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Introduction & Overview

2

• Breakthrough innovations in methods, tools & techniques allow for striking 

improvements in LHC physics reach


• Often come with proportionate challenges


• Focus on methods & techniques exploited by most recent (B)SM Higgs analyses 

published by ATLAS:


• Reconstruction & identification of b, bb & ττ topologies 

• Dedicated event-reconstruction algorithms 

• Weakly supervised anomaly detection 

• Neural Simulation-Based Inference (NSBI) for parameter estimation 

… and applications to real physics-cases! 
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DeXTer: Specialised Flavour Tagging

3

• Deep-set X→bb Tagger: general-purpose low-mass/pT double-b tagging algorithm


• Specialised for jets 20<pT<200 GeV: surrounding displaced tracks +multiple secondary 
vertices (MSV)


• Domain-adversarial training: remove different response on color singlets & octets 


• Used in multiple new ATLAS BSM Higgs searches

ATL-PHYS-PUB-2022-042

+
Track NN

+
SV NN

Global NN

⌫ probability

1 probability

✓ probability

PFlow jet
large-'
track-jet

MSV
reconstruction

Figure 1: Architecture of the D�XT�� algorithm. Two sets of feature-extracting NN are used for track and SV
observables. A final global NN with a softmax output layer is used to interpret each output as a probability for each
flavor.

5.1 Track Neural Network

The tracks clustered in the ' = 0.8 track-jet are ordered in decreasing value of transverse impact parameter
significance (30 [62]. Properties of the 25 first tracks are used as input to the D�XT�� algorithm. The
track NN algorithm input variables are presented in Table 1. Variables that depend on both the track and
the reconstructed jet, namely �[(track, jet) and �q(track, jet), are calculated with respect to the axis of the
E�: (2)

C
track-subjet, since it is a better estimate of the original 1-hadron flight direction than the PFlow jet.

The sign of the impact parameter significance is not altered because the PFlow jet axis still represents the
best estimate for reconstructed jets that do not come from merged particle jets.

5.2 Secondary Vertex Neural Network

The reconstructed secondary vertices matched to the ' = 0.8 track-jet are ordered in decreasing value of
the transverse decay length significance (!GH

and the properties of the 12 first vertices are used as input
to the secondary vertex NN. The properties used are listed in Table 1. The definition of the variables is
identical to the one used in other SV-based 1-taggers [22], with the only di�erences being the choice of the
E�: (2)

C
jet axes as the reference for �[(track, jet) and �q(track, jet). Decay lengths are always calculated

with respect to the event PV:

!GH = | ( Æ?SV � Æ?PV) ⇥ Î | !I = | ( Æ?SV � Æ?PV) · Î |.
The decay length significance values are calculated taking into account the covariance matrices of both
primary and secondary vertices:

(!GH
= (?SV � ?

PV)8 [%�1
GH
(⇠SV + ⇠

PV)�1
%GH]8 9 (?SV � ?

PV) 9 ,
(!I

= (?SV � ?
PV)8 [%�1

I
(⇠SV + ⇠

PV)�1
%I]8 9 (?SV � ?

PV) 9 .

where %GH and %I are projectors onto the transverse plane and longitudinal direction, respectively.

Even though an ordering is imposed to select the maximum number of input tracks and secondary vertices,
the NN itself is permutation invariant.

8

Specialised algorithms: DeXTer

28

The Deep-set Xbb Tagger is a general-purpose low-mass/pT double-b 
tagging algorithm specialised for jets with 20 GeV < pT < 200 GeV using 
also surrounding displaced tracks + multiple secondary vertices (MSV).

DeXTer: Deep Sets ! → #$# Tagger
A low-mass end-to-end double-b identification algorithm 

• First general-purpose low-mass $"$ tagger in ATLAS specialized for jets with 20 < (! < 200 GeV.
• DeXTer does multi-flavor tagging using jets and surrounding displaced tracks and SVs
• End-to-end training starting from displaced tracks and dedicated multiple secondary vertices (MSV) 

reconstruction

BOOST 2022@Hamburg 4

a

b

b

Jet

R= 0.8

B: double-b tagged jets 

Yuan-Tang Chou ATL-PHYS-PUB-2022-042

DeXTer: Deep Sets ! → #$# Tagger
A low-mass end-to-end double-b identification algorithm 

• First general-purpose low-mass $"$ tagger in ATLAS specialized for jets with 20 < (! < 200 GeV.
• DeXTer does multi-flavor tagging using jets and surrounding displaced tracks and SVs
• End-to-end training starting from displaced tracks and dedicated multiple secondary vertices (MSV) 

reconstruction

BOOST 2022@Hamburg 5

B: double-b tagged jets 

Yuan-Tang Chou ATL-PHYS-PUB-2022-042
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DeXTer discriminant and performance 

BOOST 2022@Hamburg 9

The class probabilities predicted by the model outputs 
((% , (&, and ('), are combined into a B-tagging 
discriminant:

(! = ln ,!
1 − /" ,# + /","

where 1& is a free parameter that balances between 
the rejection of light-flavor vs b-jets for a given 
efficiency of selecting b-jets. 1&=0.4 was used in the 
results 

Yuan-Tang Chou ATL-PHYS-PUB-2022-042
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The class probabilities predicted by the model outputs 
((% , (&, and ('), are combined into a B-tagging 
discriminant:
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1 − /" ,# + /","

where 1& is a free parameter that balances between 
the rejection of light-flavor vs b-jets for a given 
efficiency of selecting b-jets. 1&=0.4 was used in the 
results 

Yuan-Tang Chou ATL-PHYS-PUB-2022-042

Jet re-clustering with R=0.8 
to get isolated R=0.4 PFlow 
jets with surrounding tracks. 

ATL-PHYS-PUB-2022-042

Similar architecture as Dips (with additional SV NN). 

Trained with domain-adversarial training to remove 
significant differences in the response for color singlet 
and octet Xbb states to allow calibration in g→bb events.

09.09.24Philipp Gadow | FTAG algorithms (resolved) in ATLAS

R=0.8

Jet re-clustering  
to get isolated R=0.4  

jets w/ surrounding tracks

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-042/
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Search for New Pseudoscalar: tt/tW+a(→bb) 

4

• Exploring both resolved & merged bb 
topologies in tt/tW+a(→bb) 2ℓ channel

• Std resolved (DL1r) & merged (DeXTer) 

flavour taggers combined 
• Extensive & combined usage of ML 

techniques

• Event reconstruction combines two 

BDTs, one for t→jℓ & one for a→jj reco

(a) (b)

Figure 1: Feynman diagrams for (a) 𝐿𝐿- and (b) 𝐿𝑀-associated production of a pseudoscalar particle 𝑁 that decays into
a pair of 𝑂-quarks.

2 ATLAS detector

The ATLAS detector [18] at the LHC covers nearly the entire solid angle around the collision point.1 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnetic systems.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range of |𝑃 | < 2.5. The high-granularity silicon pixel detector covers the vertex region
and typically provides four measurements per track, the first hit generally being in the insertable B-layer
installed before Run 2 [19, 20]. It is followed by the SemiConductor Tracker, which usually provides eight
measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |𝑃 | = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |𝑃 | < 4.9. Within the region |𝑃 | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |𝑃 | < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |𝑃 | < 1.7, and two copper/LAr hadronic endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑄-axis along the beam pipe. The 𝑅-axis points from the IP to the centre of the LHC ring, and the 𝑆-axis points upwards.
Polar coordinates (𝑇, 𝑈) are used in the transverse plane, 𝑈 being the azimuthal angle around the 𝑄-axis. The pseudorapidity is
defined in terms of the polar angle 𝑉 as 𝑃 = → ln tan(𝑉/2) and is equal to the rapidity 𝑆 = 1

2 ln
(
𝐿+𝑀𝐿
𝐿→𝑀𝐿

)
in the relativistic limit.

Angular distance is measured in units of ω𝑊 ↑

√
(ω𝑆)2 + (ω𝑈)2.
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Figure 9: Expected and observed 95% CL upper limits of 𝐿(𝑀𝑀𝑁) → BR(𝑁 ↑ 𝑂𝑂̄) as a function of the 𝑁-boson mass.
The lines correspond to the signal cross sections calculated using di!erent coupling strengths of the 𝑁 boson to the
top quark assuming a BR(𝑁 ↑ 𝑂𝑂̄) = 100%.

of 𝑀𝑀+↓1𝑂. No large pulls are observed in any of the fits. Including the pre-fit reweighting corrections
detailed in Table 3, the final normalisation factors extracted in the fit corresponding to the 30 GeV mass
hypothesis are 1.0 ± 0.3 for 𝑀𝑀+light and 𝑀𝑃 , 1.5 ± 0.5 for 𝑀𝑀+↓1𝑄 and 1.2 ± 0.2 for 𝑀𝑀+↓1𝑂. These results
are compatible with the latest ATLAS 𝑀𝑀𝑅 Run 2 analysis [98].

23

• Split into 4 SRs, based on small- (b) & large-R (B) 
tagged-jet multiplicity


• One mass-parameterised deep NN per SR, 
exploited as fit observable


• No excess found, competitive limits excluding 
12<ma<100 GeV for a coupling gt=1

HMBS-2024-46

http://dx.doi.org/10.1140/epjc/s10052-023-11699-1
https://cds.cern.ch/record/2825434
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-46/
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TC-LVT: “Jet-less” Flavour Tagging

5

FTAG-2023-02

"Jet-less" flavour tagging algorithms

15

Dedicated b-tagging algorithm for identifying low-pT (5 GeV – 20 GeV) B-hadrons 
outside of jets by reconstructing their soft secondary vertices.

Phys. Rev. D 110 (2024) 032015

09.09.24Philipp Gadow | FTAG algorithms (resolved) in ATLAS

heavyboson

increasing transverse momentum
p
T

small-radius jets
large-radius jets

Fig. 6.15.: Illustration of boosted event topologies: the distance between the decay products

of a boosted boson decreases with increasing transverse momentum
of the

boosted boson.
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Groomed large-R jets  

(LCW+JES+JMS scale)

A correction to the jet 

energy, pseudorapidity 

and mass is derived from 

MC to bring the 

reconstructed jet to the 

particle jet scale.
Residual correction 

determined using in situ 

measurements to bring 

data in agreement with 

MC. Applied only to data.

Large-R jets are recon-

structed using the anti-kt  

algorithm with R = 1.0.

Jet grooming

Soft subjets are removed 

from the reconstructed 

jets.

Groomed large-R jets  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Calorimeter energy 

clusters (LCW scale)

Fig. 6.16.: Overview
of the large-radius jet reconstruction and calibration procedure. Illus-

tration reproduced from
Ref. [51].

6.1

Event reconstruction

99

Track-cluster based Low-pT Vertex Tagger (TC-LVT): based on vertexing 
techniques first developed in the context of standard b-tagging for identifying 
Soft Secondary Vertices (SSV). 

5 10 15 20 25
 [GeV]

T
pTruth hadron 

0
2
4
6
8

10
12
14
16
18
20

 [%
]

SS
V

ε

-1= 13 TeV, 140 fbs
ATLAS Simulation

4 6 8 10 12 14
 [GeV]

T
SSV p

0.5
0.75

1
1.25

 
D

at
a 

/ P
re

d. 0

100

200

300

400

500

Ev
en

ts ATLAS
-1 = 13 TeV, 140 fbs

TC-LVT Calibration
 miss

T
, high-E

L
µ1SSV 1b, 

Post-Fit

Data
Fake SSV
True SSV
Other
Uncertainty
Pre-Fit Pred.

• Dedicated b-tagging algorithm to identify low-pT (5-20 GeV) B-hadrons 

outside of jets, by reconstructing their soft secondary vertices


• Track-Cluster based Low-pT Vertex Tagger


• Based on std vertexing techniques, retuned & applied outside jets


• Reconstruct displaced soft secondary vertices from seed tracks


• Dedicated calibration on tt events

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2023-02/
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Search for Z(→ℓℓ/νν)H(→4b/6b)

6
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Ĥ
<0
pred

<0

1-object 1

1-object 2

1-object 3

1-object 4

/ boson

Figure 3: Diagram of the NN used for event identification. All filled blocks are dense multi-layer perceptions (MLP)
that share common weights between MLPs of the same color. The 0-boson MLPs are parameterized as a function
of the mass hypothesis <0. Unfilled rectangles are inputs from the four 1-objects and the / boson. The value of
the quadruplet selection score, Ĥ<0

pred, is used for graph classification. This particular example shows the case of a
hypothesis with ⌫-jets, 1-jets, and soft-secondary vertices v 1-objects.

The graphs are built from up to five 1-objects, where the 1-objects with highest ?T are used in cases where410

more than five objects are reconstructed. Graphs with more than one soft secondary vertex v are not411

considered, since they do not contribute significantly to the acceptance. In events with two ⌫-jets, graph412

permutations which do not change the content of each ⌫-jet are only considered once. Table 2 summarizes413

the input features used for the quadruplet selection NN. The input features include the four-momenta of each414

input object and the likelihood for their flavor to be properly reconstructed. The inputs to the quadruplet415

selection NN are graphs of 1-objects, as shown in Fig. 4.416

The NN is trained with all � ! 20 ! 41 simulated signal samples and uses background events to provide417

training samples with broader Higgs ?T and < distributions. The samples are split into training and418

validation samples, and the validation sample is used to measure the performance and check for overtraining.419

All permutations satisfying the selection criteria described above are included in the training. The correct420

permutation is identified based on the generator-level event history information. The reconstructed event421

hypothesis with the largest score and the value of the NN score, Ĥ<0
pred, are used for event classification.422

The correct objects are identified with almost perfect accuracy. The accuracy of associating 1-partons to423

1-objects ranges from 60% to 98% depending on the type and properties of the reconstructed object and424

the signal.425

25th January 2025 – 11:16 14

Figure 3: Diagram of the NN used for an example of a quadruplet selection showing the case of a hypothesis with
𝐿-jets, 𝑀-jets, and soft-v. All filled blocks are dense multi-layer perceptrons (MLP) that share common weights
between MLPs of the same color. The 𝑁-boson MLPs are parameterized as a function of the mass hypothesis 𝑂𝐿.
Unfilled rectangles are inputs from the four 𝑀-objects and the 𝑃 boson. The value of the quadruplet selection score,
𝑄̂
𝑀𝐿
pred, is used to classify the 𝑀-object quadruplet.

pairing of a quadruplet goes through di!erent NNs in di!erent orders, yielding di!erent compatibility417

scores that are used to select the best pairing.418

The NN contains fully connected encoders for 𝑀-jets, 𝐿-jets, and soft vertices. The encoded information is419

then used in a pair of deep-set NNs, which ensure that the overall NN score is invariant under permutations420

of (𝑀𝑀̄) → (𝑀𝑀̄) (Higgs boson deep sets) and 𝑀 → 𝑀̄ (𝑁-boson deep sets). The 𝑁-boson deep-sets training421

depends on the true 𝑂𝐿 value, since the reconstruction modes depend on the boost of the 𝑁-bosons. When422

considering models with additional 𝑁-bosons, 𝑅 ↑ 𝑁1𝑁2 permutation invariance is broken by assigning423

the di!erent true mass values to each of the two 𝑁-boson encoders.424

The NN is built from up to five 𝑀-objects, as shown in Figure 4 for an example combination of objects.425

In cases where more than five objects are reconstructed, the 𝑀-objects with highest 𝑆T are used. Input426

combinations with more than one soft-v are not considered, since they do not contribute significantly427

to the acceptance. In events with two 𝐿-jets, input permutations that do not change the content of each428

𝐿-jet are only considered once. Kinematic variables characterizing the 𝑃 boson are also used in the NN.429

Table 3 summarizes the input features used for the quadruplet selection NN. The input features include the430

four-momenta of each input object and the likelihood for their flavor to be properly reconstructed.431

The NN is trained with all 𝑅 ↑ 2𝑁 ↑ 4𝑀 signal simulation samples and uses background events to provide432

training samples with broader Higgs boson 𝑆T and 𝑂 distributions. The samples are split into training433
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Figure 4: Diagram depicting how the NN reconstructs events. Each 1-object is considered a node in a graph for
which an abstract representation is used based on an MLP (1-object MLP). The 0-boson is represented by an edge
between notes, which also corresponds to an MLP (0-boson MLP). All physically motivated edges are considered,
including loop edges representing merged reconstructed objects. The 0-bosons themselves form new nodes whose
edge represents the fully reconstructed Higgs boson, which also corresponds to an MLP (Higgs MLP). The value of
this edge is used to select the quadruplet. The middle diagram shows the two reconstructed 0-boson candidates and
the rightmost diagram shows the final Higgs candidate.

Signal regions: Five SRs are defined based on the objects of the selected quadruplet and the value of the425

score Ĥ
<0
pred. For events with two ⌫-jets (2⌫), the score is required to be larger than Ĥ

<0
pred > 0.5. For the426

cases with one ⌫-jet and 2 1-jets (1⌫21), with one ⌫-jet, one 1-jet and one v (1⌫111v), with three 1-jets427

and one v (311v) and with four 1-jets (41), the score is required to be larger than Ĥ
<0
pred > 0.05. Figure 5428

shows example distributions of the Ĥ
<0
pred for the 2⌫ and 1⌫21 cases.429
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Figure 5: The quadruplet selection score Ĥ
<0
pred distribution assuming signal hypothesis <0 = 25 GeV for the 1-object

categories (a) 2⌫ and (b) 1⌫21. The SM background is compared to the expected <0 = 25 GeV simulated signal
events assuming B = 1 and scaled by a factor of ten.
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Figure 4: Diagram depicting an example of how the NN selects a quadruplet. Each 𝐿-object is represented as an
MLP (𝐿-object MLP). The 𝑀-boson is represented as a pairing between 𝐿-objects, which also corresponds to an
MLP (𝑀-boson MLP). All physically motivated pairings are considered, including loop pairings representing merged
reconstructed objects. The 𝑀-bosons themselves form new pairings representing the fully reconstructed Higgs boson,
which also corresponds to an MLP (Higgs MLP). The value of this last pairing is used to select the quadruplet. The
middle diagram shows the two reconstructed 𝑀-boson candidates and the rightmost diagram shows the final Higgs
boson candidate.

and validation samples, and the validation sample is used to measure the performance and check for434

overtraining. All permutations satisfying the selection criteria described above are included in the training435

and the correct permutation is identified based on the generator-level event history information. The NN is436

trained by minimizing a binary cross-entropy loss in which the correct permutation has label one and all437

wrong permutations have label zero. In the case of background events, all permutations have label zero.438

The reconstructed event hypothesis with the largest score and the value of the NN score, 𝑁̂𝐿𝐿
pred, are used for439

event classification. The accuracy of associating 𝐿-partons to 𝐿-objects ranges from 60% to 98% depending440

on the type and properties of the reconstructed object and the signal.441

Signal regions: Five SRs are defined based on the objects of the selected quadruplet and the value of the442

score 𝑁̂
𝐿𝐿
pred. For events with quadruplets formed with two 𝑂-jets (2𝑂), the score is required to be larger than443

𝑁̂
𝐿𝐿
pred > 0.5. For the cases where the quadruplet is formed with one 𝑂-jet and two 𝐿-jets (1𝑂2𝐿); with one444

𝑂-jet, one 𝐿-jet and one v (1𝑂1𝐿1v); with three 𝐿-jets and one v (3𝐿1v); and with four 𝐿-jets (4𝐿); the445

score is required to be larger than 𝑁̂
𝐿𝐿
pred > 0.05. The choice of this 𝑁̂𝐿𝐿

predrequirement is intended to maintain446

high acceptance while ensuring accurate reconstruction of the Higgs boson decay for signal samples across447

the mass range probed. Figure 5 shows example distributions of the 𝑁̂
𝐿𝐿
pred observable for the 2𝑂 and 1𝑂2𝐿448

cases.449

Control regions: Six CRs for each of the main backgrounds 𝑃+jets and 𝑄𝑄 are used based on the 𝐿-object450

multiplicity, as summarized in Table 4. The regions distinguish between events containing jets satisfying451

the loose and tight D!XT!" tagging requirements to enhance the sensitivity to di!erent heavy-flavor452

background components. The control regions including the combination of 𝐿-objects corresponding to453

1𝑂2𝐿 and 1𝑂1𝐿1v are combined due to the low expected number of events. The 𝑃+jets control regions are454

defined by inverting the requirements on the quadruplet selection NN score 𝑁̂
𝐿𝐿
pred. Additional requirements455

June 30, 2025 – 08:58 17

NN selection of quadruplets

• Search for H→aa/a1a2→4b/6b for 
12<ma<60 GeV with Z→ℓℓ/νν


• Improves previous searches by 
means of 3 different tagging algs:


• Resolved jets (DL1r)


• Low-mass merged jets (DeXTer)


• Soft secondary vertices (TC-LVT)


• Strategies for different signatures: 


• 2ℓ 4b: NN for jet-parton pairing 
+ BDT


• 2ℓ 6b: BDTs for partially reco 
events


• 0ℓ 4b: Cut-&-count


• No significant excess above SM bkg-
only expectation

HMBS-2024-26

Diagram of the NN used for 
an example quadruplet 

selection

a-boson NNs  
parameterised vs. ma

See details in E. Skorda’s talk

http://dx.doi.org/10.1103/PhysRevD.110.032015
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-26
https://indico.ijclab.in2p3.fr/event/11484/timetable/#203-bsm-h125-aspects-and-searc
https://indico.ijclab.in2p3.fr/event/11484/timetable/#203-bsm-h125-aspects-and-searc
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between the two is used to define the signal e!ciency. This approach does not utilise any correlations
between subjets and corresponds to tagging them independently.

Figure 1: GN2X discriminant, 𝐿Hbb with 𝑀top = 0.25 and 𝑀Hcc = 0.02 for the four jet classes. Working points are
derived by by imposing a requirement on the discriminant distribution of the 𝑁 (𝑂𝑂̄) jets to give the desired signal
e!ciency. The distribution is shown for the SM evaluation samples.

5.1 𝜴(𝜶𝜶̄) performance

The 𝑁 (𝑂𝑂̄)-tagging performance of the tagger can be quantified by its power to reject 𝑁 (𝑃𝑃), top, and
mult"et backgrounds for a given 𝑁 (𝑂𝑂̄)-tagging e!ciency.

Figure 2 shows the background rejection as a function of the 𝑁 (𝑂𝑂̄) signal e!ciency in the signal e!ciency
range used for most physics analyses. The rejection is evaluated at a set number of points and can change
rapidly at high e!ciencies, which causes the observed sharp behaviour. GN2X demonstrates a significant
improvement in both the top and mult"et background rejection, significantly outperforming both baselines
across the relevant signal e!ciency range. At a 50% 𝑁 (𝑂𝑂̄) signal e!ciency GN2X provides a factor
of 1.6 increase in the top jet rejection and a factor of 2.5 increase in the mult"et rejection. GN2X also
outperforms the 2-tag VR subjets baseline across all e!ciencies.

The 2-tag VR subjets baseline only outperforms 𝐿Xbb at low 𝑁 (𝑂𝑂̄) e!ciencies, which shows the benefits
of using the correlations between subjets. Furthermore, 𝐿Xbb uses up to three VR subjets which improves
its e!ciency for cases where the 𝑂-hadrons are not contained in the leading two subjets. In this comparison
𝐿Xbb was trained with DL1r discriminants [43] whereas the 2-tag VR subjets baseline benefits from the
state-of-the-art GN2 tagger which has superior 𝑃-jet rejection.

The top and mult"et rejection factors are also shown as a a function of the jet 𝑄T in Figure 3 at a 50%
𝑁 (𝑂𝑂̄) e!ciency where it can be seen that GN2X outperforms the baseline taggers across the entire
𝑄T spectrum. The top jet rejection is improved by a factor of 1.4 over the 𝐿Xbb tagger at 250 GeV and this
increases to a factor of 2.2 increase in rejection at 1.5 TeV. The mult"et rejection is improved by more

8

than a factor of two across the entire 𝐿T spectrum. In Figure 4, the 𝑀 (𝑁𝑁̄) signal e!ciency against jet
𝐿T is shown for the same 50% working point. It shows a remarkably stable e!ciency as a function of
the jet 𝐿T, in contrast to what is observed with the baseline taggers. While the 𝑂Xbb e!ciency drops
from the expected 50% e!ciency at 250 GeV to approximately 35% at 1.5 TeV, GN2X is able to retain an
approximately constant e!ciency over the entire 𝐿T range.

Figure 2: Top and mult"et rejections as a function of the 𝑀 (𝑁𝑁̄) e!ciency for jets with 𝐿T > 250 GeV and mass
50 GeV < 𝑃J < 200 GeV. Performance of the GN2X algorithm is compared to the 𝑂Xbb and VR subjets baselines.
Statistical uncertainty bands (calculated with a binomial model) are denoted. The distribution is shown for the SM
evaluation samples.
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• GN2X: transformer-based X→bb tagger exploiting 

full info from tracks within large-R jet


•  Trained on mass-decorrelated samples to discriminate 

boosted H→bb, H→cc, had top & QCD jets

ATL-PHYS-
PUB-2023-021

• At 60[50]% H→bb[cc] efficiency >2[3-5] better 

top, QCD [and H→bb] rejection wrt standard 

tagging


• Boost high-pT measurements/searches for 

H→bb & HH→4b (e.g. VBF HH→4b & κ2V)  

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-021/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-02/
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Figure 3: The combined reconstruction and TauID e!ciencies after the muon removal for generator-level (a) 1-prong
and (b) 3-prong 𝐿

𝐿
𝐿had pairs at all working points as a function of ω𝑀gen,vis

𝑀𝑀
. The ‘Seeding’ line shows the e!ciency of

a 𝐿seed jet that matches a generator-level 𝐿
𝐿
𝐿had pair being reconstructed; the ‘𝑁 reco

trk = 1 or 3’ line shows the e!ciency
of a generator-level 𝐿had being reconstructed with the correct number of associated charged-particle tracks. The
‘VLoose’, ‘Loose’, ‘Medium’, and ‘Tight’ lines show the e!ciencies of the TauID working points. The ‘MuonRM’
line shows the e!ciency of a muon being identified and removed from the 𝐿seed jet. The transitions of the ‘MuonRM’
line between 0.35 < ω𝑀gen,vis

𝑀𝑀
< 0.45 is due to limited detector resolution in the direction of the reconstructed 𝐿had-vis

and muon.

muon removal, the TauID RNN receives as input the signal 𝐿seed jet as if it were a 𝐿had that is isolated (free
from interference of surrounding particles).

After the removal of the overlapping muon, the precision with which the four-momentum of the 𝐿seed jet is
reconstructed improves significantly. Figure 7(a) shows the distributions of the di"erence between the
generated and reconstructed 𝑂 (residuals) before and after the muon removal. Compared to the performance
before muon removal, the 𝑂 residuals that correspond to the 68% percentile (core resolution) improves by
a factor of 15. The distributions of the 𝐿had-vis 𝑃T residuals (𝑃T/𝑃

gen
T ) are shown in Figure 7(b). These

results agree well with those reported for isolated 𝐿had in Ref. [44], further demonstrating the e"ectiveness
of the muon removal method.

Having demonstrated that the reconstruction and identification e!ciencies are significantly improved by
the 𝐿

𝐿\
had method, the background rejection power is studied. The production of 𝑄𝑄 events is considered as

a source of high-𝑃T heavy-flavour jets, which represents an example background to the 𝐿
𝐿\
had signal. The

background rejection at the ‘Medium’ TauID working point, which is defined as the ratio of the total
number of reconstructed 𝐿had candidates before muon removal to the number of false positives before
or after muon removal, are shown in Figure 8, as functions of the reconstructed 𝐿had-vis 𝑃T. For the
background rejection figures, the event selections are mostly based on the reconstructed properties instead
of the generator-level information. A 𝐿seed jet reconstructed in the background sample is required to have
reconstructed 20 GeV < 𝑃T < 300 GeV, |𝑂 | < 2.5, and to not be generator-matched to a 𝐿had from the
semileptonic decay of a bottom or top quark. In addition, a reconstructed muon is required to be found
inside the 𝐿seed jet. The 𝐿had candidates in which no muon is present are not considered in Figure 8, as

8
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• Standard τhad reco based off anti-kt R=0.4 topological calo-cluster jets


• Identification through RNN exploiting info from tracks & calo energy clusters


• When decay products overlap, sub-optimal τhad reco & identification


• μ leave tracks in ID & MS: identification independent of isolation


• Both ID tracks & calo clusters associated with μ removed from τhad


• τ identification RNN input variables recalculated after μ removal


• Performance fully recovered, stability observed & validation on data performed

TAUP-2023-02

(a) (b)

Figure 2: The combined reconstruction and identification e!ciencies of the standard ATLAS TauID for generator-level
(a) 1-prong and (b) 3-prong 𝐿

𝐿
𝐿had pairs at all working points as a function of ω𝑀gen,vis

𝑀𝑀
. The ‘Seeding’ line shows the

e!ciency of a 𝐿seed jet that matches a generator-level 𝐿
𝐿
𝐿had pair being reconstructed; the ‘𝑁 reco

trk = 1 or 3’ line shows
the e!ciency of a generator-level 𝐿had being reconstructed with the correct number of associated charged-particle
tracks. The ‘VLoose’, ‘Loose’, ‘Medium’, and ‘Tight’ lines show the e!ciencies of the TauID working points.

4.2 Performance of the method

Figure 3 shows the combined reconstruction and identification e!ciencies after the muon removal as a
function of ω𝑀gen,vis

𝑀𝑀
for generator-level 1-prong and 3-prong 𝐿

𝐿
𝐿had pairs for all working points. The

reconstruction and identification e!ciencies after the muon removal show a considerable improvement
compared to those shown in Figure 2. The signal e!ciency is recovered almost completely for every
working point for both 1-prong and 3-prong 𝐿had. In the 3-prong cases, the e!ciency of TauID is limited
by the accurate reconstruction of the correct number of tracks associated with the highly boosted 𝐿had
candidates.

Roughly 95% of the 𝐿seed jets have a muon removed in the region where ω𝑀gen,vis
𝑀𝑀

< 0.4. This can be
expected given the 97% e!ciency of the ‘Medium’ muon working point, with a dip below 90% in the region
where the generator-level |𝑂 | of the 𝐿had-vis is |𝑂 |gen,vis

< 0.1. This is illustrated in Figure 4, which shows
the signal e!ciencies of the TauID working points after the muon removal as a function of |𝑂 |gen,vis for
generator-level 1-prong and 3-prong 𝐿seed jets with ω𝑀gen,vis

𝑀𝑀
< 0.4. The slight decrease in muon removal

e!ciency in the low |𝑂 |gen,vis region is caused by the non-instrumented regions of the MS.

The signal identification e!ciencies at all working points of the standard ATLAS TauID are tuned to
show minimum dependency on the generator-level 𝑃T of the 𝐿had-vis (𝑃gen,vis

T,𝑀 ) and pile-up [5]. The stability
of the TauID working point e!ciencies, after the muon removal, against these variables are shown in
Figure 5. To focus on the objects of interest, only generator-level 𝐿

𝐿
𝐿had pairs with the muon identified

inside the 𝐿seed jet and removed (ω𝑀reco
𝑀𝑀

< 0.4) are included in these plots. For comparison, the TauID
working point e!ciencies as a function of the same variables for 𝐿seed objects in which muon removal is
not required (ω𝑀gen,vis

𝑀𝑀
> 0.45) are shown in Figure 6. Similar behaviour is observed in Figures 5 and 6.

The improved performance and good stability across di"erent working points demonstrate that, after the

7

τ Reco with μ-τ Removal in ττ→μνμντ had+ντ

Muon removal

https://cds.cern.ch/record/2688062
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TAUP-2023-02/
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Figure 1: Monte Carlo estimates of the 𝐿had reconstruction and RNN identification e!ciency ((a) and (b)) before and
((c) and (d)) after the muon removal for generator-level ((a) and (c)) 1-prong and ((b) and (d)) 3-prong 𝐿had candidates
for all working points (Very Loose, Loose, Medium, Tight) defined in Ref. [68], as a function of generator-level
ω𝑀(𝐿had, 𝑁). The ‘Reconstruction (Reco)’ markers indicate the e!ciency of a 𝐿seed jet to match a generator-level
𝐿had; The ‘𝑂 reco

trk =1 or 3’ markers show the e!ciency of a generator-level 𝐿had reconstructed with the same number
of associated charged-particle tracks as charged hadrons at generator-level. These plots are based on a mixture of
𝑃𝐿 = 4, 6, 8, 10, 15 GeV samples, with equal weighting applied to each sample. The slight decrease in reconstruction
e!ciency for 0.2 < ω𝑀(𝐿had, 𝑁) < 0.4 is attributed to the 𝐿had generator-level matching being less than 100% for the
𝑃𝐿 = 10 GeV and 15 GeV signal samples, due to the geometrical criterion used.
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Figure 1: Monte Carlo estimates of the 𝐿had reconstruction and RNN identification e!ciency ((a) and (b)) before and
((c) and (d)) after the muon removal for generator-level ((a) and (c)) 1-prong and ((b) and (d)) 3-prong 𝐿had candidates
for all working points (Very Loose, Loose, Medium, Tight) defined in Ref. [68], as a function of generator-level
ω𝑀(𝐿had, 𝑁). The ‘Reconstruction (Reco)’ markers indicate the e!ciency of a 𝐿seed jet to match a generator-level
𝐿had; The ‘𝑂 reco

trk =1 or 3’ markers show the e!ciency of a generator-level 𝐿had reconstructed with the same number
of associated charged-particle tracks as charged hadrons at generator-level. These plots are based on a mixture of
𝑃𝐿 = 4, 6, 8, 10, 15 GeV samples, with equal weighting applied to each sample. The slight decrease in reconstruction
e!ciency for 0.2 < ω𝑀(𝐿had, 𝑁) < 0.4 is attributed to the 𝐿had generator-level matching being less than 100% for the
𝑃𝐿 = 10 GeV and 15 GeV signal samples, due to the geometrical criterion used.
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• Model-independent search for τμτhad (~23% of ττ, low bkg) resonance 
• Focus on 4<ma<15 GeV

• First boosted low-mass 4τ search at ATLAS, both SS & OS μμ pairs considered 

• μ-τ removal technique implemented to resolve merged di-τ identification 
• No excess found: stringent 95% CL upper limits set

HMBS-2024-25

See details in E. Skorda’s talk

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-25/
https://indico.ijclab.in2p3.fr/event/11484/timetable/#203-bsm-h125-aspects-and-searc
https://indico.ijclab.in2p3.fr/event/11484/timetable/#203-bsm-h125-aspects-and-searc
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Table 4: Number of jets used for the training after pre-processing

Event class Jet statistics (millions)

H(⌧⌧) 5
H(bb̄) 14.5
H(cc̄) 14.5
Multijet 22
Top 8

H(cc̄), top, and multijet) incorrectly identified as H(⌧⌧) jets over the total number of background-jets, the
background rejection is the inverse of the mis-tagging rate. The classification probabilities pH⌧⌧, pHbb,
pHcc, ptop, pQCD indicate the likelihood of a jet of being from H(⌧⌧), H(bb̄), H(cc̄), top, or multijet. These
probabilities are combined into a discriminant score DGN2X

H⌧⌧ defined as:

DGN2X
H⌧⌧ = ln

0
BBBBBB@

pH⌧⌧

fHbb · pHbb + fHcc · pHcc + ftop · ptop +
⇣
1 � fHbb � fHcc � ftop

⌘
· pQCD

1
CCCCCCA , (1)

where fHbb, fHcc and ftop are three free parameters that determine the relative weights of pHbb, pHcc and
ptop respectively to pQCD. These parameters control the trade-o↵ amongst H(bb̄), H(cc̄), top and multijet
rejections. For the following performance studies, fHbb = 0.02, fHcc = 0.02 and ftop = 0.15 were used.
These parameter values were obtained by performing a scanning procedure for each value, selecting those
that provide a good balance between rejecting our prioritised background processes: top and multijet.
Jets are considered tagged if they have a score above a given threshold on the DGN2X

H⌧⌧ discriminant, which
is typically chosen to correspond to a specific target e�ciency for the H(⌧⌧) signal. Figure 2 shows the
normalised distribution of the discriminant score for jets from H(⌧⌧), H(bb̄), H(cc̄), top, and multijet.

Figure 2: GN2X discriminant, DGN2X
H⌧⌧ with fHbb = 0.02, fHcc = 0.02 and ftop = 0.15 for the five jet classes. The

statistical uncertainty is denoted as shade. The distribution is shown for the flat-mass evaluation samples.

The H(⌧⌧)-tagging performance of the tagger can be quantified by its power to reject top and multijet
backgrounds for a given H(⌧⌧)-tagging e�ciency. Figure 3 shows the background rejection as a function
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• Extension of GN2X to tag H(ττ) 

• Covers τhadτhad use-case, with large BR


• Discriminant shows significant top & MJ 

rejection within 250 GeV<pT<1.5 TeV & 

50<mJ<200 GeV


• rej~104 for ε=98%


• rej~105 for ε=93%


• Provides us with unprecedented 

identification of merged X→τhadτhad 

topologies 


• Expect significant improvements in 

sensitivity of τhadτhad channels to high 

pTH measurements/new resonant 

mass searches

of the H(⌧⌧) signal e�ciency, in the signal e�ciency range above 90 %. The rejection is evaluated at a set
number of points and can change rapidly at high e�ciencies, which causes the observed sharp behaviour.
The rejection at the 98% H(⌧⌧) e�ciency working point is about a factor of 104 against both top and
multijet background, and at 93% H(⌧⌧) e�ciency working point it reaches 105. The contributions from
H(bb̄) and H(cc̄) are significantly smaller than those from top and multijets backgrounds, so the focus
remains on the latter. Nonetheless, some studies also evaluate H(bb̄) and H(cc̄) as background processes.
At the 98% H(⌧⌧) e�ciency working point, the rejection power is 105 for H(bb̄) and 2.0⇥104 for H(cc̄).

Figure 3: Top and multijet rejections as a function of the H(⌧⌧) e�ciency for jets with pT > 250 GeV and mass 50 GeV
< mJ < 200 GeV. The statistical uncertainties of the rejection factors are calculated using binomial uncertainties and
are indicated as coloured bands. The distribution is shown for the flat-mass evaluation samples.

The top and multijet rejection factors are also shown as a function of the jet pT in Figure 4 at a 98 % H(⌧⌧)
e�ciency. An increasing trend is observed in the top rejection plot at high-pT, which can be explained by
the fact that, as pT increases, a larger fraction of the top decay products become fully contained within the
large-R jet, resulting in improved rejection.

In Figure 5, the H(⌧⌧) signal e�ciency against jet pT is shown for the same 98 % working point. It shows
a stable e�ciency as a function of the jet pT, it is able to retain an approximately constant e�ciency over
the entire pT range.

A cross-check training with similar configuration but dropping the H(⌧⌧) node was performed. It yielded
compatible H(bb̄)/H(cc̄)-tagging performance, which shows this new version of tagger can be used as
H(bb̄) and H(cc̄) tagger as well.

5.2 Mass dependence of the tagger

For any physics analysis using the proposed tagger, it is important to avoid mass sculpting—an artificial
peak in the background mass distribution near the signal mass, caused by correlations introduced by the
tagger. Such sculpting leads to more signal-like background and reduces the e↵ectiveness of background
rejection, so we aim to minimise the correlation between tagger scores and the large-R jet mass. We
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• # BSM models >> # dedicated searches


• Agnostic searches may fill gap


• Classification Without Labels (CWoLa) 
paradigm & high-dimensional interpolation


• Compare two NN methods (SALAD & 
CURTAINs) to estimate bkg from SBs into SR


• Generate reference Sample from p(x|mJJ) for 
mJJ∈SR 


• Features x={mJ,τ21,τ32}, varying smoothly 
with mJJ


• Weakly supervised Anomaly Detection to 
search for narrow resonance in di-jet events


• Model-agnostic analysis flagging regions 
containing BSM signal for thorough studies

(a) (b) (c)

Figure 2: Histograms of 𝐿JJ in the first set of non-overlapping 𝐿JJ SRs for the CURTAIN! method on all feature
sets at the 𝑀 = 0.1 classifier selection using the |ω𝑁 | < 1.2 data. The figures show the resulting distributions when
the analysis is evaluated on the first, third, fifth, and seventh 𝐿JJ SRs. Shown are di!erent feature sets: (a) is the
result of T = 𝑂, (b) is the result of T = 𝑂 , 𝑃21 and (c) is the result of T = 𝑂 , 𝑃21, 𝑃32. The fit is derived from
the background-only fit interpolated from the SBs. The uncertainties in the observed counts include the Poisson
statistical uncertainty of the bin counts. The uncertainties in the fit are represented by the dashed histograms and
include the uncertainties in the fit parameters and the uncertainty from the classifier ensemble on the data. The
vertical dashed lines mark the edges of each SR in 𝐿JJ. The lower panel in each plot shows the Gaussian-equivalent
significance of the deviation between the fit and data.

Seven of the original eight 𝐿JJ SRs satisfy the validation and are considered for further analysis. The
lowest 𝐿JJ SR does not satisfy the validation and is excluded from the final results. This validation failure
can be attributed to the correlations between 𝐿JJ and the masses of the two jets, which are shown to di!er
between the low and high 𝐿JJ regions. These correlations make the background estimates more challenging
in the low 𝐿JJ region. More details of the validation procedure and the individual results of the validation
procedure are shown in Appendix C.

6 Results

This section presents the main results of the analysis. Figure 2 shows the distribution of events over 𝐿JJ for
di!erent non-overlapping 𝐿JJ SRs after the fit when using the CURTAIN! method. Between neighboring
SRs, sharp discontinuities are observed in the 𝐿JJ spectrum. These can appear because the classifier
selection is performed in each SR independently. Therefore, there is no guarantee that adjacent SRs will
smoothly match each other. A similar feature was observed in the previous ATLAS weakly supervised
search [4].

Figure 3 and Figure 4 show the significances of the observed data in the SRs for the SALAD and CURTAIN!
methods, respectively. The significances are extracted from the likelihood fit described in Section 5.4.3.
The largest observed excess for the SALAD (CURTAIN!) method has a local significance of 1.24𝑄 (1.26𝑄).
There is a deficit in the first 𝐿JJ SR with a local significance of →2.98𝑄 (→2.54𝑄) when using the SALAD
(CURTAIN!) method and an e"ciency of the CW"L# classifier of 𝑀 = 0.1. This deficit was not observed
on the test data sample as shown in Appendix C. For all other selections and 𝐿JJ SRs both the SALAD and
CURTAIN! behave similarly to the results on the test data samples.
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HMBS-2024-34/

https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.21468/SciPostPhys.17.2.046
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-34/


[  A. Sciandra | Analysis Methods for ATLAS | Higgs Hunting | July 16, 2025 ] 12Figure 6: Comparison of the 95% CL upper limits on 𝐿(𝑀𝑀 → 𝑁 → 𝑂𝑃) set by SALAD and CURTAIN! at 𝑄 = 0.02
with T = 𝑅 , 𝑆21. The one and two sigma variations on the expected limits for both the SALAD and CURTAIN!
methods are shown as the shaded regions. The signal models are detailed in Section 3. The observed limits from
the ATLAS d!et search [72] and the ATLAS all-hadronic diboson search [28] are shown in the red triangles and
grey X-symbols respectively, and were derived in the previous weakly supervised ATLAS search [4]. Limits for the
inclusive d!et search are calculated using the 𝑇 ↑ signals from this paper and the analysis of Ref. [72]; the diboson
search limits are computed using the Heavy Vector Triplet [7] 𝑇 ↑ signal from Ref. [28]. The acceptance for the 𝑇 ↑

in this paper, compared with the 𝑇 ↑ acceptance in Ref. [28], is 86%. The limit from the inclusive d!et search which
exceeds the shown range is marked with a red arrow.

Additionally, as mentioned in Section 5, including uninformative features can degrade the performance of
the classifier. The scan over many di"erent feature sets is therefore one of the strengths of the analysis.

17

Tested on 20 signal models

• Analysis methodology: 


• Three subsets of {mJ,τ21,τ32}: outputs of bkg estimate & inputs to classifier


• Train Weakly Supervised classifier SR data vs reference: selection to increase S/B


• Extended bump hunt with 6 (3x2 jets) features 


• All analysis steps (Weakly Supervised class incl.) repeated for 7 diff SR/SBs 

• mJJ spectrum between 2.6 & 5.0 TeV in steps of 300 GeV → no excess → limits

Previous di-jet/VV  
searches

HMBS-2024-34/

Weakly Supervised Anomaly Detection for Light Di-Jet Resonance

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-34/
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Figure 4. (a) Distribution of the test statistic tµ=0.0 for the case µ ′ = 0.0 and (b) distribution of tµ=1.0 for the case with µ ′ = 1.0. Each
distribution is estimated with 15000 pseudo-experiments. The confidence intervals (CI) are built using a Neyman construction by
integrating up to 68.27% (vertical dashed yellow line) and 95.45% (vertical dash-dotted red line) of the distribution.

Figure 5. A comparison of expected sensitivity of NSBI (solid red
line) to a typical histogram-based (dashed green line) analysis, not
including systematic uncertainties. The evaluation is performed on
an Asimov dataset generated with µ= 1. The test statistic, the
log-likelihood ratio tµ, is shown as a function of signal strength µ.
The 68% and 95% confidence intervals (CI) in dotted gray lines are
determined using the Neyman construction.

construct complete confidence bands as shown in figure 5. The
shapes of these bands deviate slightly from the asymptotic χ2

distribution in which the 68.27% and 95.45% confidence inter-
vals would be defined exacly at tµ = 1 and tµ = 4. In the case
of the off-shell Higgs production analysis, the deviation comes
from the non-linear parametrization used in the off-shell Higgs
boson production measurement [19], and are not specifically
a feature of NSBI.

The formalism discussed in this section lends itself to fur-
ther tests for robustness on samples generated by shifting mul-
tiple NPs simultaneously and verifying that the confidence
bands remain well-behaved in such scenarios. Such samples
can be generated by a reweighting procedure similar to the one

described in section 6.2, this time using the probability density
ratio of equation (17) that includes NPs,

wrwt−ref
i → wAsimov

i (µ,α) =
ν (µ,α)

νrwt−ref

p(xi|µ,α)
prwt−ref (xi)

wrwt−ref
i .

(28)

7. Comparison of sensitivity

This section shows the sensitivity of the NSBI method and the
impact of systematic uncertainties in the result. The demon-
stration is performed for the simplified version of an off-
shell Higgs boson signal strength measurement on simulated
samples described in section 3 and considers a subset of the
physics processes and systematic uncertainties described in
section 3.3. The simplified analysis presented here contains
only three processes and two sources of systematic uncer-
tainties. A full analysis usually contains 10–20 processes and
100–200 independent systematic uncertainties. The simplified
version allows the demonstration of the main features of the
NSBI implementation presented in this paper without excess-
ive computational costs.

7.1. Comparison to histogram-based methods

The NSBI method is compared with two histogram-based ana-
lysis strategies on an Asimov simulated dataset, to show the
gains due to the parametrized and unbinned nature of the
method. The first histogram method employs a single observ-
able, a discriminant between signal and full processes that is
commonly used for LHC analyses,

Ofixed = log
pS (xi)
pSBI (xi)

. (29)

Since this ratio is already estimated with ensembles for the
NSBI method, no additional NNs need to be trained. This
observable is subsequently used to construct a histogram (with
15 bins), and a Poisson likelihood fit is performed with it,

13

Neural Simulation-Based Inference (NSBI)

13

• Set of observations {x} sensitive to a parameter φ

• Given a simulator φ → p({x}) & a prior p(φ), posterior over φ: {x} → p(φ)

• Variance of posterior scaling as ~1/|{x}| ~ 1/L 
• A lossy function applied to {x} (e.g. binning) brings loss in constraining power


• Same 1/L scaling, constant offset generally worse 
• Better per-event use of x brings improved results

• Neural Simulation-Based Inference (NSBI) gives arbitrarily good approximation of true 

{x} → p(φ) → best sensitivity of analysis strategies based on {x}

• ATLAS building expertise for “real-life” applications

⟨σ
φ
⟩

L

SOFT-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SOFT-2023-01/
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High-level 
Observables

NSBI Application: Off-Shell H→ZZ* (ΓH)

14

Ensemble of NNs 
trained to minimise  

Binary Cross Entropy loss

Event-by-event 
parameterised LLR

Huge gain in  
interference rich regions

HIGP-2024-14

• Higgs boson production in the H→ZZ*→4ℓ decay channel on full Run-2 dataset (140 fb-1)


• Data analysed with NSBI strategy 


• NNs used to estimate per-event contribution to likelihood ratio (LLR) between 
different hypotheses: maximal sensitivity throughout parameter space


• Combined with H→ZZ*→2ℓ2ν decay channel


• Evidence for off-shell Higgs production


• ~13% relative improvement in 95% CL upper limit on ΓH, as compared to standard 
histogram analysis

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGP-2024-14/
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Conclusion

15

• Many new methods & techniques developed within ATLAS Experiment


• Some already helped us push our knowledge boundaries, some will soon!


• Discussed most recent developments & their applications to “real” physics cases


• Wide use of ML: transformers, DNN, CWoLA, weakly supervised NN…


• Dedicated object reconstruction & identification for extension of analysis search/

reach range


• Optimisation of analyses with complex & mixed topologies


• ML-driven improvements in better per-even use of observables to extract physics 

results


• Stay tuned for more analysis methods to come!



[  A. Sciandra | Analysis Methods for ATLAS | Higgs Hunting | July 16, 2025 ]
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DeXTer: Specialised 
Flavour Tagging
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DeXTer: Specialised Flavour Tagging
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ATL-PHYS-PUB-2022-042

Specialised algorithms: DeXTer

28

The Deep-set Xbb Tagger is a general-purpose low-mass/pT double-b 
tagging algorithm specialised for jets with 20 GeV < pT < 200 GeV using 
also surrounding displaced tracks + multiple secondary vertices (MSV).

DeXTer: Deep Sets ! → #$# Tagger
A low-mass end-to-end double-b identification algorithm 

• First general-purpose low-mass $"$ tagger in ATLAS specialized for jets with 20 < (! < 200 GeV.
• DeXTer does multi-flavor tagging using jets and surrounding displaced tracks and SVs
• End-to-end training starting from displaced tracks and dedicated multiple secondary vertices (MSV) 

reconstruction

BOOST 2022@Hamburg 4

a

b

b

Jet

R= 0.8

B: double-b tagged jets 

Yuan-Tang Chou ATL-PHYS-PUB-2022-042

DeXTer: Deep Sets ! → #$# Tagger
A low-mass end-to-end double-b identification algorithm 

• First general-purpose low-mass $"$ tagger in ATLAS specialized for jets with 20 < (! < 200 GeV.
• DeXTer does multi-flavor tagging using jets and surrounding displaced tracks and SVs
• End-to-end training starting from displaced tracks and dedicated multiple secondary vertices (MSV) 

reconstruction
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B: double-b tagged jets 
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The class probabilities predicted by the model outputs 
((% , (&, and ('), are combined into a B-tagging 
discriminant:

(! = ln ,!
1 − /" ,# + /","

where 1& is a free parameter that balances between 
the rejection of light-flavor vs b-jets for a given 
efficiency of selecting b-jets. 1&=0.4 was used in the 
results 
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The class probabilities predicted by the model outputs 
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discriminant:
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where 1& is a free parameter that balances between 
the rejection of light-flavor vs b-jets for a given 
efficiency of selecting b-jets. 1&=0.4 was used in the 
results 
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Jet re-clustering with R=0.8 
to get isolated R=0.4 PFlow 
jets with surrounding tracks. 

ATL-PHYS-PUB-2022-042

Similar architecture as Dips (with additional SV NN). 

Trained with domain-adversarial training to remove 
significant differences in the response for color singlet 
and octet Xbb states to allow calibration in g→bb events.

09.09.24Philipp Gadow | FTAG algorithms (resolved) in ATLAS

R=0.8

Jet re-clustering  
to get isolated R=0.4  

jets w/ surrounding tracks

• DeXTer: capture particles from fragmentation or decay of heavy-flavoured hadrons from 

multiple partons


• Extended collection of tracks to a reconstructed jet by clustering all PFlow jets & 

ID tracks matched to jets through ghost-association


• Re-clustering with anti-𝑘𝑡 algorithm with 𝑅=0.8 

• Combines TC-LVT, to identify collection of tracks that may have >0 secondary 

vertices, & Multiple Secondary Vertex Finder (MSVF), to build all two-track proto-

vertices consistent with (non-background) displaced tracks 


• Two track sub-jets are reconstructed with exclusive-𝑘𝑡 algorithm 


• Define fly direction of 2 sub-jets from bb


• Jet, track & SV kinematics fed as input to DeXTer architecture  

(see next slide)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-042/
https://cds.cern.ch/record/685550
https://doi.org/10.1103/PhysRevD.48.3160
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ATL-PHYS-PUB-2022-042

+
Track NN

+
SV NN

Global NN

⌫ probability

1 probability

✓ probability

PFlow jet
large-'
track-jet

MSV
reconstruction

Figure 1: Architecture of the D�XT�� algorithm. Two sets of feature-extracting NN are used for track and SV
observables. A final global NN with a softmax output layer is used to interpret each output as a probability for each
flavor.

5.1 Track Neural Network

The tracks clustered in the ' = 0.8 track-jet are ordered in decreasing value of transverse impact parameter
significance (30 [62]. Properties of the 25 first tracks are used as input to the D�XT�� algorithm. The
track NN algorithm input variables are presented in Table 1. Variables that depend on both the track and
the reconstructed jet, namely �[(track, jet) and �q(track, jet), are calculated with respect to the axis of the
E�: (2)

C
track-subjet, since it is a better estimate of the original 1-hadron flight direction than the PFlow jet.

The sign of the impact parameter significance is not altered because the PFlow jet axis still represents the
best estimate for reconstructed jets that do not come from merged particle jets.

5.2 Secondary Vertex Neural Network

The reconstructed secondary vertices matched to the ' = 0.8 track-jet are ordered in decreasing value of
the transverse decay length significance (!GH

and the properties of the 12 first vertices are used as input
to the secondary vertex NN. The properties used are listed in Table 1. The definition of the variables is
identical to the one used in other SV-based 1-taggers [22], with the only di�erences being the choice of the
E�: (2)

C
jet axes as the reference for �[(track, jet) and �q(track, jet). Decay lengths are always calculated

with respect to the event PV:

!GH = | ( Æ?SV � Æ?PV) ⇥ Î | !I = | ( Æ?SV � Æ?PV) · Î |.
The decay length significance values are calculated taking into account the covariance matrices of both
primary and secondary vertices:

(!GH
= (?SV � ?

PV)8 [%�1
GH
(⇠SV + ⇠

PV)�1
%GH]8 9 (?SV � ?

PV) 9 ,
(!I

= (?SV � ?
PV)8 [%�1

I
(⇠SV + ⇠

PV)�1
%I]8 9 (?SV � ?

PV) 9 .

where %GH and %I are projectors onto the transverse plane and longitudinal direction, respectively.

Even though an ordering is imposed to select the maximum number of input tracks and secondary vertices,
the NN itself is permutation invariant.

8

Adversarial backpropagation gradient  
minimises diff in singlets vs. octets

• Two feature-extracting feed-forward NNs used for track & SV 
observables


• Final feed-forward global NN used to interpret each output as a 
probability for each flavour


• Feature NNs: 2 hidden layers with 100 neurons & output layer 
with 128 features


• 256 features input to global NN with 3 hidden layers

• Only calibration sample available is 𝑔→𝑏𝑏, B events mix of 𝑔→𝑏𝑏 

& a→𝑏𝑏

• Colour-charge adversarial NN in back-propagation gradients 

• Calibration on Z & tt events

Data scale factors for  
B identification

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-042/
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Search for New 
Pseudoscalar:  
tt/tW+a(→bb) 
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Search for New Pseudoscalar: tt/tW+a(→bb) 
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HMBS-2024-46

Figure 6: Diagram of the analysis strategy, illustrating the data-driven corrections, jet/lepton and d!et pairings by two
BDTs and the NN for signal versus background discrimination. The CR and SRs are used in the final fits to extract
the signal strength (𝐿) as well as the main 𝑀𝑀 background normalisation factors.

that depend on the tag lepton/jet pair (𝑁 𝑂-pair), such as its invariant mass or transverse momentum, or the
separation angle between the lepton and the jet. It also uses information about the lepton and jet candidates
themselves, such as their pseudorapidity and transverse momenta, or the jet index indicating in decreasing
order the hardness of the jets. In addition, the BDT uses information from the auxiliary 𝑁 𝑂-pair built with
the lepton that is not being evaluated, together with information from the top/antitop system formed by the
tag and auxiliary 𝑁 𝑂-pairs, and variables that refer to the full event. In a similar way, the BDT targeting the
pseudoscalar decay receives various kinematic variables connected to the pair of two jets, 𝑂 𝑂-pair, as its
mass or transverse momentum, together with information about the jets themselves or about the overall
event. The full list of variables used by each BDT is shown in Table 4.

For the training of both BDTs, generator information is used to define the targets (𝑃-quarks and leptons
from the decays of the top quark, top antiquark and pseudoscalar 𝑄) and to identify the correct permutations
at detector level, which are used as signal (or target) during the training, while all wrong permutations are
used as background. A mix of signal and 𝑀𝑀 samples is used during the training of both BDTs. In both cases,
two sets of BDTs are trained using k-2 fold training to avoid biases. The BDT trained with odd events is
applied to even events and vice versa. The training is performed with the TMVA package of ROOT [89].

Following the training of both BDTs, they are applied to data and MC as follows. For the top quark/antiquark
BDT, the lepton/jet permutation with the highest BDT score is identified for each lepton as the most likely
𝑁 𝑂-pair and the selected jet is assigned to the top quark or antitop quark decay depending on the lepton
charge. If both leptons are initially assigned to the same jet, only the one with the highest BDT score
keeps the assignment, while the other lepton is reassigned to the second most likely jet in terms of BDT
score. In a similar way, for the pseudoscalar BDT, the permutation of two jets with the highest BDT score
is selected and the two corresponding jets are assigned to the pseudoscalar decay. The selected 𝑁 𝑂- and

15

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-46/
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Flavour Tagging
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• TC-LVT inputs: seed, cluster tracks & vertices 


• Seed tracks -> cluster of tracks built around seed tracks by adding additional high-

displacement tracks


• For each identified cluster, SSVF executed on all tracks within ΔR=0.4 of vector sum of 

momenta of all tracks in cluster -> tracks inputs to vertex fitter to get one SV 

• Stable SSV efficiency & non-negligible dependence of average number of fake SSVs per 

event as a function of average number of interactions per bunch crossing (μ)

FT
AG

-2
02

3-
02

https://cds.cern.ch/record/2270366
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2023-02/
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Search for  
Z(→ℓℓ/νν)H(→4b/6b)
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Specialised algorithms: DeXTer

28

The Deep-set Xbb Tagger is a general-purpose low-mass/pT double-b 
tagging algorithm specialised for jets with 20 GeV < pT < 200 GeV using 
also surrounding displaced tracks + multiple secondary vertices (MSV).

DeXTer: Deep Sets ! → #$# Tagger
A low-mass end-to-end double-b identification algorithm 

• First general-purpose low-mass $"$ tagger in ATLAS specialized for jets with 20 < (! < 200 GeV.
• DeXTer does multi-flavor tagging using jets and surrounding displaced tracks and SVs
• End-to-end training starting from displaced tracks and dedicated multiple secondary vertices (MSV) 

reconstruction

BOOST 2022@Hamburg 4
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B: double-b tagged jets 
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DeXTer: Deep Sets ! → #$# Tagger
A low-mass end-to-end double-b identification algorithm 

• First general-purpose low-mass $"$ tagger in ATLAS specialized for jets with 20 < (! < 200 GeV.
• DeXTer does multi-flavor tagging using jets and surrounding displaced tracks and SVs
• End-to-end training starting from displaced tracks and dedicated multiple secondary vertices (MSV) 

reconstruction
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B: double-b tagged jets 
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The class probabilities predicted by the model outputs 
((% , (&, and ('), are combined into a B-tagging 
discriminant:

(! = ln ,!
1 − /" ,# + /","

where 1& is a free parameter that balances between 
the rejection of light-flavor vs b-jets for a given 
efficiency of selecting b-jets. 1&=0.4 was used in the 
results 
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the rejection of light-flavor vs b-jets for a given 
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Jet re-clustering with R=0.8 
to get isolated R=0.4 PFlow 
jets with surrounding tracks. 

ATL-PHYS-PUB-2022-042

Similar architecture as Dips (with additional SV NN). 

Trained with domain-adversarial training to remove 
significant differences in the response for color singlet 
and octet Xbb states to allow calibration in g→bb events.

09.09.24Philipp Gadow | FTAG algorithms (resolved) in ATLAS

R=0.8

"Jet-less" flavour tagging algorithms

15

Dedicated b-tagging algorithm for identifying low-pT (5 GeV – 20 GeV) B-hadrons 
outside of jets by reconstructing their soft secondary vertices.

Phys. Rev. D 110 (2024) 032015

09.09.24Philipp Gadow | FTAG algorithms (resolved) in ATLAS

heavyboson

increasing transverse momentum
p
T

small-radius jets
large-radius jets

Fig. 6.15.: Illustration of boosted event topologies: the distance between the decay products

of a boosted boson decreases with increasing transverse momentum
of the

boosted boson.

Ungroomed large-R jets 
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Groomed large-R jets  

(LCW+JES+JMS scale)

A correction to the jet 

energy, pseudorapidity 

and mass is derived from 

MC to bring the 

reconstructed jet to the 

particle jet scale.
Residual correction 

determined using in situ 

measurements to bring 

data in agreement with 

MC. Applied only to data.

Large-R jets are recon-

structed using the anti-kt  

algorithm with R = 1.0.

Jet grooming

Soft subjets are removed 

from the reconstructed 

jets.

Groomed large-R jets  

(LCW scale)

Calorimeter energy 

clusters (LCW scale)

Fig. 6.16.: Overview
of the large-radius jet reconstruction and calibration procedure. Illus-

tration reproduced from
Ref. [51].

6.1

Event reconstruction

99

Track-cluster based Low-pT Vertex Tagger (TC-LVT): based on vertexing 
techniques first developed in the context of standard b-tagging for identifying 
Soft Secondary Vertices (SSV). 
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Figure 4: Diagram depicting how the NN reconstructs events. Each 1-object is considered a node in a graph for
which an abstract representation is used based on an MLP (1-object MLP). The 0-boson is represented by an edge
between notes, which also corresponds to an MLP (0-boson MLP). All physically motivated edges are considered,
including loop edges representing merged reconstructed objects. The 0-bosons themselves form new nodes whose
edge represents the fully reconstructed Higgs boson, which also corresponds to an MLP (Higgs MLP). The value of
this edge is used to select the quadruplet. The middle diagram shows the two reconstructed 0-boson candidates and
the rightmost diagram shows the final Higgs candidate.

Signal regions: Five SRs are defined based on the objects of the selected quadruplet and the value of the425

score Ĥ
<0
pred. For events with two ⌫-jets (2⌫), the score is required to be larger than Ĥ

<0
pred > 0.5. For the426

cases with one ⌫-jet and 2 1-jets (1⌫21), with one ⌫-jet, one 1-jet and one v (1⌫111v), with three 1-jets427

and one v (311v) and with four 1-jets (41), the score is required to be larger than Ĥ
<0
pred > 0.05. Figure 5428

shows example distributions of the Ĥ
<0
pred for the 2⌫ and 1⌫21 cases.429
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Figure 5: The quadruplet selection score Ĥ
<0
pred distribution assuming signal hypothesis <0 = 25 GeV for the 1-object

categories (a) 2⌫ and (b) 1⌫21. The SM background is compared to the expected <0 = 25 GeV simulated signal
events assuming B = 1 and scaled by a factor of ten.
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Figure 4: Diagram depicting an example of how the NN selects a quadruplet. Each 𝐿-object is represented as an
MLP (𝐿-object MLP). The 𝑀-boson is represented as a pairing between 𝐿-objects, which also corresponds to an
MLP (𝑀-boson MLP). All physically motivated pairings are considered, including loop pairings representing merged
reconstructed objects. The 𝑀-bosons themselves form new pairings representing the fully reconstructed Higgs boson,
which also corresponds to an MLP (Higgs MLP). The value of this last pairing is used to select the quadruplet. The
middle diagram shows the two reconstructed 𝑀-boson candidates and the rightmost diagram shows the final Higgs
boson candidate.

and validation samples, and the validation sample is used to measure the performance and check for434

overtraining. All permutations satisfying the selection criteria described above are included in the training435

and the correct permutation is identified based on the generator-level event history information. The NN is436

trained by minimizing a binary cross-entropy loss in which the correct permutation has label one and all437

wrong permutations have label zero. In the case of background events, all permutations have label zero.438

The reconstructed event hypothesis with the largest score and the value of the NN score, 𝑁̂𝐿𝐿
pred, are used for439

event classification. The accuracy of associating 𝐿-partons to 𝐿-objects ranges from 60% to 98% depending440

on the type and properties of the reconstructed object and the signal.441

Signal regions: Five SRs are defined based on the objects of the selected quadruplet and the value of the442

score 𝑁̂
𝐿𝐿
pred. For events with quadruplets formed with two 𝑂-jets (2𝑂), the score is required to be larger than443

𝑁̂
𝐿𝐿
pred > 0.5. For the cases where the quadruplet is formed with one 𝑂-jet and two 𝐿-jets (1𝑂2𝐿); with one444

𝑂-jet, one 𝐿-jet and one v (1𝑂1𝐿1v); with three 𝐿-jets and one v (3𝐿1v); and with four 𝐿-jets (4𝐿); the445

score is required to be larger than 𝑁̂
𝐿𝐿
pred > 0.05. The choice of this 𝑁̂𝐿𝐿

predrequirement is intended to maintain446

high acceptance while ensuring accurate reconstruction of the Higgs boson decay for signal samples across447

the mass range probed. Figure 5 shows example distributions of the 𝑁̂
𝐿𝐿
pred observable for the 2𝑂 and 1𝑂2𝐿448

cases.449

Control regions: Six CRs for each of the main backgrounds 𝑃+jets and 𝑄𝑄 are used based on the 𝐿-object450

multiplicity, as summarized in Table 4. The regions distinguish between events containing jets satisfying451

the loose and tight D!XT!" tagging requirements to enhance the sensitivity to di!erent heavy-flavor452

background components. The control regions including the combination of 𝐿-objects corresponding to453

1𝑂2𝐿 and 1𝑂1𝐿1v are combined due to the low expected number of events. The 𝑃+jets control regions are454

defined by inverting the requirements on the quadruplet selection NN score 𝑁̂
𝐿𝐿
pred. Additional requirements455

June 30, 2025 – 08:58 17

NN selection of quadruplets

HMBS-2024-26

Quadruplets NN inputs

• Quadruplet selection NN in 2ℓ 4b

• Select best combination of four 𝑏-

objects to reconstruct decay chain 
𝐻→2𝑎/𝑎1𝑎2→4𝑏


• Different encoder NNs for different 
𝑏-objects


• Fully connected encoders for 𝑏-jets, 
𝐵-jets, & soft vertices

• Encoded info used in pair 
of deep NNs, ensuring 
invariance under 𝑏 & 𝑏𝑏 
permutations


• NN built from up to 5 objects 
with ≤1 soft vertices


• Accuracy of associating 𝑏-
partons to 𝑏-objects ranges 
from 60% to 98%

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-26
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Figure 3: Diagram of the NN used for event identification. All filled blocks are dense multi-layer perceptions (MLP)
that share common weights between MLPs of the same color. The 0-boson MLPs are parameterized as a function
of the mass hypothesis <0. Unfilled rectangles are inputs from the four 1-objects and the / boson. The value of
the quadruplet selection score, Ĥ<0

pred, is used for graph classification. This particular example shows the case of a
hypothesis with ⌫-jets, 1-jets, and soft-secondary vertices v 1-objects.

The graphs are built from up to five 1-objects, where the 1-objects with highest ?T are used in cases where410

more than five objects are reconstructed. Graphs with more than one soft secondary vertex v are not411

considered, since they do not contribute significantly to the acceptance. In events with two ⌫-jets, graph412

permutations which do not change the content of each ⌫-jet are only considered once. Table 2 summarizes413

the input features used for the quadruplet selection NN. The input features include the four-momenta of each414

input object and the likelihood for their flavor to be properly reconstructed. The inputs to the quadruplet415

selection NN are graphs of 1-objects, as shown in Fig. 4.416

The NN is trained with all � ! 20 ! 41 simulated signal samples and uses background events to provide417

training samples with broader Higgs ?T and < distributions. The samples are split into training and418

validation samples, and the validation sample is used to measure the performance and check for overtraining.419

All permutations satisfying the selection criteria described above are included in the training. The correct420

permutation is identified based on the generator-level event history information. The reconstructed event421

hypothesis with the largest score and the value of the NN score, Ĥ<0
pred, are used for event classification.422

The correct objects are identified with almost perfect accuracy. The accuracy of associating 1-partons to423

1-objects ranges from 60% to 98% depending on the type and properties of the reconstructed object and424

the signal.425

25th January 2025 – 11:16 14

Figure 3: Diagram of the NN used for an example of a quadruplet selection showing the case of a hypothesis with
𝐿-jets, 𝑀-jets, and soft-v. All filled blocks are dense multi-layer perceptrons (MLP) that share common weights
between MLPs of the same color. The 𝑁-boson MLPs are parameterized as a function of the mass hypothesis 𝑂𝐿.
Unfilled rectangles are inputs from the four 𝑀-objects and the 𝑃 boson. The value of the quadruplet selection score,
𝑄̂
𝑀𝐿
pred, is used to classify the 𝑀-object quadruplet.

pairing of a quadruplet goes through di!erent NNs in di!erent orders, yielding di!erent compatibility417

scores that are used to select the best pairing.418

The NN contains fully connected encoders for 𝑀-jets, 𝐿-jets, and soft vertices. The encoded information is419

then used in a pair of deep-set NNs, which ensure that the overall NN score is invariant under permutations420

of (𝑀𝑀̄) → (𝑀𝑀̄) (Higgs boson deep sets) and 𝑀 → 𝑀̄ (𝑁-boson deep sets). The 𝑁-boson deep-sets training421

depends on the true 𝑂𝐿 value, since the reconstruction modes depend on the boost of the 𝑁-bosons. When422

considering models with additional 𝑁-bosons, 𝑅 ↑ 𝑁1𝑁2 permutation invariance is broken by assigning423

the di!erent true mass values to each of the two 𝑁-boson encoders.424

The NN is built from up to five 𝑀-objects, as shown in Figure 4 for an example combination of objects.425

In cases where more than five objects are reconstructed, the 𝑀-objects with highest 𝑆T are used. Input426

combinations with more than one soft-v are not considered, since they do not contribute significantly427

to the acceptance. In events with two 𝐿-jets, input permutations that do not change the content of each428

𝐿-jet are only considered once. Kinematic variables characterizing the 𝑃 boson are also used in the NN.429

Table 3 summarizes the input features used for the quadruplet selection NN. The input features include the430

four-momenta of each input object and the likelihood for their flavor to be properly reconstructed.431

The NN is trained with all 𝑅 ↑ 2𝑁 ↑ 4𝑀 signal simulation samples and uses background events to provide432

training samples with broader Higgs boson 𝑆T and 𝑂 distributions. The samples are split into training433
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Diagram of the NN used for 
an example quadruplet 

selection

a-boson NNs  
parameterised vs. ma

• Quadruplet selection NN in 2ℓ 4b

• Select best combination of four 𝑏-

objects to reconstruct decay chain 
𝐻→2𝑎/𝑎1𝑎2→4𝑏


• Different encoder NNs for different 
𝑏-objects


• Fully connected encoders for 𝑏-jets, 
𝐵-jets, & soft vertices

• Encoded info used in pair 
of deep NNs, ensuring 
invariance under 𝑏 & 𝑏𝑏 
permutations


• NN built from up to 5 objects 
with ≤1 soft vertices


• Accuracy of associating 𝑏-
partons to 𝑏-objects ranges 
from 60% to 98%
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• Inputs: up to 100 tracks associated with jet 


• Two models with extra info: either 

kinematic and 𝑏-tagging info of variable-R 

track jets or Unified Flow Object (UFO) 

constituents 


• Transformer network architecture


• Jet & track inputs concatenated: combined 

jet-track sequence vectors fed into per-track 

initialiser network


• Track representations fed into Transformer 

Encoder


• 6 encoders with 4 attention heads


• Output representation of each track 

combined to form global representation of jet

ATL-PHYS-PUB-2023-021Table 4: Input features to the GN2X model. Features are separated into jet inputs, track inputs, subjet inputs and UFO
constituent (flow) inputs. The subjet and flow inputs are only used in the GN2X + Subjet and GN2X + Flow models
respectively.

Jet Input Description
𝐿T Large-𝑀 jet transverse momentum
𝑁 Signed large-𝑀 jet pseudorapidity
mass Large-𝑀 jet mass
Track Input Description
𝑂/𝐿 Track charge divided by momentum (measure of curvature)
d𝑁 Pseudorapidity of track relative to the large-𝑀 jet 𝑁
d𝑃 Azimuthal angle of the track, relative to the large-𝑀 jet 𝑃
𝑄0 Closest distance from track to primary vertex (PV) in the transverse plane
𝑅0 sin 𝑆 Closest distance from track to PV in the longitudinal plane
𝑇(𝑂/𝐿) Uncertainty on 𝑂/𝐿
𝑇(𝑆) Uncertainty on track polar angle 𝑆
𝑇(𝑃) Uncertainty on track azimuthal angle 𝑃
𝑈(𝑄0) Lifetime signed transverse IP significance
𝑈(𝑅0 sin 𝑆) Lifetime signed longitudinal IP significance
nPixHits Number of pixel hits
nSCTHits Number of SCT hits
nIBLHits Number of IBL hits
nBLHits Number of B-layer hits
nIBLShared Number of shared IBL hits
nIBLSplit Number of split IBL hits
nPixShared Number of shared pixel hits
nPixSplit Number of split pixel hits
nSCTShared Number of shared SCT hits
subjetIndex Integer label of which subjet track is associated to (GN2X + Subjets only)
Subjet Input Description (Used only in GN2X + Subjets)
𝐿T Subjet transverse momentum
𝑁 Subjet signed pseudorapidity
mass Subjet mass
energy Subjet energy
d𝑁 Pseudorapidity of subjet relative to the large-𝑀 jet 𝑁
d𝑃 Azimuthal angle of subjet relative to the large-𝑀 jet 𝑃
GN2 𝐿𝐿 𝑉-jet probability of subjet tagged using GN2
GN2 𝐿𝑀 𝑊-jet probability of subjet tagged using GN2
GN2 𝐿𝑁 light flavour jet probability of subjet tagged using GN2
Flow Input Description (Used only in GN2X + Flow)
𝐿T Transverse momentum of flow constituent
energy Energy of flow constituent
d𝑁 Pseudorapidity of flow constituent relative to the large-𝑀 jet 𝑁
d𝑃 Azimuthal angle of flow constituent relative to the large-𝑀 jet 𝑃
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Figure 3: The top (left) and mult!et (right) rejection against the jet 𝐿T for a 50% 𝑀 (𝑁𝑁̄) e"ciency. Statistical
uncertainty bands (calculated with a binomial model) are denoted. The distribution is shown for the SM evaluation
samples.

Figure 4: The 𝑀 (𝑁𝑁̄) signal e"ciency as a function of the jet 𝐿T at a 50% working point. Statistical uncertainty
bands (calculated with a binomial model) are denoted. The distribution is shown for the SM evaluation samples.

10

Figure 6: Large-𝐿 jet mass distributions for 𝑀 (𝑁𝑁̄) and mult!et samples, before and after applying a 70%
𝑀 (𝑁𝑁̄) e"ciency 𝑂GN2X

Hbb cut. The distribution is shown for the SM evaluation samples.

Close to the peak of the 𝑀 (𝑁𝑁̄) mass distribution there is little change in the shape of the mult!et distribution,
as desired. However, at both high and low mass values changes in shape of the mult!et distribution begin
to become more significant. This is expected due to the low training statistics for jets in this kinematic
regime. Extending the training distribution to higher masses is expected to reduce sculpting in the high
mass region. These conclusions also hold for stricter requirements on the discriminant. Sculpting of
the signal distribution is not considered a concern for most physics use cases, but does provide useful
information on the population of 𝑀 (𝑁𝑁̄) jets that are not tagged.

5.2 𝜴(𝜶𝜶) performance

Since GN2X outputs the likelihoods of the jets being identified as 𝑀 (𝑁𝑁̄), 𝑀 (𝑃𝑃), top and mult!et, it can
also be used for 𝑀 (𝑃𝑃) tagging. The likelihoods can be combined similarly as to 𝑂GN2X

Hbb in Section 5 to
obtain a discriminant, 𝑂GN2X

Hcc , defined as:

𝑂GN2X
Hcc = ln

(
𝑄Hcc

𝑅𝐿𝑀𝑀 · 𝑄Hbb + 𝑅top · 𝑄top +
(
1 → 𝑅Hbb → 𝑅top

)
· 𝑄QCD

)
,

where, 𝑅Hbb is a free parameter, similar to 𝑅Hcc, that determines the relative rejection weight of 𝑄Hbb to
the rest of the backgrounds. For the following performance studies, 𝑅Hbb = 0.3 and 𝑅top = 0.25 were used,
which were obtained via an optimisation procedure identical to the one used for 𝑂GN2X

Hbb .

Figure 7 shows the background rejection as a function of the 𝑀 (𝑃𝑃) signal e"ciency in the range relevant
for most physics analyses. As the previous 𝑂Xbb tagger was not designed for 𝑀 (𝑃𝑃) identification, only
the 2-tag VR track-jet baseline can be compared to. The minimum discriminant value of the leading two
VR track-jets must pass a 𝑃-tagging requirement. For 𝑀 (𝑃𝑃) identification, in addition to the top and

12

Figure 7: 𝐿 (𝑀𝑀̄), top and mult!et rejections as a function of the 𝐿 (𝑁𝑁) e"ciency for jets with 𝑂T > 250 GeV and
mass 50 GeV < 𝑃J < 200 GeV. The performance of the GN2X algorithm is compared to the 2-tag VR track-jet
baseline. Statistical uncertainty bands (calculated with a binomial model) are denoted. The distribution is shown for
the SM evaluation samples.

mult!et background, the background from 𝐿 (𝑀𝑀̄) events is non-negligible so the 𝐿 (𝑀𝑀̄) rejection is also
shown. At a 50% signal e"ciency GN2X provides significant increases in background rejection, a factor
of 3 improvement for top jet rejection, a factor of 5 improvement of the mult!et rejection and a factor 6
improvement in the 𝐿 (𝑀𝑀̄) rejection.

6 Conclusion

This note presents a novel boosted double 𝑀- and double 𝑁-tagging algorithm, GN2X, building upon a
graph neural network and transformer architecture. GN2X improves upon the current ATLAS Xbb tagger
by improving the top and mult!et background rejections by a factor of 1.6 and 2.5 respectively at a 50%
signal e"ciency when evaluated on jets with 𝑂T > 200 GeV and a mass range of 50 GeV < 𝑃J < 200 GeV.
GN2X can also operate as as a boosted 𝐿 (𝑁𝑁) tagger, the first of its kind in ATLAS. As an 𝐿 (𝑁𝑁) tagger it
provides significant background rejection against not only the top and mult!et backgrounds but also rejects
99% of 𝐿 (𝑀𝑀̄) jets at a 50% 𝐿 (𝑁𝑁) e"ciency. Preliminary studies using heterogeneous inputs have also
been conducted using extra subjet and UFO constituents information, the constituent model providing a
further 50% increase in mult!et rejection at a 50% 𝐿 (𝑀𝑀̄) signal e"ciency and the subjet model further
doubles the top rejection. GN2X has been successfully implemented into the ATLAS software [46] and is
ready for further studies to verify its performance on real collision data.
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TAUP-2023-02τ Reco with μ-τ Removal in ττ→μνμντ had+ντ

Muon removal

• Stability of performance vs. average pile-up


• An order of magnitude gain in rejection of “fake” τ

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TAUP-2023-02/
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TAUP-2023-02Inputs to τ Identification RNN
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HMBS-2024-25

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-25/
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• Di-jet mass sidebands (SBs) used for interpolation into SR when forming 
reference data sample: two methods explored


• Simulation Assisted Likelihood-free Anomaly Detection (SALAD)


• Di-jet mass conditional reweighting function trained in SBs to corrects 
simulation in SR


• Constructing unobserved regions by transforming adjacent intervals 
(CURTAINs)


• Di-jet mass conditional morphing function trained in SBs to correct SBs 
data to look like data in SR


• Both approaches correct for correlations between MJJ & classifier features

HMBS-2024-34/

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.095004
https://scipost.org/SciPostPhys.17.2.046/pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-34/
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HMBS-2024-34/
• Weakly supervised classifier trained to distinguish between data & estimated 

background distribution in SR


• Following CWoLa paradigm, NN to approximate optimal classifier between a potential 
signal & background (signal-depleted template)


• Five-fold cross validation of training: each NN not applied to data used for its training


• Cut on classifier to enhance S/B


• Fit: smoothly falling function fit to SB bins until χ2 p-value>5% first, post-hoc non-closure 
corrections & 95% CLs limits from intersection of limit cures on 20 different signal models 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HMBS-2024-34/
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HIGP-2024-14

Per-event probability 
density ratio

LikeLihood Ratio

• NN classifiers can be used to discriminate between 
two hypotheses


• Train a classifier to estimate a decision function s(xi) 
separating signal from background events using 
balanced class weights -> compute r(xi|S,B) -> scaled 
to constructed LLR


• Application to off-shell H→ZZ* accounts for S-to-B 
interference, introducing a non-linearity in signal 
strength


• Architecture: feed-forward dense network with 5 
hidden layers 1000 nodes each


• Output layer with a single node and a sigmoid 
activation


• Improved ΓH results

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGP-2024-14/

