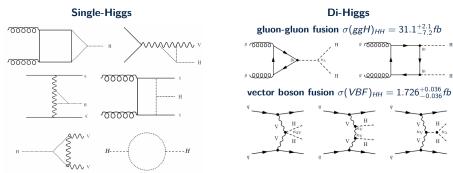
Higgs boson self-coupling and Di-Higgs production CMS

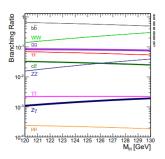
Higgs Hunting

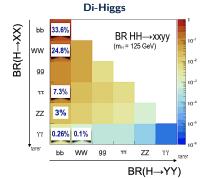
Leonidas Paizanos

Tuesday 15th July, 2025



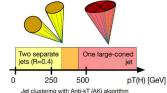
Motivation 1/13


- ▶ Important to measure the Higgs properties and compare with SM predictions
- ▶ Higgs HHH (k_{λ}) , VVH (k_{V}) and VVHH (k_{2V}) couplings are potential portals to new physics, where $k_{X} = \frac{X}{X_{CM}}$
- **1** Single Higgs with EWK loop (NLO) corrections depends on $k\lambda$
- 4 Higgs pair production offers experimental access to all couplings

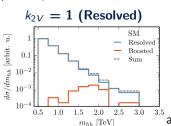


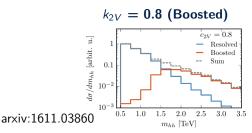
▶ Modifications to the Higgs couplings ⇒ changes in the production cross-section

H and HH Decay Modes



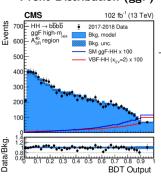
	Н	НН		
Analysis	Reference	Analysis	Reference	
H o bb	HIG-19-003,HIG-18-016,HIG-17-026	$HH o \gamma \gamma bb$	HIG-19-018	
$H \rightarrow \tau \tau$	HIG-19-010	$HH \rightarrow \gamma \gamma \tau \tau$	HIG-22-012	
H o ZZ	HIG-19-001	$HH \rightarrow \tau \tau bb$	HIG-20-010	
$H \rightarrow \gamma \gamma$	HIG-19-015	HH o bbbb	HIG-20-005,B2G-22-001,HIG-22-006	
$H o \mu \mu$	HIG-19-006	HH o WWbb	HIG-21-005	
H o WW	HIG-20-013	HH → ZZbb	HIG-20-004	
$H \rightarrow ZZ, WW, \tau\tau \text{ (tH or } t\overline{t}H)$	HIG-19-008	$HH \rightarrow WW\gamma\gamma$	HIG-21-014	

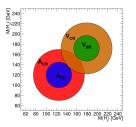

Resolved and Boosted Topologies


3/13

- \blacktriangleright Two strategies based on H P_T
 - Resolved: H products are reconstructed as individual AK4 jets
 - ② Boosted: Collinear H products forming a large-cone AK8 jet

- Resolved topologies are effective in constraining scenarios with SM-like couplings, while boosted ones are sensitive to larger deviations
- \blacktriangleright Deviations in k_{2V} significantly affect the boosted regime
- ▶ Jet tagging algorithms are now developed for both scenarios (coverage of the full phase space)

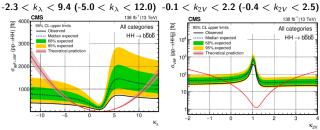

$HH \rightarrow bbbb$ Resolved

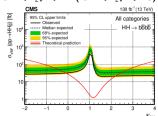

- ▶ Phase space: > 4 jets, with > 3 b-tagged
- Event categorization based on the 2D mass phase space

Background Estimation

- Using the 3b and 4b CRs
- Data driven method

Prefit Distribution (ggF)





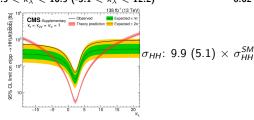
ggF/VBF Categorization:

- Presence of 2 forward jets with negative η product
- BDT to separate ggF and VBF
- for ggF Vs Bkg separation

Additional BDT

UL on σ_{HH} : 3.9 (7.8) $\times \sigma_{HH}^{SM}$

$HH \rightarrow b\overline{b}b\overline{b}$ Boosted

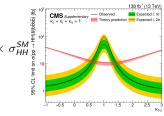

- ▶ Phase space: At least 2 AK8 jets with $P_T \ge 300$ GeV
- ightharpoonup ggF & VBF Orthogonality: Presence of 2 forward AK4 jets with large m_{jj} and $\Delta\eta_{jj}$
- ▶ ParticleNet algorithm for boosted $H \rightarrow bb$ Vs QCD discrimination (Xbb score)

ggF

- HH: Jets with the highest Xbb score
- ► Event categorization based on the 2nd jet's Xbb and BDT output:

Т			Cat1
M		at3	Cat2
L		QCD	CR
Jet2 Xbb/ggF Vs Bkg BDT		М	Т

$$-9.9 < k_{\lambda} < 16.9 \text{ (-5.1} < k_{\lambda} < 12.2)$$

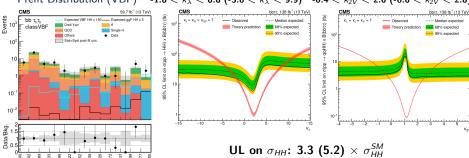


VBF

- HH: Jets with the highest P_T
- ► Event categorization based on the Xbb score of the 2 H candidates:

Т				HP
М				MP
L			LF)
В	QCD CR			
Jet1/Jet2	В	L	М	Т

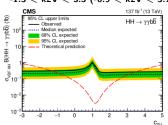
$$0.62 < k_{2V} < 1.41 \ (0.66 < k_{2V} < 1.37)$$


▶ Phase Space: $1 \tau_h + 1 \tau_h/\mu/e$ and ≥ 2 ak4 jets

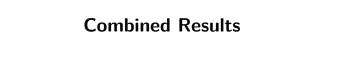
Event Categorization:

For all categories a DNN is trained to maximize the signal Vs bkg discrimination

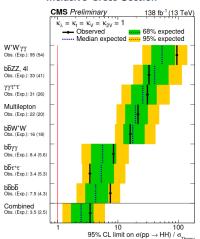
Prefit Distribution (VBF) -1.8 < k_{λ} < 8.8 (-3.0 < k_{λ} < 9.9) -0.4 < k_{2V} < 2.6 (-0.6 < k_{2V} < 2.8)


 $HH \rightarrow b\bar{b}\gamma\gamma$

7/13

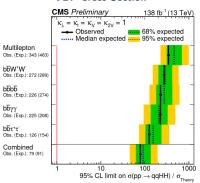

- ggF and VBF categorization based on the presence of 2 forward AK4 jets
- BDT training to reduce $\gamma\gamma$ +jets and γ + jets bkg
- Dedicated NN to remove $t\bar{t}H$ bkg
- 2D m_{bb} and $m_{\gamma\gamma}$ fit, for signal extraction
- Background modeling
 - Single Higgs: Parametrize $m_{\gamma\gamma}$ and m_{bb} with analytical models
 - **QCD**: Data-driven, 2D envelope method $(m_{\gamma\gamma})$ and m_{bb}
- Results:

$$\begin{array}{c} \textbf{-3.3} < k\lambda < \textbf{8.5} \ (\textbf{-2.5} < k\lambda < \textbf{8.2}) \\ \hline \textbf{CMS} & \textbf{137 fb' (13 TeV)} \\ \hline \textbf{9} & \textbf{3.5} & \textbf{HH} \rightarrow \gamma\gamma \text{DB} \\ \hline \textbf{4} & \textbf{3.5} & \textbf{HH} \rightarrow \gamma\gamma \text{DB} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{HH} \rightarrow \gamma\gamma \text{DB} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{HH} \rightarrow \gamma\gamma \text{DB} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{HH} \rightarrow \gamma\gamma \text{DB} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3.5} \\ \hline \textbf{3.5} & \textbf{3.5} & \textbf{3.5} & \textbf{3$$


-1.3 < k2V < 3.5 (-0.9 < k2V < 3.1)

UL on σ_{HH} : 7.7 (5.2) $\times \sigma_{HH}^{SM}$

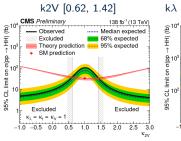
Inclusive Cross-Section

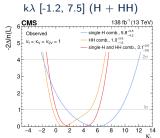


Observed (Expected) Results

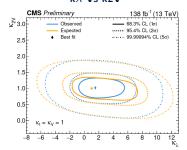
• Inclusive: $3.5(2.5) \times \sigma_{HH}^{SM}$

 \bullet VBF: 79(91) $imes \sigma_{VBF}^{SM}$


VBF Cross-Section


CMS-PAS-HIG-20-011

▶ $HH \rightarrow bbbb, bb\tau\tau$ and $bb\gamma\gamma$ analyses play a significant role in the HH combination


Higgs Couplings

| Kλ [-1.39, 7.02] (HH Analyses) | CMS Pretiminary | 138 fb 1(13 TeV) | CMS Pretimin


kλ Vs k2V

CMS-PAS-HIG-20-011 . HIG-23-006

- $k\lambda$ extracted from single Higgs analyses favors positive values
- k2V = 0 scenario is excluded for all $k\lambda$

BSM Interpretation

10/13

▶ Study the ggF production cross section as a function of 2 HEFT benchmark sets of coupling modifier combinations $(k_{\lambda}, k_{t}, c_{2}, c_{g}, c_{2g})$ and c_{2} coupling modifier alone

JHEP04(2016)126

2 3 4 5 6 7 8 9 10 11 12 8a
5 1.0 1.0 -3.5 1.0 24 50 10.0 10.0 24 15.0 1.0
0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.0 10.0
0 0.5 -1.5 -3.0 0.0 0.0 0.0 0.0 0.1 -0 1.0 0.5
0 0.8 0.0 0.0 8 0.2 0.2 -1.0 -0.6 0.0 1.0 0.5
0 0.6 -0.8 0.0 -1.0 -0.2 -0.2 1.0 0.6 0.0 -1.0 0.0 0.0

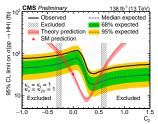
σggF for HEFT Benchmarks

CMS Preliminary

138 B¹ (13 TeV)

..... Median expected

369% expected

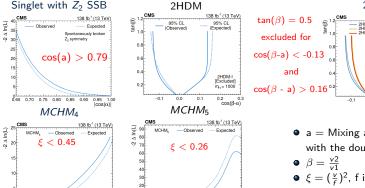

95% expected

95% expected

JHEP03(2020)091

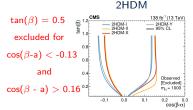
	1	2	3	4	5	6	7
Kλ	3.94	6.84	2.21	2.79	3.95	5.68	-0.10
K _t	0.94	0.61	1.05	0.61	1.17	0.83	0.94
c ₂	$-\frac{1}{2}$	1/2	$-\frac{1}{2}$	1/2	$-\frac{1}{2}$	1/2	1.0
c _g	0.5×1.5	0.0	0.5×1.5	-0.5×1.5	$\frac{1}{6} \times 1.5$	-0.5×1.5	$\frac{1}{6} \times 1.5$
c _{2g}	$\frac{1}{3} \times -3$	$-\frac{1}{3} \times -3$	0.5×-3	$\frac{1}{6} \times -3$	-0.5×-3	$\frac{1}{3} \times -3$	$-\frac{1}{3} \times -3$

c_2 [-0.28,0.59]


- No significant deviations from expectations are observed CMS-PAS-HIG-20-011
- \blacktriangleright Excess in all benchmarks, between 1 and 2 σ

UV Models

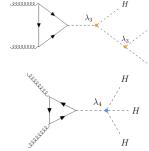
- Mapping between k_{λ} , k_t and c_2 and the parameters of each model, to extract experimental constraints on those parameters
- BSM Models:


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

- **1** Additional scalar ϕ (singlet). [1], [2]
- Additional Higgs doublet (2HDM). [3], [4], [5]
- **1** Higgs composite models ($MCHM_{4/5}$). [6], [7], [8], [9]

0.1

0.3 0.4


- a = Mixing angle of the scalar with the doublet
- $\xi = (\frac{v}{f})^2$, f is the strong dynamics scale

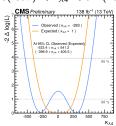
Motivation

$$V(h) = \frac{1}{2}m_h^2h^2 + \lambda_3vh^3 + \frac{1}{4}\lambda_4h^4$$

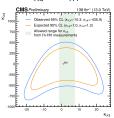
▶ HHH involves both
$$\lambda_3$$
 and λ_4

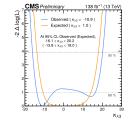
 λ_3 and λ_4 measurements may reveal sensitivity to BSM effects

Analysis Strategy


▶ Phase Space: 2γ and 4 AK4 jets

▶ Non-Resonant and Resonant Bkg reduction via 2 separate BDTs


▶ Fake Photon Background Estimation: Data driven method in a photon LSR

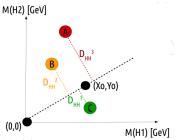

$$-16.1(-13.8) < k_{\lambda 3} < 20.2(18)$$
 $-533(-397) < k_{\lambda 4} < 541(406)$

$$-533(-397) < k_{14} < 541(406)$$

Summary 13/13

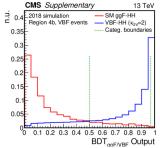
► ML techniques have expanded the phase space and improved the sensitivity in determining the Higgs couplings. The final results of the entire Run2 reach high sensitivity and offer very promising projections for the HL-LHC

- ightharpoonup Strong constraints achieved on the HH cross section and k_{2V}
- ► Many results on BSM interpretations based on HEFT parametrization benchmarks, constraints on c2 and UV model interpretations
- ► The Run2 results pave the way for measurements of the Higgs couplings with the Run3 data, which benefit from improved tools and triggers


$HH o b\overline{b}b\overline{b}$ **Resolved** (HIG-20-005)

Strategy 14/13

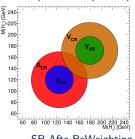
- Phase space: \geq 4 jets, with \geq 3 b-tagged (DeepJet Medium WP)
- A DNN algorithm is used for b-jet energy regression


HH Reconstruction:

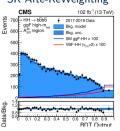
- Create the 3 possible HH pairs from the 4 jets with the highest b-tag scores
- ② Calculate their distance to the diagonal in the mass plane (D_{HH})
- **3** Choose the smallest D_{HH} or the leading in P_T if $|D_{HH}^1 D_{HH}^2| < 30 \text{GeV}$

ggF and VBF Categorization:

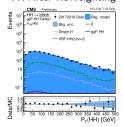
- **①** Presence of 2 forward jets with $\eta_1\eta_2<0$
- BDT trained to separate ggF and VBF, exploiting the VBF topology
- ▶ 2 ggF categories (low and high m_{HH})
- ▶ 2 VBF categories using the BDT score


Event Categorization

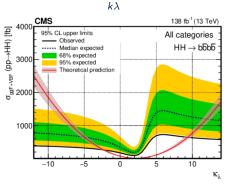
- Based on the 2D mass phase space $R1 \leq \sqrt{(M(H1)-C1)^2+(M(H2)-C2)^2} < R2$
- Both 3b and 4b regions are included
- SR: 4b with (C1,C2) = (125,120)GeV and (R1,R2) = (0,25)GeV


Control Region

- Data driven method
- BDT-reweighting model
- Extract weights from $3b \rightarrow 4b CRs$
- Applied on 3b SR to model Bkg in 4b SR SR Before ReWeighting


SR Afte-ReWeighting

Validation Region


- Phase space orthogonal to SR (C1,C2) = (179,172)GeV
- Same BDT-reweighting model and procedure

VR After-ReWeighting

Results 16/13

- ullet Discriminant Variables: BDT output for ggF, m_{HH} for VBF
- $k\lambda$ and k2V scans:

- ► Observed (Expected) Results
 - UL on $\sigma_{ggF+VBF}$: 3.9 (7.8) \times $\sigma_{ggF+VBF}$
 - $-2.3 < k\lambda < 9.4 (-5.0 < k\lambda < 12.0)$
 - \bullet -0.1 < k2V < 2.2 (-0.4 < k2V < 2.5)

$HH ightarrow b \overline{b} b \overline{b}$ Boosted (B2G-22-001)

Strategy

- ▶ Phase space: At least 2 ak8 jets with $P_T \ge 300$ GeV
- lacktriangle ggF & VBF Orthogonality: Presence of 2 forward AK4 jets with large m_{jj} and $\Delta\eta_{jj}$
- lacktriangle ParticleNet algorithm for boosted H o bb Vs QCD discrimination (Xbb score)
- ▶ Jet mass regression is performed using the PNet architecture (m_{reg})

ggF

- HH: Jets with the highest Xbb score
- Jet1: $m_{SD} \geq 50 \text{GeV}$, Jet2: $m_{reg} \geq 50 \text{GeV}$
- Jet1: Xbb > 0.8
- ggF Vs Bkg BDT
- ► Event categorization based on jet2 Xbb and BDT output:

Т			Cat1
М	С	at3	Cat2
L		QCE) CR
Jet2 Xbb/BDT	L	М	Т

VBF

- HH: Leading in P_T jets
- Well separated candidates $(\Delta \Phi, \Delta \eta)$
- $m_{reg} \in (50, 250) \text{GeV}$
- $P_T 1 \ge 500 \text{GeV}$, $P_T 2 \ge 400 \text{GeV}$
- ► Event categorization based on the 2 jets Xbb score:

Т				HP
М			- 1	MP
L			LF)
В	QCD CR			
Jet1/Jet2	В	L	М	Т

High

ParticleNet

score

Background Estimation and Discriminant

▶ PNet Xbb score is calibrated in a QCD region (Data driven method)

ggF

- $t\bar{t}$ recoil correction (fully hadronic final state)
- QCD is estimated from the low score region

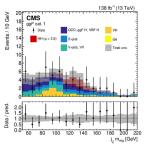
VBF

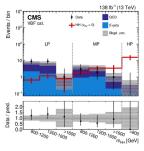
• $t\bar{t}$ normalization from a semileptonic region

QCD MC: sidebands

Application of transfer factors

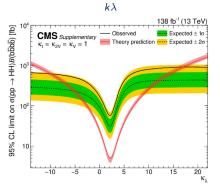
Application of transfer factors

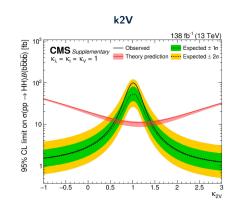

Control region


Sloral region

Low

ParticleNet


▶ Discriminant Variables: Jet2 m_{reg} for ggF, m_{HH} for VBF



Results 19/13

- ggF and VBF combined results
- $k\lambda$ and k2V scans:

- ► Observed (Expected) Results
 - UL on $\sigma_{ggF+VBF}$: 9.9 (5.1) \times $\sigma_{ggF+VBF}$
 - $-9.9 < k\lambda < 16.9$
 - \bullet 0.62 < k2V < 1.41

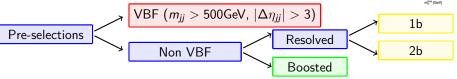
$HH \rightarrow b\overline{b}\tau_h\tau_X$, **X** = h, μ, e (HIG-20-010)

- ▶ Phase Space: $1 \tau_h + 1 \tau_h/\mu/e$ and ≥ 2 ak4 jets
- \blacktriangleright τ_h and b-jet identification using the DeepTau and DeepFlavour algorithms

$H \rightarrow \tau \tau$ Reconstruction:

- 2 opposite sign τ leptons
- $\Delta R(\tau, \tau) > 0.5$
- ullet SVfit algorithm for $m_{ au au}$ reconstruction

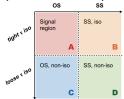
$H \rightarrow bb$ Reconstruction:

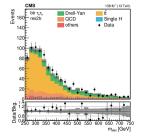

- ullet HH-Btag NN for H ightarrow bb identification
- 2 jets with the highest HH-Btag score
- m_{bb} is the invariant mass of the 2b

HH Mass Selection:

- ullet Elliptical cuts around m_{bb} and $m_{ au au}$ expected values
- $(\frac{m_{\tau\tau}-X}{\sigma_{x}})^{2}+(\frac{m_{bb}-Y}{\sigma_{x}})^{2}<1$
- Parameters defined by minimizing bkg acceptance

0.012 0.013 0.004

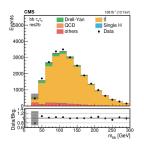

Event Categorization:


For all categories a DNN is trained to maximize the signal Vs bkg discrimination

Background Estimation

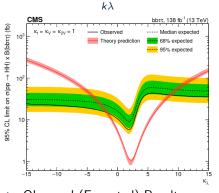
QCD (ABCD Method)

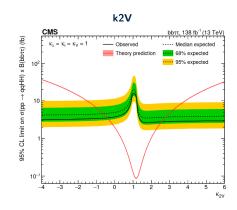
- Model is validate in the mass sideband and in different DeepTau WPs
- ▶ 2b region for $\tau_h \tau_h$ and $\tau_h \tau_e$ channels after the MC corrections



DYLL

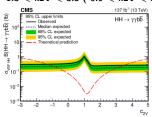
- Data-driven corrections
- From a $Z o \mu\mu$ enriched region


tτ


- Data-driven corrections
- In the mass sideband of the 2b category
- Method is validated in the low DNN score region of 1b and 2b categories

Results 22/13

- Discriminant Variable: DNN score
- $k\lambda$ and k2V scans:

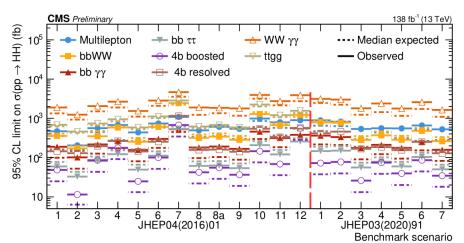

- ► Observed (Expected) Results
 - UL on $\sigma_{ggF+VBF}$: 3.3 (5.2) \times $\sigma_{ggF+VBF}$
 - $-1.8 < k\lambda < 8.8 \ (-3.0 < k\lambda < 9.9)$
 - \bullet -0.4 < k2V < 2.6 (-0.6 < k2V < 2.8)

$$HH
ightarrow b\overline{b}\gamma\gamma$$
 (HIG-19-018)

Analysis Strategy

- DNN b-jet energy regression and m_{bb} regression to improve resolution
- ggF and VBF categorization based on the presence of 2 forward AK4 jets
- \bullet Separate BDT training for ggF and VBF to reduce $\gamma\gamma$ +jets and γ + jets bkg
- ullet Dedicated NN to remove $t\overline{t}H$ bkg
- ullet Event categorization based on $m_{HH}=m_{\gamma\gamma bb}-m_{bb}-m_{\gamma\gamma}+2m_H$ and BDT
- 2D m_{bb} and $m_{\gamma\gamma}$ fit, for signal extraction
- Background modeling
 - **1** Single Higgs: Parametrize $m_{\gamma\gamma}$ and m_{bb} with analytical models
 - **QCD**: Data-driven, 2D envelope method $(m_{\gamma\gamma} \text{ and } m_{bb})$
- Results:

$$-1.3 < k2V < 3.5 (-0.9 < k2V < 3.1)$$



UL on $\sigma_{ggF+VBF}$: 7.7 (5.2) \times $\sigma_{ggF+VBF}$

H + **HH** Combination

Analysis	CADI	Int. luminosity (fb $^{-1}$)	Phase-space granularity
$H \rightarrow ZZ \rightarrow 4l$	HIG-19-001	138	STXS 1.2
$H \rightarrow b\overline{b}$ boosted	HIG-19-003	138	Inclusive
$VH(b\overline{b})$	HIG-18-016	77	Inclusive
$\overline{t\bar{t}H(b\bar{b})}$	HIG-17-026	36	Inclusive
ttH multilepton	HIG-19-008	138	Inclusive
$H \rightarrow \mu\mu$	HIG-19-006	138	Inclusive
$H \rightarrow \gamma \gamma$	HIG-19-015	138	STXS 1.2
$H \rightarrow \tau \tau$	HIG-19-010	138	STXS 1.2
$H \rightarrow WW$	HIG-20-013	138	STXS 1.2

Analysis	CADI	Targeted production modes
$ ext{HH} ightarrow \gamma \gamma ext{b} \overline{ ext{b}}$	HIG-19-018	ggHH and qqHH
$HH \rightarrow \tau \tau b \overline{b}$	HIG-20-010	ggHH and qqHH
$HH \rightarrow 4b$ resolved	HIG-20-005	ggHH and qqHH
$HH \rightarrow 4b$ merged jets	B2G-22-001	ggHH and qqHH
VHH(4b)	HIG-22-006	VHH
HH multilepton	HIG-21-002	ggHH
$HH \rightarrow WWb\overline{b}$	HIG-21-005	ggHH and qqHH

