

Z EXPERIMENT

Searches for new scalars and BSM physics with h¹²⁵

Eleni Skorda on behalf of the ATLAS collaboration

16 July 2025

Introduction

Experimental facts

- We know fermion masses and we know there are three generations but why?
- From neutrino oscillation experiments we know neutrinos have very small masses how do they obtain their mass?

Higgs total width 4.5(+3.3 -2.5) MeV - ATLAS

Even a small coupling to another light state can open up additional sizeable decay modes.

DOI: 10.1038/s41586-022-04893-w

Phys. Lett. B 846 (2023) 138223

Models predicting new scalars and BSM h¹²⁵ decays

Constrained from

- Higgs and other SM Precision measurements
- Exotic searches
- BSM Higgs searches

Higgs BSM searches:

Main focus: the experimental signature
Main design goal: cover as much as we can from
the available phase-space, for a specific signature,
but we are still quite model-dependent

Summary plots (2HDM-I)

Summary plots (hMSSM)

New full
Run-2 results
of this
analysis in
this talk

BSM Higgs Boson Decays-ATLAS

ATLAS-PHYS-PUB-2025-011

A quick recap of last year

 Summary of ATLAS searches for additional scalar and exotic Higgs decays

From Huacheng Cai talk in Higgs Hunting 2024

```
□ H \rightarrow \omega/K^* + \gamma [10.1016/j.physletb.2023.138292]

□ H \rightarrow D^*\gamma [10.1016/j.physletb.2024.138762]

□ H \rightarrow Z\gamma [10.1103/PhysRevLett.132.021803]

□ H \rightarrow b\bar{b}\tau^+\tau^- [arXiv:2407.01335]

□ H \rightarrow Z + \gamma\gamma [10.1016/j.physletb.2024.138536]

□ H \rightarrow E/\mu + \tau [10.1007/JHEP07(2023)166]

→ Search for Lepton-flavour-violating (LFV)
```

From E.Varnes talk in Higgs Hunting 2024

Latest ATLAS results

Light resonances [0.5 - 60] GeV

Searches exploring higher mass ranges 30 GeV up to 3 TeV

- HZ, H $\rightarrow \alpha\alpha \rightarrow$ 4b, 6b, arXiv:2507.01165
- H→aa→ γγττ, DOI: 10.1007/JHEP03(2025)190
- $H \rightarrow aa \rightarrow \tau\tau\tau\tau$, <u>arXiv:2503.0563</u>
- $H \rightarrow Za \rightarrow ll\gamma\gamma$ and $H \rightarrow aa \rightarrow 4\gamma$, <u>ATL-PHYS_PUB-2025-007</u> long lived ALPS reinterpretation
- H→Za→lljets, <u>DOI: 10.1016/j.physletb.2025.139671</u>
- $S \rightarrow XX \rightarrow 4$ leptons, DOI:10.1016/j.physletb.2025.139472
- $H^{\pm} \rightarrow WH$, $H \rightarrow bb$, DOI: 10.1007/JHEP02(2025)143
- H± $\rightarrow \tau$ ± v, DOI: 10.1103/PhysRevD.111.072006
- Not in this talk: Weakly-supervised anomaly detection in dijet final states, <u>arXiv:2502.09770</u>

arXiv:2507.01165

$H\rightarrow aa \rightarrow 4b, 6b$

- ZH production, the first exotic search
- Mass range: [12,60] GeV
- 4 and 6 *b*-quarks in the final state
- Z for triggering, both $Z \to ll$ and $Z \to vv$ (missing p_T), defining two channels: 0, and 2 leptons
- Main backgrounds : Z+jets, ttbar, constrained by CR
- Improvement wrt partial Run 2 search: dedicated heavy-flavor reconstruction algorithms, DeXTer algorithm [ATL-PHYS-PUB-2022-042]
- Challenges:
 - (m_a < 20 GeV: decay products collimated with low p_T)
 - Correctly pair the jets to form a

$H \rightarrow \alpha\alpha \rightarrow 4b, 6b$

The signal events are selected based on their compatibility with the Higgs boson hypothesis determined by a "quadruplet selection NN"

Signal to Bg discrimination: BDT

Main fit discriminant: BDT score

$H\rightarrow aa \rightarrow 4b, 6b$

$H \rightarrow \alpha\alpha \rightarrow \tau\tau\tau$

- *a* mass range [4,15] GeV
- $\tau^+\tau^- \rightarrow$ hadrons and μ (and neutrinos)
- Boosted α decays into merged di- τ

- Main challenge: identify the merged $\mu\tau_{had}$ object.
 - RNN for the hadronically decaying τ: reduced efficiency
 - ullet µ removal technique: remove tracks and calo-clusters associated to the muon
- Main source of uncertainty : modelling of fake τ
- Statistically limited for higher masses

Eleni Skorda, University of Birmingham

Main sources of systematic uncertainty in this search are the ones related to the modelling of the fake- τ background. Also statistically limited for higher masses

$H \rightarrow aa \rightarrow \gamma \gamma \tau \tau$

- First analysis to look at this decay channel
- ggF production mode only
- Use of diphoton triggers main limitation thresholds at 20GeV
- Trained BDT to identified merged tau leptons
- Upper limits ranging from 0.2% to 2%, depending on the -boson mass hypothesis.

- Targeting extremely low masses for a [0.5,4]
 GeV, in many models a → hadrons significant
- Classification NN which uses reconstructed mass information in the training
- Main challenges:
 - Calorimeter resolution for low mass jets.
 Solution: predict the mass using regression NN

DOI: 10.1016/j.physletb.2025.139671

- Targeting extremely low masses for a [0.5,4]
 GeV, in many models a → hadrons significant
- Classification NN which uses reconstructed mass information in the training
- Main challenges:
 - Calorimeter resolution for low mass jets.
 Solution: predict the mass using regression NN
 - Simulation can't describe crucial jet substructure variables.
 Solution: re-weight distribution using NN

DOI: 10.1016/j.physletb.2025.139671

H -> Za, a hadronic decays

Factor of three limit improvement compared to previous Run-2 result for a \rightarrow qq Main limitation: ps signal modelling uncertainty, higher for the a \rightarrow gg

$H^{\pm} \longrightarrow \tau^{\pm} V$

- Production through top quark decays and t-associate production
- Final states: τ +jets and τ + μ , τ +e
- Final discriminant: PNN, trained with the generator-level H+ mass → classifiers for every mass hypothesis

$H\pm \rightarrow WH, H\rightarrow bb$

- Production in association with a top and a bottom quark,
- Resolve for low and boosted for high mass regime
- Charged H mass: [250 GeV, 3 TeV]
- Flavour and Higgs tagging are crucial
- NN to reconstruct boosted Higgs bosons (H →bb)
- Limits on σ ($pp \rightarrow tbH^{\pm}$) × B ($H^{\pm} \rightarrow W^{\pm}h$) × B(h $\rightarrow bb$)

- Looking at Hidden Abelian Higgs Model (HAHM)
- Additional scalar S along with a new gauge boson Z_d or "dark photon"
- Same production mechanisms as SM Higgs
- Three final states: 4e,2e2μ,4μ
- BG Dominant: Non resonant SM ZZ*. WZ, VVV/VBS processes, $H \rightarrow ZZ \rightarrow 4l$, J/ψ and Y, tt and Z+ jets
- No siginificant excess : set limits on $\sigma(gg \rightarrow S) \times B(S \rightarrow Z_d Z_d \rightarrow 4\ell)$

$H \rightarrow Za \rightarrow ll\gamma\gamma$ and $H \rightarrow aa \rightarrow 4\gamma$

- Reinterpretation of previous searches
- a: Axion-like particles (ALP)
- In many scenarios, the di-photon decay is the dominant
- For small $|C\gamma\gamma|/\Lambda$ ALPs long-lived
- Analysis that are re-interpreted:
 - H→Za only promptly decaying (up to 33mm)
 (DOI: 10.1016/j.physletb.2024.138536)
 - H→aa both prompt and long-lived provided (DOI: 10.1016/j.physletb.2024.138536)

- Data and BG predictions from HEP data
- For H→Za corrected the photon ID efficiency by applying weights as functions of ALP dispacement
- H→aa: generator lvl simulated events in conjunction with efficiency maps

$H \rightarrow Za \rightarrow ll\gamma\gamma$ and $H \rightarrow aa \rightarrow 4\gamma$

Extended the H \rightarrow aa \rightarrow 4 γ to lower mass points, and H \rightarrow Za by including long-lived particles

Summary

- Huge number of searches for additional Higgs bosons, exotic/rare decays, additional scalar
- BSM Higgs searches complement precision measurements of the Higgs and other SM and exotic particles
- They make an extensive use of Machine Learning techniques to solve many problems, e.g background modelling, object identification, pairing, etc.
- They have constrained the phase space of possible models considerably
- Reinterpretation of existing analysis has extended their reach, improving limits for ALP scenarios
- We have exciting years coming up for the BSM Higgs program, and many new searches that will use Run-3 data

Additional material

 τ had reconstruction and RNN identification efficiency before and after the muon removal for generator-level 1-prong τ candidates for all working points as a function of generator-level $\Delta R(\tau, \mu)$. More on the muon removal technique DOI: 10.1140/epjc/s10052-025-14012-4

Main sources of systematic uncertainty in this search are the ones related to the modelling of the fake- τ background. Also statistically limited for higher masses

$S \rightarrow ZdZd \rightarrow 4leptons$

Most significant excess found in at mS 110 GeV and mZd =30GeV with a local(global) significance of 2.7σ(1.6σ). limits σ(gg →S) ×B(S→Z₄ Z₄ →4ℓ)

H -> Za, a hadronic decays

Schematic overview summarising the heavy-flavour algorithms used and the criteria used to define the b-objects

$H \rightarrow \alpha\alpha \rightarrow 4b, 6b$

Table 2: Summary of the event selection, and signal and control region definitions, for the 0ℓ and 2ℓ channels.

Analysis channels	0ℓ	2ℓ			
	$H \rightarrow 2a \rightarrow 4b$	$H \rightarrow 2a/a_1a_2 \rightarrow 4b$	$H \rightarrow a_1 a_2 \rightarrow 6b$		
Common selection					
Triggers	$E_{ m T}^{ m miss}$	Single lepton			
Leptons	$p_{\rm T} > 7 {\rm GeV}$	lead $p_{\rm T} > 27$ GeV, sublead $p_{\rm T} > 10$ GeV			
<i>b</i> -object multiplicity	$n_b = 2$, $n_B = 1$ or $n_B = 2$	$n_b + 2n_B + n_v \ge 4$			
Signal regions					
Leptons	0 leptons	2 SFOS leptons	2 SFOS leptons		
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 150{\rm GeV}$	_			
Z boson selection	_	$ m_{\ell\ell} - m_Z < 20 \text{ GeV}$	$ m_{\ell\ell} - m_Z < 20 \text{ GeV}$		
Higgs boson selection	$ m_{aa} - m_H < 50 \text{ GeV}$	High quadruplet NN score	_		
Multijet rejection	$\min \Delta \phi(E_{\rm T}^{\rm miss}, a \text{ cand.}) > 60^{\circ}$	_	_		
Categorization	$n_j, n_b, n_{B_t}, n_{B_l}$	Quadruplet NN prediction	$n_{\mathrm{v}}, n_{b}, n_{B_{t}}, n_{B_{l}}$		
Binning	_	Loose, Medium, Tight BDT bins	Medium, Tight BDT bins		

Multijet	ABCD method	_	_
	$150 < m_{aa} - m_H < 250 \text{ GeV}$		
	$\min \Delta \phi(E_{\rm T}^{\rm miss}, a \text{ cand.}) < 30^{\circ}$		
Lost lepton		_	_
Signal veto	$ m_{aa} - m_H > 50 \text{ GeV}$		
Leptons	1 lepton, $p_{\rm T} > 27 {\rm GeV}, \Delta R(\ell, B) > 0.8$		
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss,eff} > 150 { m GeV}$		
Categorization	n_b, n_{B_t}, n_{B_l}		
Z+jets enriched			
Signal veto	$ m_{aa} - m_H > 50 \text{ GeV}$	Low quadruplet NN score	Loose BDT bins
Leptons	2 SFOS leptons, lead $p_{\rm T} > 27$ GeV	2 SFOS leptons	2 SFOS leptons
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} < 50 \text{ GeV}, E_{\rm T}^{\rm miss,eff} > 30 \text{ GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} < 60~\mathrm{GeV}$	$E_{\rm T}^{\rm miss} < 60~{ m GeV}$
Z boson selection	$ m_{\ell\ell} - m_Z < 10 \text{GeV}$	$ m_{\ell\ell} - m_Z < 10 \text{GeV}$	$ m_{\ell\ell} - m_Z < 10 \text{GeV}$
Categorization	n_b, n_{B_t}, n_{B_l}	$n_{\rm v}, n_b, n_{B_t}, n_{B_l}$	$n_{\mathrm{v}}, n_{b}, n_{B_{t}}, n_{B_{l}}$
$tar{t}$ enriched	_		
Leptons		2 DFOS leptons	
Categorization		$n_{\mathrm{v}}, n_{b}, n_{B_{t}}, n_{B_{l}}$	

$H^{\pm} \longrightarrow \tau^{\pm} V$

- At low mass, the sensitivity of the analysis is driven by the τ +lepton channel, while at high mass the τ +jets channel dominates
- Exclusion limits for $mH+ \le 140$ GeV are not shown, as the hMSSM scenario is not valid in this range
- Limits plot stops at $\tan \beta = 60$, above that no reliable theoretical calculations exist