% respectively
- Observed in Run2: WH (5.8 σ), ZH (5.0 σ) and ttH + tH (6.4 σ)

Branching ratio (free parameter in the fit, XS fixed to SM values):

- $\gamma\gamma$, ZZ, $W^{\pm}W^{\mp}$ and $\tau^{+}\tau^{-}$ already observed during Run 1, precision in Run2 ranges from 10% to 12%
- $H \to b\bar{b}$ decay mode observed with 7.0σ , $H \to \mu^+\mu^-$ and $H \to Z\gamma$ signal significances measured to be 2.0σ and 2.3σ , respectively

P-value compatibility with SM: 72% Syst. uncertainty ATLAS Run 2 Data (Total uncertainty) SM prediction tΗ ttH ggF+bbH **VBF** WH ZΗ 1 2 3 0 1 2 3 4 γγ $\mu\mu$ WW ZZ bb au au $\sigma \times B$ normalized to SM prediction

Recap of ATLAS Run2 measurements (Nature)

Nature, vol. 607, 52-59 (2022)

- $\sigma \times B$ is parametrized in terms of multiplicative coupling strength modifiers (κ) (κ -framework)
 - Total decay width accounts for all decay modes, direct/indirect decays and hypothetical decays to non-SM particles
- $\kappa_V = \kappa_Z = \kappa_W$ (for the weak bosons), κ_F (all fermions)
 - Assuming no invisible or undetected Higgs Boson decays beyond SM ($B_{inv.} = 0$ and $B_{u.} = 0$)
- Higgs Boson coupling to SM particles as a function of their masses: κ_W , κ_Z , κ_t , κ_b , κ_c , κ_τ , κ_μ , are treated independently

Compatible with SM predictions (p-value 56% for $\kappa_c = \kappa_t$) (p-value 65% for κ_c floating)

New single Higgs combination: input analysis channels

NEW RESULT - - ATLAS-CONF-2025-006

Analysis channel	Production mode	Luminosity (fb-1)	STXS stage	Improv. Wrt <u>Nature</u>
H->yy	All	140	1.2	_
H->ZZ*->41	All	140	1.2	-
H->tautau	All	140	1.2	Reanalysis
H->WW*->Inulnu	ggF, VBF	140	1.2	Reanalysis
H->WW*->Inulnu	VH	140	1.2	Full Run2
H->bb	VBF	126	1.2	-
H->bb,cc	VH	140	1.2	Reanalysis
H->multileptons	ttH	36.1	1.2	-
H->bb	ttH	140	1.2	Reanalysis
H->tautau	VH	140	0	New analysis
H->Zy (*)	All	140	0	-
H->mumu (*)	All	140	0	-

$H \rightarrow \tau \tau$ analysis

OVH analysis (newly) included in the combination

- ~7x larger dataset wrt previosu analysis (Run1, 20.3 fb-1)
- NN-based for better signal and background rejection
- Better $\tau_{had-vis}$ (visible products of hadronically decaying τ -leptons) indentification algorithms
- Main analysis: NN as fit discriminant
 - Check with mass-based analysis (m_{MMC}), where MMC stands for Missing Mass Calculator

NN analysis:

- Observed (expected) significance 4.2σ (3.6σ)
- Signal strength: $\mu_{VH}^{\tau\tau} = 1.28^{+0.39}_{-0.36}$

Mass-based analysis:

- Observed (expected) significance 3.5σ (2.6σ)
- Signal strength: $\mu_{VH}^{\tau\tau} = 1.40^{+0.49}_{-0.45}$

$H \rightarrow bb/cc$ analysis

• A few improvements with respect to previous analysis (VH, reanalysis):

- Better reco. and calib. of leptons and jets and FTAG algorithm
- Extended acceptance for the WH process to events with pVT < 150GeV
- First application to the $H \rightarrow b^-b$ boosted regime and $H \rightarrow cc^-$ search
- Increased granularity of STXS measurements: high pT and as a function of jet multiplicity
- Limits on $|\kappa_c|$ < 4.2 (obs) at 95% CL and $|\kappa_c/\kappa_b|$ is 3.6 (obs) at 95% CL

A few improvements with respect to previous analysis (ttH(bb), reanalysis):

- Looser selection requirements and improved b-jet ID that increase the tīH signal acceptance
- Control regions enriched in each of the $t\bar{t}$ + jets components defined based on a more powerful multi-class neural network
- Modelling uncertainty in $t\bar{t} + \ge 1b$ is no longer the dominant contribution to the total systematic uncertainty
- This analysis is the most precise ttH cross-section measurement in a single decay channel, inclusively and in each p_T^H bin

JHEP 04(2025) 075

Eur. Phys. J. C 85 (2025) 210

.∆ log(L)

Higgs boson Rare decays

• $H \rightarrow Z\gamma$ Run2 analysis results:

- Significance observed (expected) with a mass of 125.09 GeV is 2.2σ (1.2 σ)
- $\mu = 2.0^{+1.0}_{-0.9}$ (dominated by statistical uncertainty

• Run2 ATLAS + CMS analysis results:

- Significance = 3.4σ (1.6 σ , exp.) (Evidence!!!!)
- $\mu = 2.2 \pm 0.7 \ (1.0 \pm 0.6, \text{ exp.})$
- New analysis: Full Run2 + partial Run 3

• $H \rightarrow \mu\mu$ Run2 analysis results:

- Significance observed (expected) with a mass of 125.09 GeV is 2.0σ (1.7 σ)
- $\mu = 1.2 \pm 0.6$
- New analysis (Full Run2 + partial Run 3): <u>Evidence!!!!</u>

ATLAS-CONF-2025-007

 $\mu = 1.4 \pm 0.4$ Obs. (Exp.) significance = 3.4 σ (2.5 σ) (bkg-only hypothesis)

arXiv:2507.03595

Global Signal strength (µ)

• Rate of Higgs boson production and decay processes:

$$\mu_{if} = \frac{(\sigma_i \times B_f)}{(\sigma_i^{SM} \times B_f^{SM})} = 1.023 \pm 0.028 \text{ (stat.)} ^{+0.026}_{-0.025} \text{ (exp.)} ^{+0.039}_{-0.036} \text{ (sig. theo.)} \pm 0.012 \text{ (bkg. theo.)}$$

- Around 10% reduction in the total uncertainty with respect to Nature result (1.05 \pm 0.06)
- Measurement in good agreement with respect to SM:
 - P-value compatibility at 68%

Higgs Boson production rates measurements

- Measurements for different combinations of production and decay processes
 - Relaxed assumptions by measuring the $\sigma \times B$
- Combine or separating production modes:
 - driven by experimental sensitivity and ability to distinguish different process in a given decay channel
- Good agreement between the measurements and SM predictions

P-value compatibility with SM: 85%

Higgs Boson coupling measurements

Improvements: VH, H(WW*) with lower kV and ttH(bb), with higher kF

Compatible with SM predictions

(p-value 62%)

Compatible with SM predictions (p-value 90%) for resolved parametrization

Improved VH, H(cc) constraints halved uncertainty on κ_c ; uncertainty on κ_t improved 15% (vs. Nature).

Higgs Boson coupling measurements

- $\sigma \times B$ is parametrized in terms of multiplicative coupling strength modifiers (κ) (κ -framework)
 - Total decay width accounts for all decay modes, direct/indirect decays and hypothetical decays to non-SM particles
- Higgs boson coupling modifiers in the effective parameterization:
 - κ_g , κ_γ and $\kappa_{Z\gamma}$ are treated as independent parameters
 - Assuming $\kappa_c = \kappa_t$
 - Assuming no invisible or undetected Higgs Boson decays beyond SM

Compatible with SM predictions (p-value 89%) for effective parametrization

Coupling modifiers: expected uncertainties

Resolved parametrization

Reduction of 43% on exp. κ_c uncertainty (improved VH, H(cc) constraints)

Assuming $\kappa_c = \kappa_t$

Reduction of 23% on exp. κ_t uncertainty

Run 2 + Run 3 Expected Uncertainties

Effective parametrization

- Run3 dataset (2022, 2023 and 2024 = 165 fb-1) is used for analysis of $H(\mu\mu)$ and $H(Z\gamma)$
- Reduction on the expected uncertainty for κ_{μ} of about 37% while 48% reduction is expected for $\kappa_{Z\nu}$

Run 2 + Run 3 Coupling modifiers

Addition of Run3 data significantly reduces total uncertainty for κ_{μ} wrt Run2

Effective parametrization

Rel. improvement on the precision of κ_{μ} (~38%) and $\kappa_{Z\gamma}$ (~30%) adding Run3 data wrt Run2 measurements

Summary

- The combination of the single Higgs measurements has been <u>updated</u> with the LHC Run 2 dataset:
 - It allows to test the Higgs sector by measuring the Higgs production and decay rates and the its couplings to the SM particles
 - All measurement show excellent agreement with the SM predictions
 - Uncertainty reduction of the order of 10% for the signal strength and as 43% for the expected uncertainty on κ_c
 - Addition of channels with partial Run3 significantly improves precision on couplings:
 - Sensitivity is enhanced by the combination
 - Precision of ~17% for κ_{μ} and ~23% for $\kappa_{Z\gamma}$
- Precision on the event rates, cross sections and couplings are expected to further improve with the Run 3 dataset collected so far

Run 3 Analysis are ongoing! There are much more to come!

Stay tuned!

Back-up slides

Recap of ATLAS Run2 measurements

<u>Nature, vol. 607, 52-59 (2022)</u>

Simplified template cross section framework:

- Mutually exclusive regions (36) of the phase space split based on Higgs kinematics (+ W or Z bosons and associated jets)
- Sensitive to SM deviations; reduce large theory uncertainties and minimize model-dependence when extrapolating to accessible signal regions
- More regions are probed compared to previous result [1], specially for High Pt Higgs Boson
- Good compatibility between the measurements and the SM predictions!

P-value compatibility of combined measurement and SM: 94%

$H \rightarrow Z\gamma$ analysis

 $^{\odot}$ Rare decay in the SM via loop-induced processes with BR = 1.54 × 10–3 (at mH = 125.09 GeV)

Run2 analysis results:

- Significance observed (expected) with a mass of 125.09 GeV is 2.2σ (1.2σ)
- $\mu = 2.0^{+1.0}_{-0.9}$ (dominated by statistical uncertainty)

• Run2 ATLAS + CMS analysis results:

- Significance = 3.4σ (1.6 σ , exp.) (Evidence!!!!)
- $\mu = 2.2 \pm 0.7 \ (1.0 \pm 0.6, \text{ exp.})$

New analysis (Full Run2 + partial Run 3) enhancements:

- Higher Higgs cross-section and larger datasets
- · Relaxed pT thresholds for muons and photons
- '13 exclusive categories, including a new multi-lepton one
- 'XGBoost classifier replaces cut-based selections
- *Combined with Run 2 for improved sensitivity

$\mu = 1.3^{+0.6}_{-0.5}$ Observed (expected) significance = 2.5 σ (1.9 σ)

Phys. Rev. Lett. 132, 021803

$H \rightarrow \mu\mu$ analysis

 \bullet Rare decay in the SM with BR = 2.17 × 10–4 (at mH = 125.09 GeV)

• Run2 analysis results:

- Significance observed (expected) with a mass of 125.09 GeV is 2.0σ (1.7 σ)
- μ =1.2 ± 0.6

New analysis (Full Run2 + partial Run 3) enhancements:

- The statistics increased by over a factor of 2
- 5B-event NLO Drell-Yan simulation
- Mass resolution improvement due to $H \rightarrow \mu\mu$ vertex fit
- Addition of 2-lepton VH category; ttH fully hadronic decays
- Recategorization of ttH (distance-correlation NN)

Evidence for $H o \mu\mu$ decay

 $\mu = 1.4 \pm 0.4$ Observed (expected) significance = 3.4 σ (2.5 σ) (bkg-only hypothesis)

$H \rightarrow \mu\mu$ analysis

All selections

Triggers: at least one high pT muon (pT > 24 GeV) and isolated or pT > 50 GeV without isolation

	Selection		
Common preselection	Primary vertex lection Two opposite-charge muons $ \eta < 2.5, p_{\rm T}^{\rm lead} > 27 {\rm GeV}, p_{\rm T}^{\rm sublead} > 15 {\rm GeV} $		
Fit region	$m_{\mu\mu} = 110 - 160 \text{ GeV}$		
Jets	$p_{\rm T} > 25$ GeV and $ \eta < 2.4$ or with $p_{\rm T} > 30$ GeV and $2.4 < \eta < 4.5$		
b-tagged jets	$p_{\rm T} > 25{\rm GeV}$ and $ \eta < 2.4$ or with $p_{\rm T} > 30{\rm GeV}$ and $2.4 < \eta < 2.5$ Tagging efficiency working point of 85%		
ttH categories VH 4-lepton category VH 3-lepton categories VH 2-lepton categories VBF and ggF categories	At least one b -jet Exactly two additional e or μ with $p_T > 8$ GeV, 5 GeV (μ) / 7 GeV (e), no b -jets Exactly one additional e or μ with $p_T > 15$ GeV, no b -jets No additional lepton, no b -jets, $E_T^{miss} > 120$ GeV No additional lepton, no b -jets, $E_T^{miss} < 120$ GeV		

Higgs boson production cross sections

- Production cross section for main production modes (BR are fixed to their SM expectations)
 - bbH mode considered together with ggF (acceptance for both processes are similar in all channels considered)
 - Fiducial volume: $|y_H| < 2.5$;
- Excellent agreement with SM (predictions): p-value of 97%
- Comparison wrt Nature paper 2022:
 - Reduction of about 30% on the uncertainty of $\sigma_{W\!H}$ and $\sigma_{Z\!H}$
 - Due to updates on VH(bb,cc) analysis
 - Reduction of about 40% on the uncertainty of σ_{ttH}
 - Due to updates on ttH(bb) analysis

Decay branching ratio measurements

- Branching ratio measurements (production cross sections are fixed to their SM expectations)
 - Fiducial volume: $|y_H| < 2.5$;
- Good agreement with SM (predictions): p-value of 68%
- Comparison wrt Nature paper 2022:
 - Reduction of about 20% on the uncertainty of BR_{bb}
 - Due to higher sensitivity of updated VH(bb,cc) analysis
 - Reduction of about 20% on the uncertainty of BR_{WW} and 10% for $BR_{\tau\tau}$
 - Due to updates on H(WW*) and H($\tau\tau$) analysis

Higgs Boson production rates measurements

Decay mode	Prod. mode	Measurement	SM prediction	Ratio to SM
	$ggF + b\bar{b}H + VBF$	$27 \pm 10 \text{ pb}$	$28.0 \pm 1.5 \text{ pb}$	1.0 ± 0.4
$H \rightarrow bb$	WH	$0.68^{+0.15}_{-0.14}$ pb	$0.706 \pm 0.016 \text{ pb}$	$0.96^{+0.21}_{-0.20}$
$H \rightarrow bb$	ZH	$0.41^{+0.10}_{-0.09}$ pb	$0.462 \pm 0.018 \text{ pb}$	$0.88^{+0.22}_{-0.20}$
	ttH + tH	$0.27 \pm 0.06 \text{ pb}$	$0.340^{+0.029}_{-0.030} \text{ pb}$	$0.80^{+0.19}_{-0.18}$
	ggF + $b\bar{b}H$	11.3 ± 1.1 pb	$9.6 \pm 0.6 \text{ pb}$	1.17 ± 0.11
	VBF	$0.73^{+0.17}_{-0.14}$ pb	$0.753 \pm 0.018 \text{ pb}$	$0.97^{+0.22}_{-0.19}$
$H \to WW^*$	WH	0.13 ± 0.08 pb	$0.262 \pm 0.006 \text{ pb}$	$0.48^{+0.31}_{-0.29}$
	ZH	$0.29^{+0.09}_{-0.08}$ pb	$0.171 \pm 0.007 \text{ pb}$	$1.7^{+0.5}_{-0.4}$
	ttH + tH	$0.21\pm0.08~\text{pb}$	$0.126 \pm 0.011 \text{ pb}$	1.7 ± 0.6
	ggF + $b\bar{b}H$	2.2 ^{+0.8} _{-0.6} pb	$2.80 \pm 0.17 \text{ pb}$	$0.77^{+0.27}_{-0.23}$
	VBF	0.226 ^{+0.040} _{-0.035} pb	$0.219 \pm 0.005 \text{ pb}$	$1.03^{+0.18}_{-0.16}$
$H \rightarrow \tau \tau$	WH	0.110 ^{+0.040} _{-0.033} pb	$0.0761 \pm 0.0018 \text{ pb}$	$1.4^{+0.5}_{-0.4}$
	ZH	0.052 ^{+0.023} _{-0.020} pb	$0.0498 \pm 0.0020 \text{ pb}$	$1.1^{+0.5}_{-0.4}$
	ttH + tH	$0.040^{+0.026}_{-0.024}~\mathrm{pb}$	0.0366 ± 0.0032 pb	$1.1^{+0.7}_{-0.6}$
	$ggF + b\bar{b}H$	$1.11^{+0.13}_{-0.12} \ pb$	$1.18 \pm 0.07~\mathrm{pb}$	$0.94^{+0.11}_{-0.10}$
$H \rightarrow ZZ^*$	VBF	$0.12^{+0.05}_{-0.04} \text{ pb}$	$0.0924 \pm 0.0022 \text{ pb}$	$1.3^{+0.5}_{-0.4}$
11 -> 22	VH	0.08 ^{+0.06} _{-0.05} pb	$0.0321 \pm 0.0008 \text{ pb}$	$1.5^{+1.2}_{-0.9}$
	ttH + tH	$0.026^{+0.026}_{-0.017}$ pb	0.0154 ^{+0.0013} _{-0.0014} pb	$1.7^{+1.7}_{-1.1}$
	$ggF + b\bar{b}H$	$106 \pm 10 \text{ fb}$	$102 \pm 6 \text{ fb}$	1.04 ± 0.10
	VBF	$10.0^{+2.2}_{-2.0}$ fb	$7.94 \pm 0.20 \text{ fb}$	$1.26^{+0.28}_{-0.25}$
$H \rightarrow \gamma \gamma$	WH	$4.2^{+1.5}_{-1.4}$ fb	$2.76 \pm 0.07 \text{ fb}$	$1.5^{+0.6}_{-0.5}$
	ZH	$-0.4^{+1.1}_{-1.0}$ fb	$1.81 \pm 0.07 \text{ fb}$	-0.2 ± 0.6
	ttH	$1.01^{+0.40}_{-0.34}$ fb	$1.13 \pm 0.11 \text{ fb}$	$0.89^{+0.32}_{-0.30}$
	tH	$0.5^{+0.8}_{-0.6}$ fb	0.192 ^{+0.013} _{-0.025} fb	$2.5^{+4.0}_{-3.3}$
H -> ""	$ggF+b\bar{b}H+ttH+tH$	6 ± 9 fb	$9.8 \pm 0.6 \text{ fb}$	0.6 ± 0.9
$H \rightarrow \mu\mu$	VBF + VH	$2.6^{+1.5}_{-1.4}$ fb	1.196 ^{+0.026} _{-0.027} fb	$2.2^{+1.3}_{-1.2}$
$H \to Z \gamma$	All	$160^{+80}_{-70} \text{ fb}$	$78 \pm 6 \text{ fb}$	$2.0^{+1.0}_{-0.9}$
$H \rightarrow cc$	WH	135 ⁺³²⁰ ₋₃₁₀ fb	35.1 ± 2.0 fb	3.8 ± 9.0
<i>H</i> → cc	ZH	-8 ⁺¹⁶⁰ ₋₁₅₀ fb	$23.0 \pm 1.5 \text{ fb}$	-0.4 ± 7.0

- Granular measurement of ttH and tH in the $H(\gamma\gamma)$ channel (cleaner channel)
- ggF+bbH and VBF are combined in H(bb) for improving sensitivity
- In H($\mu\mu$), ggF+bbH, ttH+tH, and VBF+VH; while in H($Z\gamma$), all production modes are grouped together

Resolved and effective parametrization

Higgs boson coupling modifiers

Parameter	Resolved $\kappa_g, \kappa_\gamma, \kappa_{Z\gamma}$		Effective $\kappa_g, \kappa_\gamma, \kappa_{Z\gamma}$	
	Free κ_c	$\kappa_c = \kappa_t$	$\kappa_c = \kappa_t$	
κ_Z	$0.97^{+0.09}_{-0.07}$	0.96 ± 0.05	0.96 ± 0.05	
κ_W	$0.99^{+0.09}_{-0.06}$	0.99 ± 0.04	1.00 ± 0.05	
κ_t	$0.99^{+0.10}_{-0.08}$	$0.99^{+0.06}_{-0.05}$	0.99 ± 0.09	
κ_b	$0.90^{+0.12}_{-0.11}$	0.89 ± 0.09	$0.89^{+0.10}_{-0.09}$	
κ_c	$1.1^{+1.6}_{-3.8}$			
$\kappa_{ au}$	$0.95^{+0.10}_{-0.08}$	0.94 ± 0.06	0.94 ± 0.06	
κ_{μ}	$1.05^{+0.25}_{-0.31}$	$1.04^{+0.24}_{-0.30}$	$1.04^{+0.23}_{-0.30}$	
κ_g			$0.99^{+0.07}_{-0.06}$	
κ_{γ}	_	_	0.97 ± 0.06	
$K_{\mathbb{Z}/\gamma^*}$			$1.36^{+0.30}_{-0.36}$	

Run 2 + Run 3 Decay branching rations

 $H
ightarrow \mu \mu$ and $H
ightarrow Z \gamma$ BR includes Run3 dataset

Higgs Boson production rates measurements

Observed

Expected

Coupling modifiers: expected uncertainties

Effective parametrization

Summary of the new combination results

- **Higgs boson production cross-sections** are consistent with the Standard Model (SM), exhibiting 6-18% uncertainties, with notable reductions of 30% for WH/ZH and 40% for $t \pm f$ are compared to Ref. [3]. **Branching fractions for major decay modes** (t + f), t + f) also align with SM predictions, having 8-13% uncertainties. Specifically, uncertainties for t + f and t + f are reduced by 20%, and for t + f by 10%, relative to Ref. [3]. Results for 29 combined production and decay channels are also provided.
- **Higgs boson coupling modifiers** are also presented, assuming only Standard Model (SM) loop and unprobed Higgs processes. Couplings to **W**, **Z**, **t**, **b**, and τ are measured with **5-12% uncertainties, improving by 10-20% compared to Ref.** [3]. The muon coupling uncertainty is about 25%, while the charm quark coupling has a +1.6–3.8 uncertainty, a factor of 2 improvement over Ref. [3]. All results align with SM predictions.