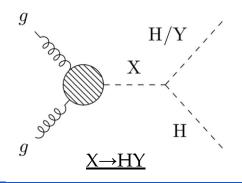
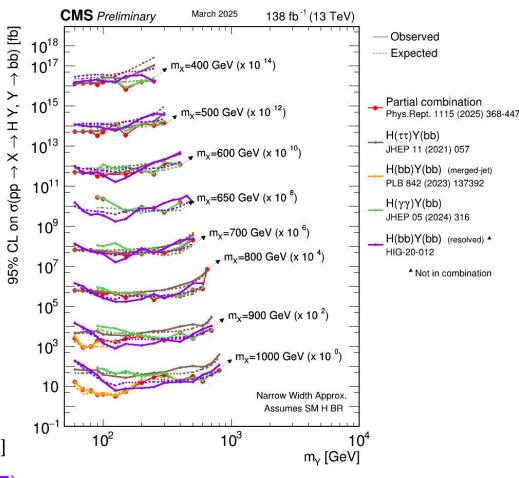
BSM H(125) aspects and searches for new scalar bosons - CMS

Siddhesh Sawant (Baylor University), on behalf of CMS collaboration


Higgs Hunting 2025 - July 15-17, 2025

Introduction

- The standard model: the most successful so far, but not complete. Open questions: the hierarchy problem, origin of dark matter etc
- Many Beyond SM (BSM) theories provides explanation of shortcomings of SM, and postulates new particles
 - \circ 2HDM, MSSM: CP-even h, H, H^{\pm} and CP-odd a
 - \circ 2HDM + singlet, NMSSM: CP-even $h_{1,2,3}$, H^{\pm} and CP-odd A, a
 - Two Real Singlet Models
 - o ...
- New particles (X, Y) in several appealing BSM theories.
 - X, Y: scalar or pseudoscalar
 - X→HH/HY/YY
 - \circ H \rightarrow YY
- Higher sensitivity when search involves H(125)

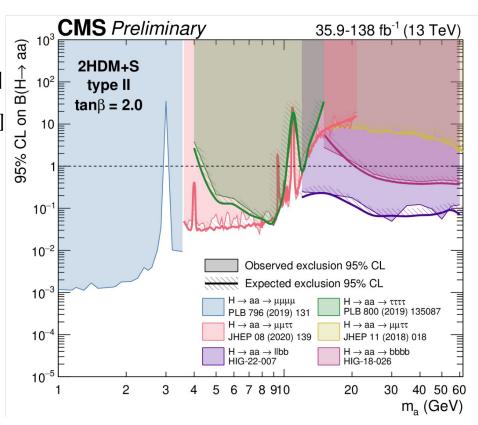


Searches for $X\rightarrow H(125)Y$ at CMS with full Run 2 data

```
X \rightarrow H(125)Y
```

- $X \rightarrow H(bb)Y(bb)$ [CMS-PAS-HIG-20-012]
- X→H(bb)Y(bb) (boosted)
 [Phys.Letters.B 842(2023)137392]
- $X \rightarrow H(\tau\tau)Y(bb)$ [IHEP11(2021)057]
- $X \rightarrow H(\gamma \gamma)Y(bb)$ [IHEP05(2024)316]
- $X \rightarrow H(\gamma \gamma)Y(\tau \tau)$ [CMS-PAS-HIG-22-012]
- $X \rightarrow H(bb)Y(\gamma\gamma)$ † [CMS-PAS-B2G-24-001] §
- X→H(bb)Y(anomalous) † [CMS-PAS-B2G-24-015]
- $X \rightarrow H(bb)Y(E_T^{miss})$ † [CMS-PAS-SUS-24-007]
- $X \rightarrow H(bb)Y(4q)$ † [CMS-PAS-B2G-23-007]

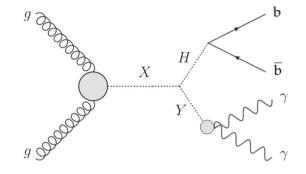
All $X \rightarrow H(125)Y$ cover $X \rightarrow H(125)H(125)$

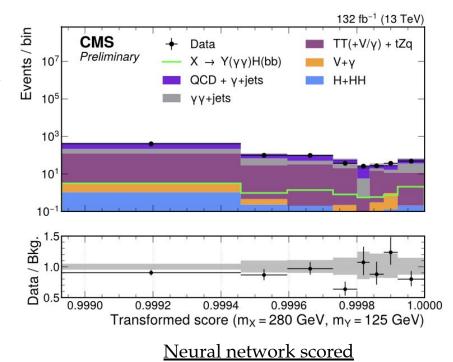


† Scope of this talk. New results since HHunting 2024

Searches for H(125)→aa at CMS with full Run 2 data

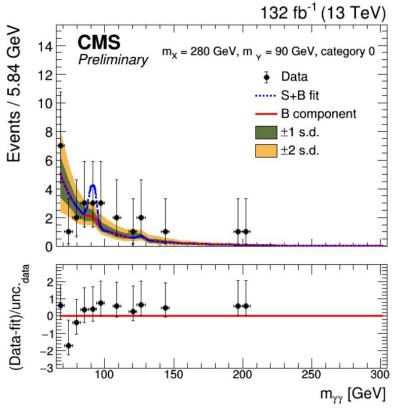
$H(125)\rightarrow aa$


- H \rightarrow aa \rightarrow 4 γ (boosted) [Phys. Rev. Lett. 131 (2023) 101801]
- H \rightarrow aa \rightarrow 4 γ (resolved) [IHEP 07 (2023) 148]
- H \rightarrow aa $\rightarrow \mu\mu\tau\tau$ (boosted) [IHEP11(2021)057]
- H \rightarrow aa $\rightarrow \mu\mu\tau\tau$ (resolved)
 [JHEP11(2018)018]
- H \rightarrow aa $\rightarrow \mu\mu$ bb/ $\tau\tau$ bb [<u>Eur. Phys. J. C 84</u> (2024) 493]
- H→aa→4b [<u>IHEP06(2024)097</u>]
- $H \rightarrow aa \rightarrow 4\mu [\underline{IHEP12(2024)172}]$
- $H \rightarrow aa \rightarrow 4\tau$ [CMS-PAS-SUS-24-002]

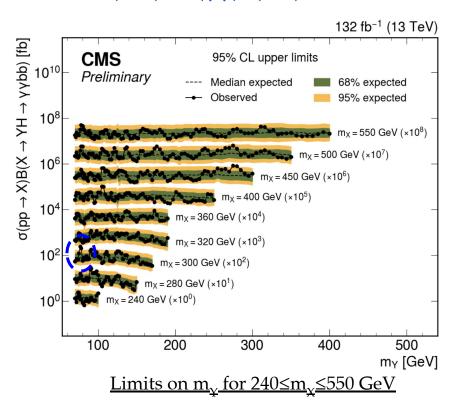

All searches covered in HHunting 2024 or earlier

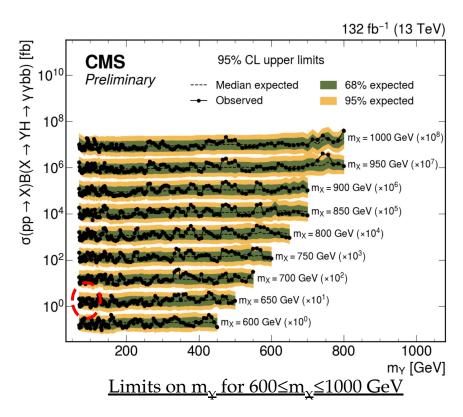
$X \rightarrow H(bb) Y(\gamma\gamma)$

Search for X→H(bb) Y(γγ),
 m_X ∈ [240, 1000] GeV, m_Y ∈ [70, 800]
 GeV,
 Search in model-independent way.
 X,Y: Narrow width scalars.



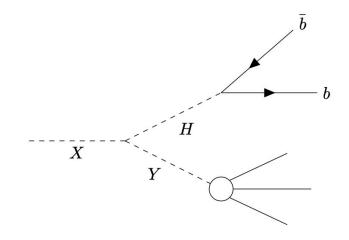
- Selection conditions (in brief):
 - Events with 2γ (p_T > 30, 18 GeV) and 2 AK4 jets (p_T > 24 GeV) passing b-quark tagging requirements.
 - Veto events with e or μ
- Trained signal-hypothesis-aware
 Parametric Neural Network to achieve
 higher S/B in signal region
 - NN scored is transformed to have flat background

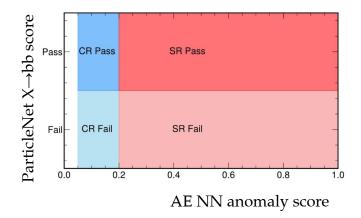

$X \rightarrow H(bb) Y(\gamma\gamma) (II)$


- $m_{\gamma\gamma}$ is used for signal extraction
- Signal: Modeled using Double Crystal-Ball (DCB) function
- Resonant H→γγ background from H,
 HH production: Also modeled by DCB function
- Resonant DY background: Derived using a data-driven ABCD method
- Non-resonant background: Modeled by a smooth falling function, selected using discrete profiling procedure.

Y candidate mass

$X \rightarrow H(bb) Y(\gamma\gamma) (III)$

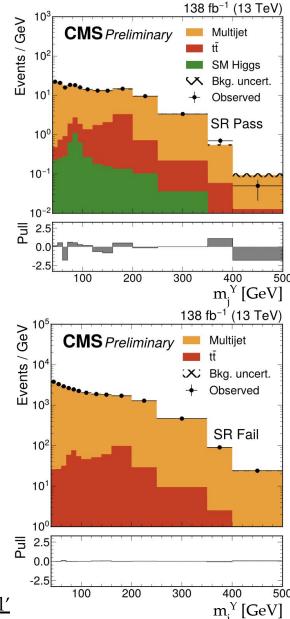




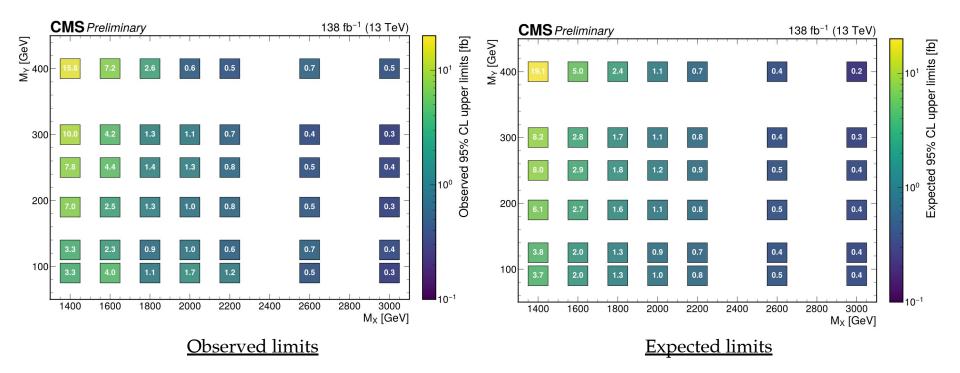
- Upper limit on $X \to H(bb) Y(\gamma\gamma)$: 0.05 to 2.69 fb
- \bullet Higher (lower) limits for mass points with lower (higher) m_{χ} - m_{χ} difference
- The data is compatible with SM. Largest local (global) excess of 3.3 (0.6) σ significance at m_{χ}=300 GeV, m_{χ}=77 GeV
- Local (global) excess of 3.8 (2.6) σ significance at m_{χ}=650 GeV, m_{χ}=90 GeV reported in IHEP05(2024)316 is not confirmed by the current analysis

$X \rightarrow H(bb) Y(anomalous)$

- Search for X \rightarrow H(bb) Y(any \rightarrow jets) in boosted regime, $m_X \in [1400, 3000]$ GeV, $m_Y \in [90, 400]$ GeV.
- Selection conditions (in brief):
 - \circ Events with 2 AK8 jets (p_T > 300 GeV) with m_{jj} > 1300 GeV
 - One of the AK8 jet pass ParticleNet X→bb selection and m_i in 100-150 GeV
 - Other AK8 jet pass AutoEncoder Neural Network (AE NN) anomaly score threshold
- AE NN: Trained on QCD jets.
 - Non-QCD jets (single jet, jets from tt etc) gives higher anomaly score.
 - ≈30% mistag rate in signal region (SR)
- SR and control region (CR) defined using AE NN anomaly score.



SRs and CRs

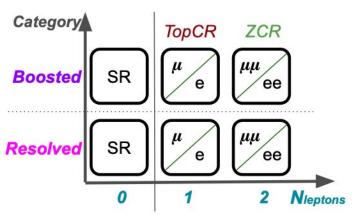

$X \rightarrow H(bb) Y(anomalous) (II)$

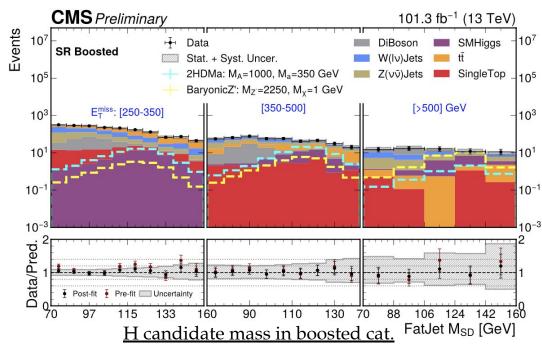
- ParticleNet $X \rightarrow bb$ efficiency is calibrated in data using $g \rightarrow bb$ sample
- AE NN anomaly score cut efficiency is calibrated using the Lund plane reweighting method
- 2D m_{jj} ^X m_j ^Y plane is used for signal extraction
 - Signal and tt, Higgs production backgrounds are modeled from MC
 - \circ Nonresonant background is estimated in data from its contribution in 'fail' region scaled by 'pass-to-fail ratio' ($R_{P/F}$)
 - \circ R_{P/F}: Polynomial in m_{jj}^X and m_j^Y, Determined during the fit to data

Plots: Y candidate mass in 'SR pass' and 'SR fail'

$X \rightarrow H(bb) Y(anomalous) (III)$

- Upper limits for hadronic Y→WW scenario: 0.3 to 19 fb
- Higher limits when m_X is low and m_Y is high, due to lesser signal reconstructed in the current Lorentz-boosted regime
- The data is compatible with SM. Largest local (global) excess of 2.1 (0.1) σ significance at m_{χ}=1600 GeV, m_{χ}=90 GeV

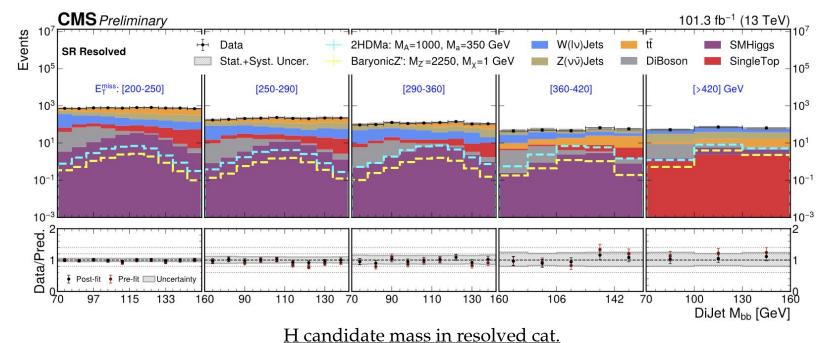

10


$X \rightarrow H(bb) Y(E_{T}^{miss})$

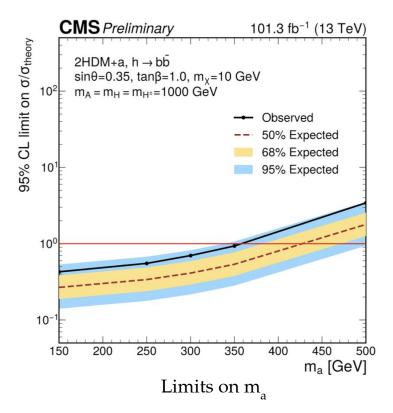
CMS-PAS-SUS-24-007

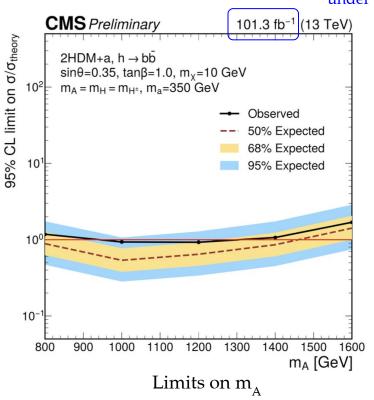
- Search for $X \rightarrow H(bb) Y(MET)$. 2HDM+a model: $A\rightarrow H(bb)$ a($\chi\chi$), m_x=10 GeV Baryonic-Z' model: $Z' \rightarrow H(bb) Z'(\chi\chi)$
- Selection conditions (in brief): Events with
 - Higgs candidate:

 - Boosted cat.: 1 AK8 jets (p_T > 200 GeV, $m_{soft-drop}$: 70-160 GeV) Resolved cat.: 2 b-tagged AK4 jets (pT> 50, 30 GeV, m_{ii} : 70-160 GeV)
 - E_T^{miss}: 250 (200) GeV for boosted (resolved) cat.
- Top and Z control regions for tt and Z(vv)+jets background estimation



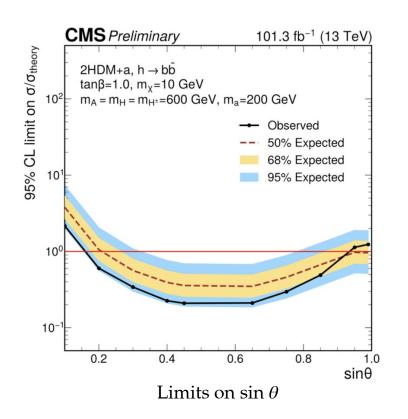
A

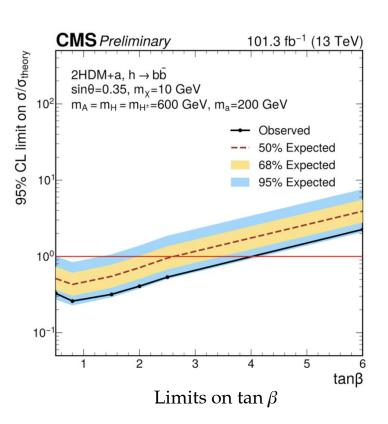

$X \rightarrow H(bb) \ Y(E_T^{miss}) \ (II)$


- Singal extraction in m_H in different E_T^{miss} bins
- Simultaneous fit to data in SR and Top, Z CRs in both cats. to constrain ttbar and Z(vv)+jets normalization.
- Other backgrounds and signal are modeled using MC

12

Results with 2016 under review





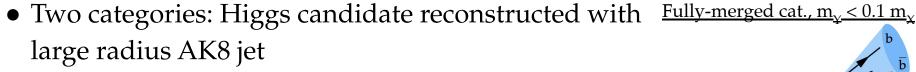
Upper limit on $\sigma/\sigma_{\rm theory}$ for 2HDM+a model:

- Exclude $m_a < 350 \text{ GeV for } m_A = 1000 \text{ GeV}$
- Exclude $960 < m_A < 1300 \text{ GeV for } m_a = 350 \text{ GeV}$

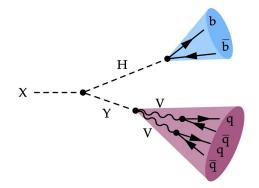
$X \rightarrow H(bb) \ Y(E_T^{miss}) \ (IV)$

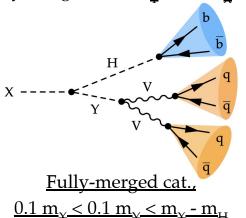
14

Upper limit on $\sigma/\sigma_{\rm theory}$ for 2HDM+a model:

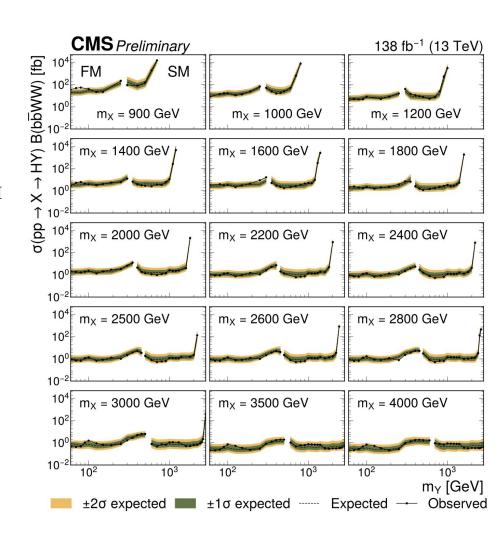

- Exclude $m_a < 350 \text{ GeV for } m_A = 1000 \text{ GeV}$
- Exclude $960 < m_A < 1300 \text{ GeV for } m_a = 350 \text{ GeV}$
- Exclude $0.16 < \sin \theta < 0.93$ for $m_A = 600$ GeV, $m_a = 200$ GeV
- Exclude $\tan \beta < 4$ for $m_A = 600$ GeV, $m_a = 200$ GeV

Siddhesh Sawant Higgs Hunting 2025


$X \rightarrow H(bb) Y(VV \rightarrow 4q)$


CMS-PAS-B2G-23-007

• Search for $X \rightarrow H(bb) Y(VV \rightarrow 4q)$. $m_x = [900, 4000] \text{ GeV}, m_v = [60, 2800] \text{ GeV}.$ H, V: SM bosons

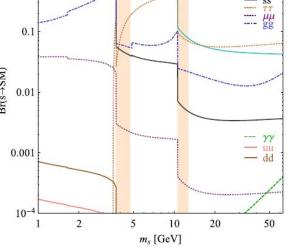

- Fully merged: Y→VV candidate reconstructed with single AK8 jet
- Semi-merged: 2 AK8 jets to reconstruct V→qq candidates
- ParticleNet jet taggers for H→bb and V→qq
 - Taggers calibrated in $g\rightarrow bb$ and semileptonic tt CRs, respectively
- Particle Transformer jet tagger for $Y \rightarrow VV \rightarrow 4q$.
 - Lund Plane reweighting method used to calibrate
- Background estimation:
 - QCD estimated from data from its contribution in the taggers 'fail' region scaled by 'pass-to-fail transfer function'
 - Other small background estimated with MC

$X \rightarrow H(bb) Y(VV \rightarrow 4q) (II)$

- Signal extraction in 2D m_{χ} , m_{γ} plane
- SR: $110 < m_H < 145 \text{ GeV}$, Validation region: $m_H < 110 \text{ or } m_H$ > 145 GeV
- Upper limit on $X \rightarrow H(bb) Y(VV)$: $\geq 0.2 \text{ fb}$
- Largest local (global) excess of 3.3
 (1) σ significance at m_χ=900 GeV, m_γ=80 GeV
- First LHC result in $X \rightarrow H(bb)$ Y(VV) in hadronic final state

Are there new scalar particles?

- Search for new scalar particles in different channels with full Run 2 data at CMS
 - Discussed a few in the talk
- No significant evidence has been observed so far
- Improving measurements with machine learning techniques for object reconstruction and signal extraction
- Expanding phase space of the searches
- Significant improvements expected with LHC Run 3 and HL-LHC with increased statistics, analysis techniques and modeling


Back up

Motivation

• Measurements of production and SM decays of H(125) are consistent with

SM within their uncertainties so far

- BR(H \rightarrow invisible) < 16% [1]
 - \Rightarrow BR(H \rightarrow BSM) \lesssim 20% if H is produced with SM stre
- Many beyond SM (BSM) theories predict exotic dec
 - For e.g. $H \rightarrow ss$, $H \rightarrow aa$, $H \rightarrow Za$, and $a/s \rightarrow SM$ where s (a): (pseudo-)scalar state

- Many well motivated candidates for light (pseudo-
 - Generic single scalar in SM+Singlet
 - Generic singlet (pseudo-)scalar in 2HDM+Singlet
 - Light (pseudo-)scalar of NMSSM
 - Pseudoscalar that mixes with the CP-odd Higgs of (N)MSSM_{SM branching fraction in SM+Singlet model [2]}

[1] JHEP 08 (2022) 104

[2] Phys. Rev. D 90 (2014) 075004

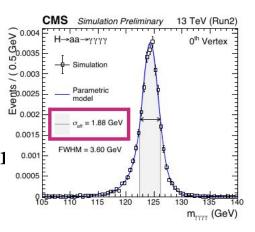
Motivation (II)

- Searches for light bosons in H decays in CMS:
 - With data collected in 2016 (\sim 36 fb^{-1}):
 - $H \rightarrow aa \rightarrow 4\tau$ [HIG-18-006]
 - $H \rightarrow aa \rightarrow 4\mu$ [HIG-18-003]
 - $H\rightarrow aa\rightarrow 2b\ 2\tau\ [\underline{HIG-17-024}]$
 - H $\rightarrow aa \rightarrow 2b 2\mu [HIG-18-011]$
 - $H \rightarrow aa \rightarrow 2\mu \ 2\tau \ [\text{HIG-17-029}, \text{HIG-18-024}]$
 - With data collected in 2016-2018 (\sim 138 fb^{-1}):
 - H $\rightarrow aa \rightarrow 4\gamma$ resolved (m_a \in [15, 60] GeV) [HIG-21-003]
 - H $\rightarrow aa \rightarrow 4\gamma$ boosted (m_a \in [0.1, 1.2] GeV) [HIG-21-016] \rightarrow ...
 - H $\rightarrow aa \rightarrow 2b \ 2\mu \ (m_a \in [15, 62.5] \ GeV) [HIG-21-021] \star$
 - Model independent searches
 - Searches in other final states are in pipeline

Fig: $a \rightarrow$ SM branching fraction in a specific scenario in 2HDM+Singlet model

23

[1] Phys. Rev. D 90 (2014) 075004


[★] This presentation

[🛨] Talk by Lakshmi [link]

$H \rightarrow aa \rightarrow 4\gamma \text{ (resolved)}$ HIG-21-003

Advantage of $H \rightarrow aa \rightarrow 4\gamma$:

- Relatively low background contribution
- BR($a\rightarrow 2\gamma$) $\approx 100\%$ if a couples at renormalizable level of heavy vector-like uncolored matter

Search for H $\rightarrow aa$ in resolved 4γ in final state for $15 \le m_a \le 60$ GeV

Selection conditions:

• Events with 4γ with $p_{\rm T} > 30$, 18, 15, 15 GeV and $|\eta| < 2.4$

• MVA based γ -identification (ID).

Also required electron veto based on tracker-calorimete: $\frac{1}{20}0.004$

• $110 < m_{\gamma\gamma\gamma\gamma} < 180 \text{ GeV}$

• Used a dedicated BDT to select pp collision primary ver \Rightarrow Improved m_{yyyy} by 3% and PV identification efficienc:

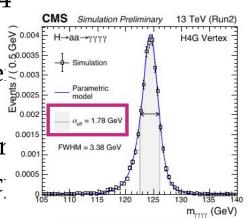
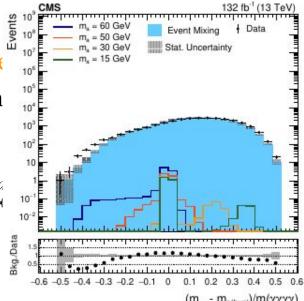


Fig: Standard PV selection (leading $\sum p_{T}^{2}$)

 $a \rightarrow 2\gamma$ tagging: Combination of 2γ pairs with the most similar m_{$\gamma\gamma$} are selected as $a \rightarrow 2\gamma$


Fig: BDT based collision vertex selection

Siddhesh Sawant Higgs Hunting 2025 24

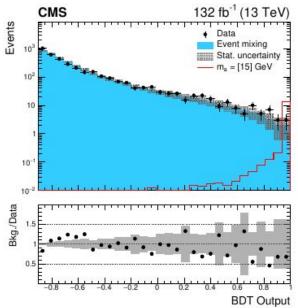
$H \rightarrow aa \rightarrow 4\gamma$ (resolved) (II)

Signal Region selection:

- BDT (mass-decorrelated) to discriminate signal over
- Training sample: Signal from MC, background gen model through event mixing.
- Training variables: MVA based γ -ID score, $p_{T,a1}$, $p_{T,a}$ (m_{a1} $m_{a,\,\mathrm{hyp}}$)/ $m_{\gamma\gamma\gamma\gamma}$, (m_{a2} $m_{a,\,\mathrm{hyp}}$)/ $m_{\gamma\gamma\gamma\gamma}$ and $\cos\theta^*$

Background:

- SM $\gamma\gamma$ + jets, γ + jets and multijet events, in which jets are musicient as γ .
- Event mixing: 3 out of 4 γ are taken from the next consecutive events from data before preselection.
 - \circ Those mixing γ are required to satisfy all γ selection criteria. Fig: One of the top ranked variables in
 - \circ Per-event weight, calculated in $m_{\gamma\gamma\gamma\gamma}$ sideband, is applied to improve that a background agreement.


$H \rightarrow aa \rightarrow 4\gamma$ (resolved) (III)

Signal Region (SR) selection (continue):

• Unique BDT output obtained for each m_a hypothesis

• BDT output threshold for SR is decided by maximizing approximate mean significance (AMS) congretely for each multiplication.

significance (AMS), separately for each m_a hypothesis

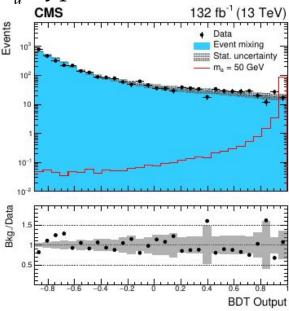


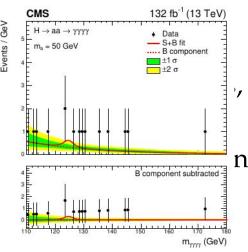
Fig: $S \text{ vs } B \text{ BDT for } m_{a, \text{ hyp}} = 15 \text{ GeV}$

Fig: $S \text{ vs } B \text{ BDT for } m_{a, \text{ hyp}} = 50 \text{ GeV}$

26

$H \rightarrow aa \rightarrow 4\gamma$ (resolved) (IV)

Signal estimation: Maximum likelihood fit of ' $\mu S + B'$ fun $\frac{g}{g}$ 0.0025


 μ : signal strength parameter floating in the fit.

Signal modeling (*S*):

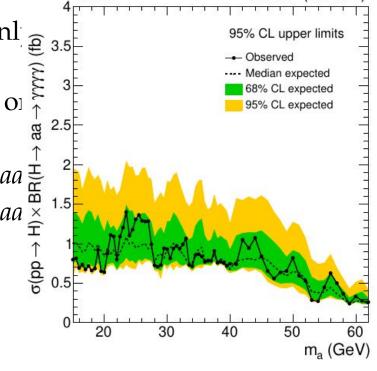
- Signal template is derived by fitting 'Double-sided Crystal Ball' function to m_{yyy} in signal MC,
- Separately for each m_a hypothesis and for each data taking year

Background modeling (*B*):

- Background functions: exponentials, Bernstein polynonand power law functions.
- Background modeling is performed by likelihood fit of to data. Choice of the background function is treated as parameter via discrete profiling method [1].

13 TeV (2018)

[1] JINST 10 (2015) P04015


Fig: $\mu S + B$ fit to data for $m_{a, \text{hyp}} = 50 \text{ GeV}$

$H \rightarrow aa \rightarrow 4\gamma$ (resolved) (V)

- No significant deviation from background-onl
- Observed (expected) upper limits at 95% CL of $\sigma_H \times BR(H \rightarrow aa \rightarrow 4\gamma)$:

$$0.80 (1.00) fb$$
 for $m_a = 15 \text{ GeV}$

0.26 (0.24) fb for $m_a = 50 \text{ GeV}$

CMS

Fig: $H \rightarrow aa \rightarrow 4\gamma$ (resolved) upper limit

$H \rightarrow aa \rightarrow 4\gamma \text{ (boosted)}$ HIG-21-016

Search for H $\rightarrow aa$ in 2 merged γ final for $0.1 \le m_a \le 1.2$ GeV

- BR($a \rightarrow 2\gamma$) enhances for $m_a < m_{2\mu}$, $m_{2\pi}$, $m_{J/\psi} = 0.21$, 0.28, 3.1 GeV [1]
- Smaller $m_a \Rightarrow$ larger Lorentz boost $\gamma_L = E_a/m_a$ for the same energy $E_a \Rightarrow a \rightarrow 2\gamma$ reconstructed as merged photon object (Γ)
- End-to-end m_{Γ} regressor: Dedicated convolutional neural network to estimate m_{α} from calorimeter deposits [2]

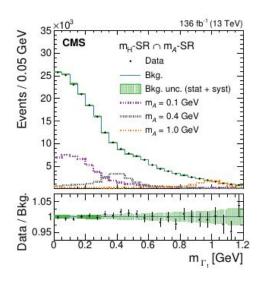
Selection conditions:

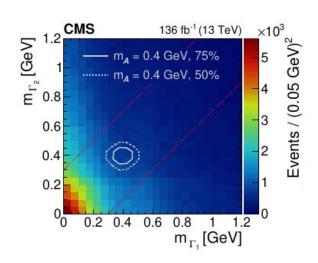
- Events with 2γ with $p_{\rm T} > 33$, 25 GeV and $|\eta_{\rm T}| < 1.4$
- MVA based γ -identification (ID). Also required electron veto based on tracker-calorimeter overlap.

[1] Phys. Rev. D 90 (2014) 075004

[2] arXiv:2204.12313

$H \rightarrow aa \rightarrow 4\gamma$ (boosted) (II)


Phase space is divided in different regions:


• m_H -SR: $110 < m_{\Gamma\Gamma} < 140 \text{ GeV}$

• m_H -SB_{low}: 100 < $m_{\Gamma\Gamma}$ < 110 GeV; m_H -SB_{high}: 140 < $m_{\Gamma\Gamma}$ < 180 GeV

• m_{Δ} -SR: $|m_{\Gamma_1}-m_{\Gamma_2}| < 0.3 \text{ GeV}$

• m_A -SB: $|m_{\Gamma_1}-m_{\Gamma_2}| > 0.3 \text{ GeV}$

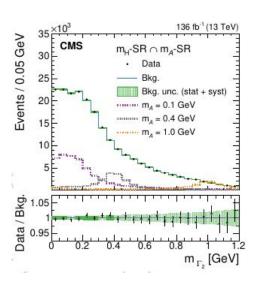


Fig: $m_{\Gamma 1}$

Fig: $m_{\Gamma 2}$

30

$H \rightarrow aa \rightarrow 4\gamma$ (boosted) (III)

 $\label{eq:signal-sign$

Background model (*B*):

- Components:
 - o $H \rightarrow 2\gamma$ background: 2D- m_{Γ} template derived from MC normalize using BR(SM $H \rightarrow 2\gamma$)_{theory}
 - Non-resonant backgrounds:
 - Dijet, γ +jet, prompt $\gamma\gamma$
 - Data driven 2D-m_r template derived

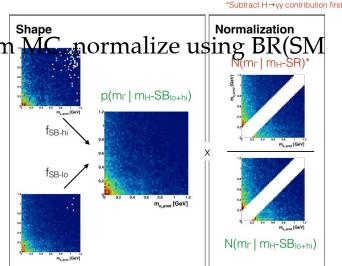


Fig: Data driven estimation of non-resonant background. Plots are for illustrative purpose only

31

bkg_{data} =

$H \rightarrow aa \rightarrow 4\gamma$ (boosted) (IV)

• No significant excess observed over SM-only \(\xi \)

• Observed (expected) upper limits at 95% CL BR(H $\rightarrow aa \rightarrow 4\gamma$): (0.9 - 3.3) $\times 10^{-3}$ for m_a (0.1 - 1.

• First CMS H $\rightarrow aa$ limits below $a \rightarrow 2\mu$ thresholog

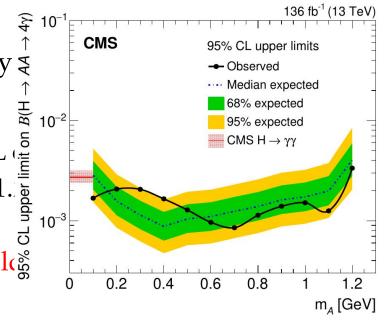


Fig: $H \rightarrow aa \rightarrow 4\gamma$ (boosted) upper limit

Summary

- Searches for $H \rightarrow ss$, $H \rightarrow aa$, $H \rightarrow Za$ exotic decays provide excellent probe to test many BSM scenarios
- The searches in CMS,
 - With data collected in 2016 (\sim 36 fb^{-1}):
 - \blacksquare H $\rightarrow aa \rightarrow 4\tau$ [HIG-18-006]
 - $H \rightarrow aa \rightarrow 4\mu$ [HIG-18-003]
 - $H \rightarrow aa \rightarrow 2b \ 2\tau$ [HIG-17-024]
 - H $\rightarrow aa \rightarrow 2b 2\mu [HIG-18-011]$
 - $H \rightarrow aa \rightarrow 2\mu \ 2\tau \ [\text{HIG-17-029}, \text{HIG-18-024}]$
 - \circ With data collected in 2016-2018 (~138 fb⁻¹):
 - H \rightarrow aa \rightarrow 4 γ resolved [HIG-21-003]
 - $H \rightarrow aa \rightarrow 4\gamma$ boosted [HIG-21-016]
 - H $\rightarrow aa \rightarrow 2b \ 2\mu \ [\text{HIG-21-021}]$
 - Model independent searches
 - The searches in few more final states are in pipeline. So stay tuned!
 - No signature of H→aa or H→ss found yet in the searches.
 However improvements from full Run 2 dataset and from state-of-art analysis techniques narrow down the search parameter space for future analyses.

Back up