Analysis Methods & Techniques for the ATLAS Experiment

Higgs Hunting 2025

July 16

Andrea Sciandra on behalf of the ATLAS Collaboration

Introduction & Overview

- Breakthrough innovations in methods, tools & techniques allow for striking improvements in LHC physics reach
 - Often come with proportionate challenges
- Focus on methods & techniques exploited by most recent (B)SM Higgs analyses published by ATLAS:
 - Reconstruction & identification of b, bb & ττ topologies
 - Dedicated event-reconstruction algorithms
 - Weakly supervised anomaly detection
 - Neural Simulation-Based Inference (NSBI) for parameter estimation
- ... and applications to real physics-cases!

- Deep-set X→bb Tagger: general-purpose low-mass/p_T double-b tagging algorithm
 - Specialised for jets 20<p_T<200 GeV: surrounding displaced tracks +multiple secondary vertices (MSV)
- Domain-adversarial training: remove different response on color singlets & octets
- Used in multiple new ATLAS BSM Higgs searches

Search for New Pseudoscalar: tt/tW+a(→bb)

- Exploring both resolved & merged bb topologies in tt/tW+a(→bb) 2ℓ channel
 - Std resolved (<u>DL1r</u>) & merged (<u>DeXTer</u>)
 flavour taggers combined
- Extensive & combined usage of ML techniques
 - Event reconstruction combines two
 BDTs, one for t→jℓ & one for a→jj reco

- Split into 4 SRs, based on small- (b) & large-R (B) tagged-jet multiplicity
- One mass-parameterised deep NN per SR, exploited as fit observable
- No excess found, competitive limits excluding
 12<m_a<100 GeV for a coupling g_t=1

TC-LVT: "Jet-less" Flavour Tagging

- Dedicated *b*-tagging algorithm to identify low- p_T (5-20 GeV) B-hadrons outside of jets, by reconstructing their **soft secondary vertices**
- Track-Cluster based Low-p_T Vertex Tagger
 - Based on std vertexing techniques, retuned & applied outside jets
 - Reconstruct displaced soft secondary vertices from seed tracks
 - Dedicated calibration on tt events

Search for $Z(\rightarrow \ell\ell/\nu\nu)H(\rightarrow 4b/6b)$

- Search for H→aa/a₁a₂→4b/6b for 12<m_a<60 GeV with Z→ℓℓ/vv
- Improves previous searches by means of 3 different tagging algs:
 - Resolved jets (DL1r)
 - Low-mass merged jets (DeXTer)
 - Soft secondary vertices (<u>TC-LVT</u>)
- Strategies for different signatures:
 - 2l 4b: NN for jet-parton pairing
 + BDT
 - 2l 6b: BDTs for partially reco events
 - 0ℓ 4b: Cut-&-count
- No significant excess above SM bkgonly expectation

GN2X H(bb/cc) at High Momentum

 $H(b\bar{b})$

H(cc̄)

Top

- **GN2X**: **transformer**-based *X*→*bb* **tagger** exploiting full info from tracks within large-R jet
- Trained on mass-decorrelated samples to discriminate boosted $H \rightarrow bb$, $H \rightarrow cc$, had top & QCD jets

ATLAS Simulation Preliminary

0.07

 \sqrt{s} = 13 TeV, Anti- k_t R=1.0 UFO jets

 $p_T > 250 \text{ GeV}, 50 < m_1 < 200 \text{ GeV}, |\eta| < 2$

- At 60[50]% H→bb[cc] efficiency >2[3-5] better top, QCD [and $H \rightarrow bb$] rejection wrt standard tagging
- Boost high- p_T measurements/searches for $H \rightarrow bb \& HH \rightarrow 4b$ (e.g. <u>VBF HH $\rightarrow 4b$ </u> & κ_{2V})

τ Reco with μ-τ Removal in ττ→μν_μν_τ had+ν_τ

- Standard τ_{had} reco based off anti- k_t R=0.4 topological calo-cluster jets
 - Identification through RNN exploiting info from tracks & calo energy clusters
- When decay products overlap, sub-optimal τ_{had} reco & identification
- μ leave tracks in ID & MS: identification independent of isolation
- Both ID tracks & calo clusters associated with μ removed from τ_{had}
- τ identification RNN input variables recalculated after μ removal
 - Performance fully recovered, stability observed & validation on data performed

Search for Merged $H \rightarrow aa \rightarrow \tau_{\mu} \tau_{had} \tau_{\mu} \tau_{had}$

- Model-independent search for $\tau_{\mu}\tau_{had}$ (~23% of $\tau\tau$, low bkg) resonance
 - Focus on 4<m_a<15 GeV
 - First boosted low-mass 4τ search at ATLAS, both SS & OS μμ pairs considered
- μ - τ removal technique implemented to resolve merged di- τ identification
- No excess found: stringent 95% CL upper limits set

GN2XTT for Merged Thad at High Momentum

- Extension of GN2X to tag H(ττ)
- Covers Thad Thad use-case, with large BR
- Discriminant shows significant top & MJ rejection within 250 GeV<p_T<1.5 TeV & 50<m_J<200 GeV
 - rej~10⁴ for ε =98%
 - rej~10⁵ for ε =93%
- Provides us with unprecedented identification of merged X→τ_{had}τ_{had} topologies
 - Expect significant improvements in sensitivity of τ_{had}τ_{had} channels to high p_T^H measurements/new resonant mass searches

- # BSM models >> # dedicated searches
 - Agnostic searches may fill gap
- Classification Without Labels (CWoLa)
 paradigm & high-dimensional interpolation
- Compare two NN methods (<u>SALAD</u> & <u>CURTAINs</u>) to estimate bkg from SBs into SR
- Generate reference Sample from p(x|mJJ) for mJJ∈SR
 - Features $x=\{m_J,\tau_{21},\tau_{32}\}$, varying smoothly with m_{JJ}
- Weakly supervised Anomaly Detection to search for narrow resonance in di-jet events
 - Model-agnostic analysis flagging regions containing BSM signal for thorough studies

- Analysis methodology:
 - Three subsets of $\{m_J, \tau_{21}, \tau_{32}\}$: outputs of bkg estimate & inputs to classifier
 - Train Weakly Supervised classifier SR data vs reference: selection to increase S/B
 - Extended bump hunt with 6 (3x2 jets) features
 - All analysis steps (Weakly Supervised class incl.) repeated for 7 diff SR/SBs
- m_{JJ} spectrum between 2.6 & 5.0 TeV in steps of 300 GeV \rightarrow no excess \rightarrow **limits**

Neural Simulation-Based Inference (NSBI)

- Set of observations {x} sensitive to a parameter φ
- Given a simulator $\phi \to p(\{x\})$ & a prior $p(\phi)$, posterior over $\phi: \{x\} \to p(\phi)$
- Variance of posterior scaling as ~1/|{x}| ~ 1/L
- A lossy function applied to {x} (e.g. binning) brings loss in constraining power
 - Same 1/L scaling, constant offset generally worse
- Better per-event use of x brings improved results
- Neural Simulation-Based Inference (NSBI) gives arbitrarily good approximation of true
 {x} → p(φ) → best sensitivity of analysis strategies based on {x}

ATLAS building expertise for "real-life" applications

NSBI Application: Off-Shell H→ZZ* (Γ_H)

- Higgs boson production in the H→ZZ*→4ℓ decay channel on full Run-2 dataset (140 fb⁻¹)
- Data analysed with NSBI strategy
 - NNs used to estimate per-event contribution to likelihood ratio (LLR) between different hypotheses: maximal sensitivity throughout parameter space
- Combined with H→ZZ*→2ℓ2v decay channel
- Evidence for off-shell Higgs production
- ~13% relative improvement in 95% CL upper limit on Γ_H, as compared to standard

Conclusion

- Many new methods & techniques developed within ATLAS Experiment
 - Some already helped us push our knowledge boundaries, some will soon!
- Discussed most recent developments & their applications to "real" physics cases
 - Wide use of ML: transformers, DNN, CWoLA, weakly supervised NN...
 - Dedicated object reconstruction & identification for extension of analysis search/ reach range
 - Optimisation of analyses with complex & mixed topologies
 - ML-driven improvements in better per-even use of observables to extract physics results
- Stay tuned for more analysis methods to come!

BACKUP

DeXTer: Specialised Flavour Tagging

- DeXTer: capture particles from fragmentation or decay of heavy-flavoured hadrons from multiple partons
 - Extended collection of tracks to a reconstructed jet by clustering all PFlow jets & ID tracks matched to jets through ghost-association
 - Re-clustering with anti-kt algorithm with R=0.8
- Two track sub-jets are reconstructed with <u>exclusive-kt algorithm</u>
 - Define fly direction of 2 sub-jets from bb
- Jet, track & SV kinematics fed as input to DeXTer architecture (see next slide)

Data scale factors for

DeXTer: Specialised Flavour Tagging

- Two feature-extracting feed-forward NNs used for track & SV observables
- Final feed-forward global NN used to interpret each output as a probability for each flavour
- Feature NNs: 2 hidden layers with 100 neurons & output layer with 128 features
- 256 features input to global NN with 3 hidden layers
- Only calibration sample available is g→bb, B events mix of g→bb
 & a→bb
 - Colour-charge adversarial NN in back-propagation gradients
- Calibration on Z & tt events

Adversarial backpropagation gradient minimises diff in singlets vs. octets

Search for New Pseudoscalar: tt/tW+a(→bb)

Search for New Pseudoscalar: tt/tW+a(→bb)

Top quantiquant reconstruction 22 1		
Object	Variables	
Full event Lepton (tag, aux.)	$N_{\rm jets}, N_{b ext{-jets}}$	
Lepton (tag, aux.)	p_{T}, η	
Jet (tag, aux.)	$p_{\rm T}$, η , PC b -tag, jet index	
lj pair (tag, aux.)	$m, p_{\mathrm{T}}, \eta, \Delta R$	
$t\bar{t}$ pair	$m, p_{\mathrm{T}}, \eta, \Delta R, \Delta \phi$	
<i>jj</i> pair	ΔR	

Pseudoscalar reconstruction BDT

Object	Variables
Full event	$N_{ m jets}, N_{b ext{-jets}}, ext{ sumPCBTag}$ $p_{ m T}, \eta, ext{ PC } b ext{-tag, jet index}$ $m, p_{ m T}, \eta, E, \phi, \Delta R$
Jet (1st, 2nd)	$p_{\rm T}$, η , PC b-tag, jet index
<i>j j</i> pair	$m, p_{\mathrm{T}}, \eta, E, \phi, \Delta R$

Signal-versus-background discrimination NN

Č	
Object	Variables
Full event	$N_{ m jets}, H_{ m T}^{ m jets}, E_{ m T}^{ m miss}$
BDT $t \rightarrow lj$	Score, p_{T}^{lj} , ΔR_{lj} , $\Delta \eta_{lj}$, $\Delta \phi_{lj}$, jet index
BDT $a \rightarrow jj$	Score, p_{T}^{jj} , η_{jj} , m_{jj} , ΔR_{jj} , $\Delta \eta_{jj}$, $\Delta \phi_{jj}$, jet index
Leptons	$\Delta R_{ll}, \Delta \eta_{ll}, \Delta \phi_{ll}, \Delta \phi_{E_{ ext{T}}^{ ext{miss}},l}, \Delta R_{ll,bb}, \Delta R_{ll,B}, \Delta R_{ll,b}$
Large-R jets	$p_{\mathrm{T}}, \eta, m, \Delta R_{Bb}, \Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}}, B}$
Small-R jets	$\begin{vmatrix} p_{\mathrm{T}}^{bb}, m_{bb}, m_{bbb}, m_{bbbb}, \Delta R_{bb}, \Delta \eta_{bb}, \Delta \phi_{bb}, \Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}}, b} \\ p_{\mathrm{T}}, \eta, \mathrm{PC} \ b\text{-tag} \end{vmatrix}$

TC-LVT: "Jet-less" Flavour Tagging

TC-LVT: "Jet-less" Flavour Tagging

Seed track	Cluster tracks	Vertex
$ d_0/\sigma(d_0) > 0.5$ $p_{\rm T} > 1.5 \text{ GeV}$	$ d_0/\sigma(d_0) > 1.5$ $\Delta R_{ m seed}^{ m track} < 0.75$ $d_{ m seed}^{ m track} < 0.25 \ m mm$	$600 \mathrm{MeV} < m_{\mathrm{vtx}} < 6 \mathrm{GeV}$ $p_{\mathrm{T}}^{\mathrm{vtx}} > 3 \mathrm{GeV}$

- TC-LVT inputs: seed, cluster tracks & vertices
 - Seed tracks -> cluster of tracks built around seed tracks by adding additional highdisplacement tracks
 - For each identified cluster, <u>SSVF</u> executed on all tracks within ΔR=0.4 of vector sum of momenta of all tracks in cluster -> tracks inputs to vertex fitter to get one SV
- Stable SSV efficiency & non-negligible dependence of average number of fake SSVs per event as a function of average number of interactions per bunch crossing (µ)

FTAG-2023-02

Search for $Z(\rightarrow \ell\ell/\nu\nu)H(\rightarrow 4b/6b)$

Search for $Z(\rightarrow \ell\ell/\nu\nu)H(\rightarrow 4b/6b)$

HMBS-2024-26

- Quadruplet selection NN in 2ℓ 4b
 - Select best combination of four bobjects to reconstruct decay chain H→2a/a₁a₂→4b
 - Different encoder NNs for different b-objects
 - Fully connected encoders for b-jets,
 B-jets, & soft vertices
 - Encoded info used in pair of deep NNs, ensuring invariance under b & bb permutations
- NN built from up to 5 objects with ≤1 soft vertices
- Accuracy of associating bpartons to b-objects ranges from 60% to 98%

Quadruplets NN inputs

-				
_	Feature	ure Description		
	DeXTer-tagged B-jet			
	$p_{\mathrm{T}}(B)$	Jet transverse momentum		
	m_B	Track jet mass		
	$\eta(B)$	Jet pseudorapidity		
	$\phi(B)$	Jet azimuthal angle		
	B_l or B_t	Satisfies loose or tight DeXTer requirement		
		DL1r-tagged b-jet		
	$p_{\mathrm{T}}(b)$	Jet transverse momentum		
	m_b	Jet mass		
	$\eta(b)$	Jet pseudorapidity		
	$\phi(b)$	Jet azimuthal angle		
	PC score	The pseudo-continuous DL1R score		
		Soft secondary vertex v		
	$m_{ m v}$	Track mass of the secondary vertex		
	$p_{\mathrm{T}}(\mathrm{v})$	Secondary vertex transverse momentum		
	$\eta(v)$	Secondary vertex pseudorapidity		
	$\phi(\mathbf{v})$	Secondary vertex azimuthal angle		
	L_{3D}	Decay length relative to the PV		
	$S_{L_{3D}}$	Decay length significance		
		Z boson candidate		
	$p_{\mathrm{T}}(Z)$	Z boson candidate transverse momentum		
1	$\eta(Z)$	Z boson candidate pseudorapidity		
,	$\phi(Z)$	Z boson candidate azimuthal angle		
	$m_{\ell\ell}$	Z boson candidate mass		

0ℓ-channel observed 2ℓ-channel expected

ATLAS

 \sqrt{s} = 13 TeV, 140 fb

Search for $Z(\rightarrow \ell\ell/\nu\nu)H(\rightarrow 4b/6b)$

- Quadruplet selection NN in 2ℓ 4b
 - Select best combination of four bobjects to reconstruct decay chain H→2a/a₁a₂→4b
 - Different encoder NNs for different b-objects
 - Fully connected encoders for b-jets,
 B-jets, & soft vertices
 - Encoded info used in pair of deep NNs, ensuring invariance under b & bb permutations
- NN built from up to 5 objects with ≤1 soft vertices
- Accuracy of associating bpartons to b-objects ranges from 60% to 98%

GN2X H(bb/cc) Tagging at High Momentum

GN2X H(bb/cc) at High Momentum

ATL-PHYS-PUB-2023-021

- Inputs: up to 100 tracks associated with jet
 - Two models with extra info: either kinematic and *b*-tagging info of variable-R track jets or Unified Flow Object (UFO) constituents
- Transformer network architecture
- Jet & track inputs concatenated: combined jet-track sequence vectors fed into per-track initialiser network
- Track representations fed into Transformer
 Encoder
 - 6 encoders with 4 attention heads
- Output representation of each track
 combined to form global representation of jet

Jet Input	Description
p_{T}	Large- <i>R</i> jet transverse momentum
η Signed large- R jet pseudorapidity mass Large- R jet mass	
q/p	Track charge divided by momentum (measure of curvature)
$\mathrm{d}\eta$	Pseudorapidity of track relative to the large- R jet η
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the large- R jet ϕ
d_0	Closest distance from track to primary vertex (PV) in the transverse plane
$z_0 \sin \theta$	Closest distance from track to PV in the longitudinal plane
$\sigma(q/p)$	Uncertainty on q/p
$\sigma(\theta)$	Uncertainty on track polar angle θ
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ
$s(d_0)$	Lifetime signed transverse IP significance
$s(z_0\sin\theta)$	Lifetime signed longitudinal IP significance
nPixHits	Number of pixel hits
nSCTHits	Number of SCT hits
nIBLHits	Number of IBL hits
nBLHits	Number of B-layer hits
nIBLShared	Number of shared IBL hits
nIBLSplit	Number of split IBL hits
nPixShared	Number of shared pixel hits
nPixSplit	Number of split pixel hits
nSCTShared	Number of shared SCT hits
subjetIndex	Integer label of which subjet track is associated to (GN2X + Subjets only)
Subjet Input	Description (Used only in GN2X + Subjets)
p_{T}	Subjet transverse momentum
η	Subjet signed pseudorapidity
mass	Subjet mass
energy	Subjet energy
$\mathrm{d}\eta$	Pseudorapidity of subjet relative to the large- R jet η
$\mathrm{d}\phi$	Azimuthal angle of subjet relative to the large- R jet ϕ
GN2 p_b	b-jet probability of subjet tagged using GN2
$GN2 p_c$	c-jet probability of subjet tagged using GN2
$GN2 p_u$	light flavour jet probability of subjet tagged using GN2
Flow Input	Description (Used only in GN2X + Flow)
p_{T}	Transverse momentum of flow constituent
energy	Energy of flow constituent
$\mathrm{d}\eta$	Pseudorapidity of flow constituent relative to the large- R jet η
$\mathrm{d}\phi$	Azimuthal angle of flow constituent relative to the large- R jet ϕ

$$D_{\text{(cc)}}^{\text{GN2X}} = \ln \left(\frac{p_{\text{Hbb}}}{f_{\text{Hcc}} \cdot p_{\text{Hcc}} + f_{\text{top}} \cdot p_{\text{top}} + \left(1 - f_{\text{Hcc}} - f_{\text{top}}\right) \cdot p_{\text{QCD}}} \right)$$

τ Reco with μ-τ Removal in ττ \rightarrow μν_μν_τ had+ν_τ

τ Reco with μ-τ Removal in ττ→μν_μν_τ had+ν_τ

- Stability of performance vs. average pile-up
- An order of magnitude gain in rejection of "fake" τ

Inputs to <u>τ Identification RNN</u>

	Observable	1-prong	3-prong
inputs	$p_{\mathrm{T}}^{\mathrm{seed jet}}$ $p_{\mathrm{T}}^{\mathrm{track}}$ $\Delta \eta^{\mathrm{track}}$ $\Delta \phi^{\mathrm{track}}$	•	•
Track inputs	$N_{\text{IBL hits}}$ $N_{\text{Pixel hits}}$	•	•
Cluster inputs	$N_{ m SCT\ hits}$ $p_{ m T}^{ m jet\ seed}$ $E_{ m T}^{ m cluster}$ $\Delta \eta^{ m cluster}$ $\Delta \phi^{ m cluster}$ $\lambda_{ m cluster}$ $\langle \lambda_{ m cluster}^2 \rangle$ $\langle r_{ m cluster}^2 \rangle$	•	•
High-level inputs	$p_{\mathrm{T}}^{\mathrm{uncalibrated}}$ f_{cent}	•	•

Search for Merged $H \rightarrow aa \rightarrow \tau_{\mu} \tau_{had} \tau_{\mu} \tau_{had}$

GN2XTT for Merged Thad Thad at High Momentum

GN2XTT for Merged Thad Thad at High Momentum

HMBS-2024-34/

- Di-jet mass sidebands (SBs) used for interpolation into SR when forming reference data sample: two methods explored
- Simulation Assisted Likelihood-free Anomaly Detection (SALAD)
 - Di-jet mass conditional reweighting function trained in SBs to corrects simulation in SR
- Constructing unobserved regions by transforming adjacent intervals (<u>CURTAINs</u>)
 - Di-jet mass conditional morphing function trained in SBs to correct SBs data to look like data in SR
 - Both approaches correct for correlations between M_{JJ} & classifier features

HMBS-2024-34/

- Weakly supervised classifier trained to distinguish between data & estimated background distribution in SR
 - Following **CWoLa** paradigm, NN to approximate optimal classifier between a potential signal & background (signal-depleted template)
 - Five-fold cross validation of training: each NN not applied to data used for its training
- Cut on classifier to enhance S/B
- Fit: smoothly falling function fit to SB bins until χ^2 p-value>5% first, post-hoc non-closure corrections & 95% CLs limits from intersection of limit cures on 20 different signal models

NSBI Application:Off-Shell H→ZZ* (Γ_H)

- NN classifiers can be used to discriminate between two hypotheses
- Train a classifier to estimate a decision function s(x_i)
 separating signal from background events using
 balanced class weights -> compute r(x_i|S,B) -> scaled
 to constructed LLR
- Application to off-shell H→ZZ* accounts for S-to-B interference, introducing a non-linearity in signal strength
- Architecture: feed-forward dense network with 5 hidden layers 1000 nodes each
 - Output layer with a single node and a sigmoid activation
- Improved Γ_H results

$$s(x_i) = \frac{p(x_i|S)}{p(x_i|B) + p(x_i|S)}$$

Per-event probability density ratio

$$r(x_i|\mathbf{S},\mathbf{B}) = \frac{p(x_i|\mathbf{S})}{p(x_i|\mathbf{B})} = \frac{s(x_i)}{1 - s(x_i)}$$

$$\frac{p(x_i|\mu)}{p(x_i|\mu=0)} = \frac{1}{(\mu\nu_S + \nu_B)} \frac{\mu\nu_S p(x_i|S) + \nu_B p(x_i|B)}{p(x_i|B)}
= \frac{1}{(\mu\nu_S + \nu_B)} (\mu\nu_S r(x_i|S,B) + \nu_B),$$

