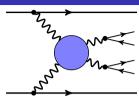
Vector-boson scattering and the Higgs boson

Mathieu PELLEN

University of Freiburg

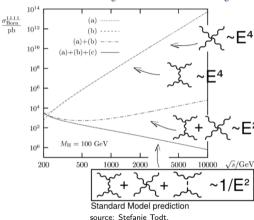
 $\begin{array}{c} \text{Higgs Hunting, Paris, France} \\ \\ 16^{\text{th}} \text{ of July 2025} \end{array}$

HIGGS HUNTING Orsay Paris M


July Orsay Paris M

Proposal for Higgs 2026:

[Source: Bing image creator]


What is VBS and why this is interesting

- Unitarisation due to Higgs boson
- (longitudinal) Polarisation measurements
- Electroweak symmetry breaking
- Measurements of SM parameters
 - → Higgs width
- Triple/quartic gauge coupling
 - \rightarrow EFT

...

https://indico.cern.ch/event/777988/contributions/3410603/

Precision physics for VBS

Assume scaling of uncertainties with 1/√L

▶ dedicated studies with detector simulation for example in CMS-PAS-SMP-14-008

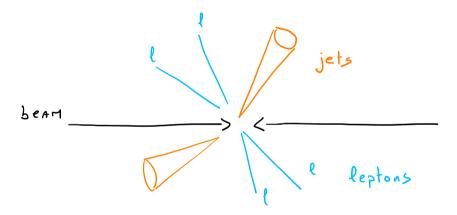
Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-
Year	2016	2019	2022	2038
EW(VBS) W±W±	20%	10%	7%	2%
EW (VBS) ZZ	35%	18%	13%	6%
EW (VBS) WZ	35% personally anticipated	18%	13%	6%

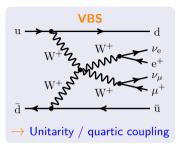
source: Jakob Salfeld-Nebgen, https://indico.cern.ch/event/711256

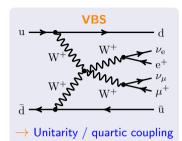
Precision physics for VBS

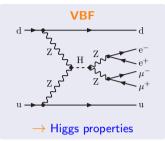
Assume scaling of uncertainties with 1/√L

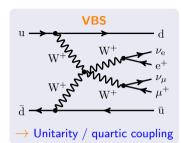
▶ dedicated studies with detector simulation for example in CMS-PAS-SMP-14-008

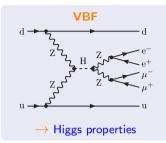

Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-
Year	2016	2019	2022	2038
EW(VBS) W±W±	20%	10%	7%	2%
EW (VBS) ZZ	35%	18%	13%	6%
EW (VBS) WZ	35% personally anticipated	18%	13%	6%

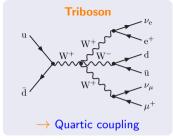

source: Jakob Salfeld-Nebgen, https://indico.cern.ch/event/711256

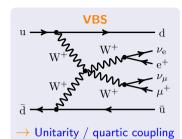

This talk

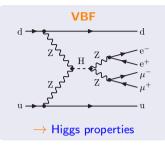

- → Mainly focused on Standard Model physics
 - How to get to per-cent uncertainties from the theory side
 - Importance of interplay between experiment and theory

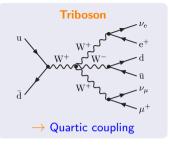

LHC collision producing VBS final state (simplified/theorist's view)

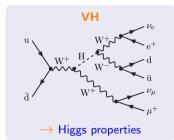


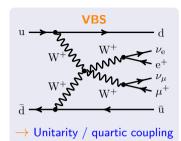


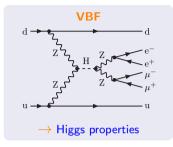


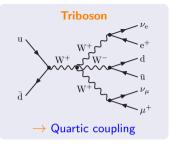


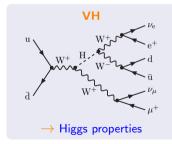


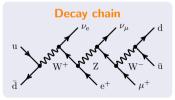


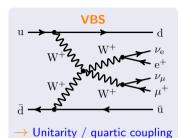


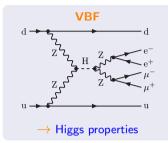


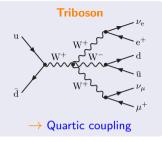


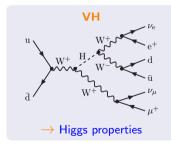


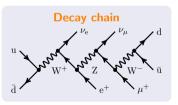


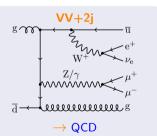


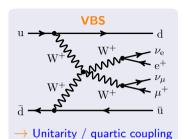


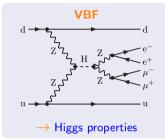


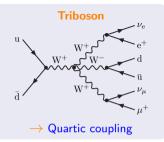


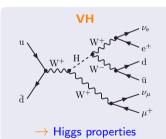


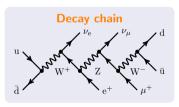


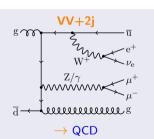


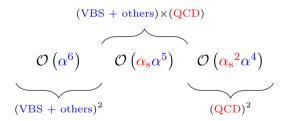




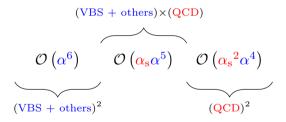




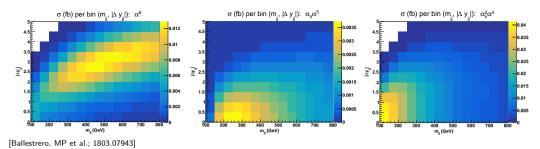




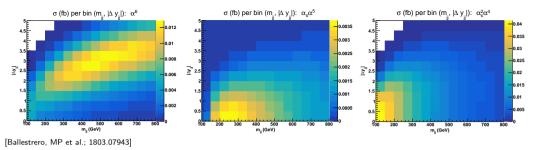
→ For all: Standard Model physics and gauge-boson polarisation


With 2 different amplitudes \rightarrow 3 different contributions:

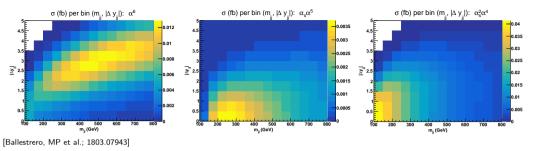
- $\mathcal{O}(\alpha^6)$: EW contribution/signal
- $\mathcal{O}(\alpha_s \alpha^5)$: interference
- $\mathcal{O}(\alpha_s^2 \alpha^4)$: QCD contribution/background



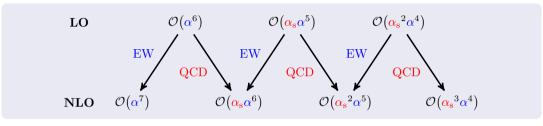
With 2 different amplitudes \rightarrow 3 different contributions:


- $\mathcal{O}(\alpha^6)$: EW contribution/signal
- $\mathcal{O}(\alpha_s \alpha^5)$: interference
- $\mathcal{O}(\alpha_s^2 \alpha^4)$: QCD contribution/background

→ How to measure the EW component (including VBS) then?


• The contributions have different kinematics

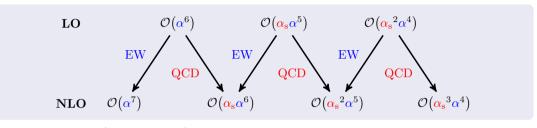
- The contributions have different kinematics
- Use of exclusive cuts to enhance the EW contribution
 - → typical kinematic: back-to-back jets at large rapidities + central gauge bosons
 - \rightarrow typical cuts are $m_{ii} > 500 \,\text{GeV}$ and $|\Delta y_{ii}| > 2.5$



- The contributions have different kinematics
- Use of exclusive cuts to enhance the EW contribution
 - → typical kinematic: back-to-back jets at large rapidities + central gauge bosons
 - \rightarrow typical cuts are $m_{ii} > 500 \,\text{GeV}$ and $|\Delta y_{ii}| > 2.5$
- → Strategy: Exclusive cuts with irreducible background (int.+QCD) subtracted

- The contributions have different kinematics
- Use of exclusive cuts to enhance the EW contribution
 - → typical kinematic: back-to-back jets at large rapidities + central gauge bosons
 - \rightarrow typical cuts are $m_{ii} > 500 \,\text{GeV}$ and $|\Delta y_{ii}| > 2.5$
- → Strategy: Exclusive cuts with irreducible background (int.+QCD) subtracted
- ∧ VBS contributions appear also in the interference
- ↑ Theory-dependent measurement

Moving on to NLO



ightarrow Order $\mathcal{O}\left(\alpha_{\rm s}\alpha^6\right)$ and $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^5\right)$: QCD and EW corrections mix

At NLO

Meaningless distinction between EW and QCD component

Moving on to NLO

ightarrow Order $\mathcal{O}\left(\alpha_{\rm s}\alpha^6\right)$ and $\mathcal{O}\left(\alpha_{\rm s}^{\ 2}\alpha^5\right)$: QCD and EW corrections mix

At NLO

Meaningless distinction between EW and QCD component

Solution: Combined measurement of all the contributions

→ clear physical interpretation

\rightarrow Example: W⁺W⁺ (golden channel)

LO

Order	$\mathcal{O}(\alpha^6)$	$\mathcal{O}\!\left(\!lpha_{s}lpha^{5} ight)$	$\mathcal{O}\!\left(\!lpha_{s}^{2}lpha^{4} ight)$
fraction [%]	86.5	2.9	10.5

\rightarrow Example: W⁺W⁺ (golden channel)

LO

$$\begin{array}{c|cccc} \text{Order} & \mathcal{O}(\alpha^6) & \mathcal{O}(\alpha_{\text{s}}\alpha^5) & \mathcal{O}(\alpha_{\text{s}}^2\alpha^4) \\ \hline \text{fraction [\%]} & 86.5 & 2.9 & 10.5 \\ \end{array}$$

NLO

Order
$$\mathcal{O}(\alpha^7)$$
 $\mathcal{O}(\alpha_s \alpha^6)$ $\mathcal{O}(\alpha_s^2 \alpha^5)$ $\mathcal{O}(\alpha_s^3 \alpha^4)$ $\delta \sigma_{\rm NLO}/\sigma_{\rm LO}$ [%] -13.2 -3.5 0.0 -0.4

[Biedermann, Denner, MP; 1708.00268]

- Large EW corrections as intrinsic feature of VBS [Biedermann, Denner, MP; 1611.02951]
- EW corrections are the dominant NLO correction

\rightarrow Example: W⁺W⁺ (golden channel)

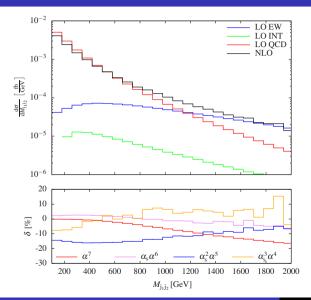
LO

$$\begin{array}{c|cccc} \text{Order} & \mathcal{O}(\alpha^6) & \mathcal{O}(\alpha_{\text{s}}\alpha^5) & \mathcal{O}(\alpha_{\text{s}}^2\alpha^4) \\ \hline \text{fraction [\%]} & 86.5 & 2.9 & 10.5 \\ \end{array}$$

NLO

Order
$$\mathcal{O}(\alpha^7)$$
 $\mathcal{O}(\alpha_s \alpha^6)$ $\mathcal{O}(\alpha_s^2 \alpha^5)$ $\mathcal{O}(\alpha_s^3 \alpha^4)$ $\delta \sigma_{\rm NLO}/\sigma_{\rm LO}[\%]$ -13.2 -3.5 0.0 -0.4

[Biedermann, Denner, MP; 1708.00268]


- Large EW corrections as intrinsic feature of VBS [Biedermann, Denner, MP; 1611.02951]
- EW corrections are the dominant NLO correction

∧ NLO (EW) corrections should be included in exp. analyses!

\rightarrow Example: ZZ for $m_{ii} > 100 \,\text{GeV}$

→ Non-trivial structure → All NLO corrections are relevant and dependent on phase-space!

[Denner, Franken, MP, Schmidt; 2107.10688]

Comparison with data

 \rightarrow ss-WW and WZ analysis of CMS with 137 fb⁻¹ [2005.01173]

Process	$\sigma~\mathcal{B}~(fb)$ CMS exp.	Theory LO (fb)	Theory NLO (fb)
EW WW	$3.98 \pm 0.37~\mathrm{stat} \pm 0.25~\mathrm{syst}$	3.93 ± 0.57	$\textbf{3.31} \pm \textbf{0.47}$
EW+QCD WW	$4.42 \pm 0.39 \; \mathrm{stat} \pm 0.25 \; \mathrm{syst}$	$\textbf{4.34} \pm \textbf{0.69}$	3.72 ± 0.59
EW WZ	$1.81 \pm 0.39 \; \mathrm{stat} \pm 0.14 \; \mathrm{syst}$	1.41 ± 0.21	$\textbf{1.24} \pm \textbf{0.18}$
EW+QCD WZ	$4.97 \pm 0.40 \; \mathrm{stat} \pm 0.23 \; \mathrm{syst}$	$\textbf{4.54} \pm \textbf{0.90}$	4.36 ± 0.88
QCD WZ	$3.15\pm0.45~\mathrm{stat}\pm0.18~\mathrm{syst}$	3.12 ± 0.70	3.12 ± 0.70

[→] LO: MADGRAPH5_AMC@NLO+PYTHIA

NB: Uncertainty for the NLO numbers are from the LO 7-scales variation.

→ Set basis of future precision measurements

[→] NLO: MADGRAPH5_AMC@NLO+PYTHIA + NLO corr. from [Biedermann, Denner, MP; 1708.00268] or [Denner, Dittmajer, Majerhöfer, MP, Schwan: 1904,00882] but only to EW signal

Physical/less sexy

- Full measurement vs. Full calculation (EW+QCD)
 - → [Meas. of leptons and jets]

Physical/less sexy

- Full measurement vs. Full calculation (EW+QCD)
 - → [Meas. of leptons and jets]
- Full measurement QCD background (MC) vs. full EW (pb of int.)
 - → [Meas. of EW production]

Physical/less sexy

- Full measurement vs. Full calculation (EW+QCD)
 - → [Meas. of leptons and jets]
- Full measurement QCD background (MC) vs. full EW (pb of int.)
 - → [Meas. of EW production]
- 3 Full measurement undesired (MC) vs. desired EW proc.
 - \rightarrow [Meas. of process X] ...
 - ... extract quantities (mass, coupling, EFT op., ...)

Physical/less sexy

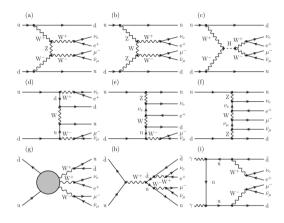
- Full measurement vs. Full calculation (EW+QCD)
 - → [Meas. of leptons and jets]
- Full measurement QCD background (MC) vs. full EW (pb of int.)
 - → [Meas. of EW production]
- 3 Full measurement undesired (MC) vs. desired EW proc.
 - \rightarrow [Meas. of process X] ...
 - ... extract quantities (mass, coupling, EFT op., ...)

→ Is it enough?

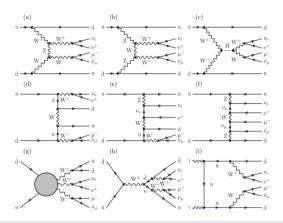
Physical/less sexy

- Full measurement vs. Full calculation (EW+QCD)
 - → [Meas. of leptons and jets]
- Full measurement QCD background (MC) vs. full EW (pb of int.)
 - → [Meas. of EW production]
- 3 Full measurement undesired (MC) vs. desired EW proc.
 - \rightarrow [Meas. of process X] ...
 - ... extract quantities (mass, coupling, EFT op., ...)

Physical/less sexy



Less physical/ more sexy


→ Is it enough?

No... kinematics can also play a crucial role

\rightarrow NLO QCD and EW for VBS W $^+$ W $^-$ [Denner, Franken, Schmidt, Schwan; 2202.10844]

→ NLO QCD and EW for VBS W⁺W⁻ [Denner, Franken, Schmidt, Schwan; 2202.10844]

- ullet Interplay between VBS W⁺W⁻ and VBF (H ightarrow W⁺W⁻)
 - → NLO EW corrections are large for VBS [Biedermann, Denner, MP; 1611.02951]
 - → NLO EW corrections are moderate for VBF [Ciccolini, Denner, Dittmaier; 0707.0381, 0710.4749]

Process	W^+W^+	$W^{+}Z$	ZZ	W^+W^-	W^+W^-
				(VBS setup)	(Higgs setup)
$\Delta \sigma_{ m NLO}^{lpha^7}[{ m fb}]$	-0.2169(3)	-0.04091(2)	-0.015573(5)	-0.307(1)	-0.103(1)
$\sigma_{ m LO}^{lpha^6}[{ m fb}]$	1.4178(2)	0.25511(1)	0.097683(2)	2.6988(3)	1.5322(2)
$\delta^{lpha^7} [\%]$	-15.3	-16.0	-15.9	-11.4	-6.7

Process	W^+W^+	$W^{+}Z$	ZZ	W^+W^-	W^+W^-
				(VBS setup)	(Higgs setup)
$\Delta \sigma_{ m NLO}^{lpha^7} [{ m fb}]$	-0.2169(3)	-0.04091(2)	-0.015573(5)	-0.307(1)	-0.103(1)
$\sigma_{ m LO}^{lpha^6}[{ m fb}]$	1.4178(2)	0.25511(1)	0.097683(2)	2.6988(3)	1.5322(2)
$\delta^{lpha^7} [\%]$	-15.3	-16.0	-15.9	-11.4	-6.7

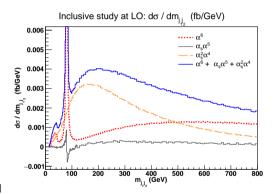
Applying unphysical cut in addition:

$$|M_{4\ell} - M_{\rm H}| \leq 20\Gamma_{\rm H}$$

- \rightarrow in the VBS setup (following [ATLAS; 1905.04242], [CMS; 2009.00119, 2205.05711]):
 - Excluding resonance: $\delta_{\rm NLO\,EW}=-13.2\%$
 - Selection only resonance: $\delta_{
 m NLO\,EW}=-6.5\%$
- → Size of corrections driven by typical scales of the process and kinematic cuts!

Process	W^+W^+	$W^{+}Z$	ZZ	W^+W^-	W^+W^-
				(VBS setup)	$({\rm Higgs\ setup})$
$\Delta \sigma_{ m NLO}^{lpha^7}[{ m fb}]$	-0.2169(3)	-0.04091(2)	-0.015573(5)	-0.307(1)	-0.103(1)
$\sigma_{ m LO}^{lpha^6}[{ m fb}]$	1.4178(2)	0.25511(1)	0.097683(2)	2.6988(3)	1.5322(2)
$\delta^{lpha^7} [\%]$	-15.3	-16.0	-15.9	-11.4	-6.7

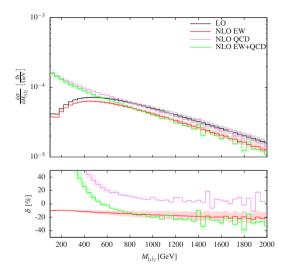
Applying unphysical cut in addition:

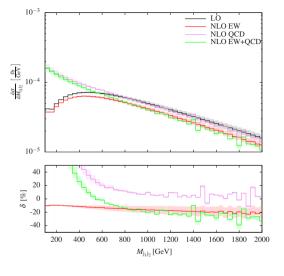

$$|M_{4\ell} - M_{\rm H}| \leq 20\Gamma_{\rm H}$$

- \rightarrow in the VBS setup (following [ATLAS; 1905.04242], [CMS; 2009.00119, 2205.05711]):
 - Excluding resonance: $\delta_{\rm NLO\,EW}=-13.2\%$
 - Selection only resonance: $\delta_{
 m NLO\,EW}=-6.5\%$
- → Size of corrections driven by typical scales of the process and kinematic cuts!

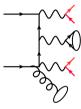
NB: Same effect for ZZ but mass-windows on Z prevent Higgs resonance

- Typically cuts $m_{ij} > 500 \,\text{GeV}$
 - → Relaxed for rarest processes
 - $ightarrow m_{
 m jj} > 100\,{
 m GeV}$ (ZZ analysis of [CMS; 1708.02812])


- Typically cuts $m_{\rm jj} > 500 \, {\rm GeV}$
 - → Relaxed for rarest processes
 - $ightarrow m_{
 m ij} > 100\,{
 m GeV}$ (ZZ analysis of [CMS; 1708.02812])


[Ballestrero, MP et al.; 1803.07943]

 $\underline{\wedge} \ \mathsf{EW} \ \mathsf{component} \ \mathsf{possesses} \ \mathsf{VBS} + \mathsf{tri-boson} + \mathsf{other} \ \mathsf{contributions}$


→ Naively, 100 GeV cut should do the job. Is it really the case?

[Denner, Franken, MP, Schmidt; 2009.00411]

→ Example: ZZ VBS at NLO

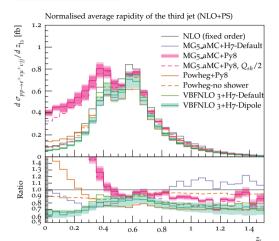
 \rightarrow Effects of tri-boson (at NLO) even when using $m_{\rm ii} > 100 \, {\rm GeV}$

[Denner, Franken, MP, Schmidt; 2009.00411]

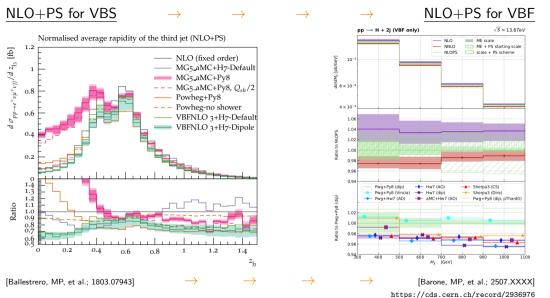
→ How to ensure that all effects are under control?

→ How to ensure that all effects are under control?

Solution:


- Different definition of the process
 - → With and without QCD component
- Different phase spaces
 - → Sensitive to different effects
- Example:
 - \rightarrow CMS ZZ measurement with 137 fb⁻¹

[2008.07013]


- → Disentangles all physical effects
- → Great for exp./th. comparisons

Particle type	Selection			
	ZZjj inclusive			
Leptons	$p_{\rm T}(\ell_1) > 20 {\rm GeV}$ $p_{\rm T}(\ell_2) > 10 {\rm GeV}$ $p_{\rm T}(\ell) > 5 {\rm GeV}$ $ p(\ell) < 2.5$			
Z and ZZ	$60 < m(\ell\ell) < 120 \text{GeV}$ $m(4\ell) > 180 \text{GeV}$			
Jets	at least 2 $p_{\rm T}({\rm j}) > 30{\rm GeV}$ $ \eta({\rm j}) < 4.7$ $m_{\rm jj} > 100{\rm GeV}$ $\Delta R(\ell,{\rm j}) > 0.4$ for each $\ell,{\rm j}$			
VBS-enriched (loose)				
Jets	ZZjj inclusive + $ \Delta \eta_{\rm jj} > 2.4$ $m_{\rm jj} > 400{ m GeV}$			
VBS-enriched (tight)				
Jets	ZZjj inclusive + $ \Delta \eta_{\rm jj} > 2.4$ $m_{ m jj} > 1{ m TeV}$			

NLO+PS for VBS

[Ballestrero, MP, et al.; 1803.07943]

In between:

[Jäger, Karlberg, Plätzer, Scheller, Zaro; 2003.12435], [Buckley et al.; 2105.11399], [Höche, Mrenna, Payne, Preuss, Skands; 2106.10987]

→ Theory status for ss-WW: (more in Review [Covarelli, MP, Zaro; 2102.10991])

Order	$\mathcal{O}\left(\alpha^{7}\right)$	$\mathcal{O}\left(\alpha_{\mathrm{s}}\alpha^{6}\right)$	$\mathcal{O}\left(\frac{\alpha_s^2\alpha^5}{\alpha}\right)$	$\mathcal{O}\left(\frac{\alpha_{s}^{3}\alpha^{4}}{\alpha}\right)$
NLO	√	√	√	√
NLO+PS	√	√ *	X	√

- $\mathcal{O}\left(\alpha^7\right)$ [Biedermann, Denner, MP; 1611.02951, 1708.00268] \rightarrow +PS; [Chiesa, Denner, Lang, MP; 1906.01863]
- $\mathcal{O}\left(\alpha_s\alpha^6\right)$ [Biedermann, Denner, MP; 1708.00268], [Jäger, Oleari, Zeppenfeld; 0907.0580],* [Denner, Hošeková, Kallweit; 1209.2389]* \rightarrow +PS: [Jäger, Zanderighi; 1108.0864]*. Also, +1j: [Jäger, Lopez Portillo Chavez; 2408.12314]*
- $\mathcal{O}\left(\alpha_s^2\alpha^5\right)$ [Biedermann, Denner, MP; 1708.00268]
- $\mathcal{O}\left(\alpha_{s}^{3}\alpha^{4}\right)$ [Biedermann, Denner, MP; 1708.00268], [Melia et al.; 1007.5313, 1104.2327], [Campanario et al.; 1311.6738] \rightarrow +PS: [Melia et al.: 1102.4846]. [Melia et al.: 1102.4846]

^(*) Computations in the VBS-approximation i.e. t-u interferences and tri-boson contributions neglected

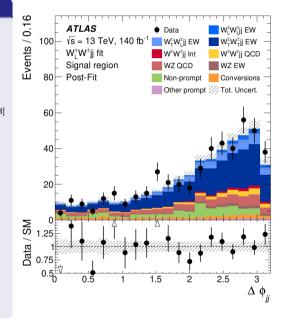
→ Theory status for ss-WW: (more in Review [Covarelli, MP, Zaro; 2102.10991])

Order	$\mathcal{O}\left(\alpha^{7}\right)$	$\mathcal{O}\left(\frac{\alpha_{\mathrm{s}}\alpha^{6}}{\alpha^{6}}\right)$	$\mathcal{O}\left(\alpha_{\rm s}^2\alpha^5\right)$	$\mathcal{O}\left(\alpha_{s}^{3}\alpha^{4}\right)$
NLO	√	√	√	√
NLO+PS	√	√ *	X	√

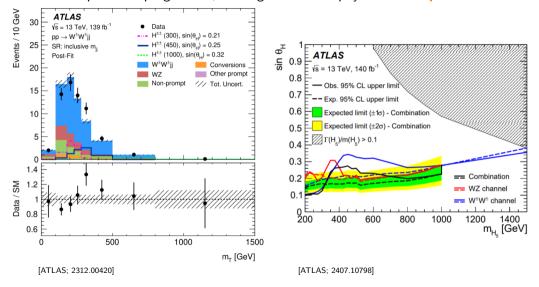
- $\mathcal{O}\left(\alpha^7\right)$ [Biedermann, Denner, MP; 1611.02951, 1708.00268] \rightarrow +P5: [Chiesa, Denner, Lang, MP; 1906.01863]
- O (α_sα⁶) [Biedermann, Denner, MP; 1708.00268], [Jäger, Oleari, Zeppenfeld; 0907.0580],* [Denner, Hošeková, Kallweit; 1209.2389]*
 → +PS: [Jäger, Zanderighi; 1108.0864]*. Also, +1j: [Jäger, Lopez Portillo Chavez; 2408.12314]*
- $\mathcal{O}\left(\alpha_s^2\alpha^5\right)$ [Biedermann, Denner, MP; 1708.00268]
- $\mathcal{O}\left(\alpha_{s}^{3}\alpha^{4}\right)$ [Biedermann, Denner, MP; 1708.00268], [Melia et al.; 1007.5313, 1104.2327], [Campanario et al.; 1311.6738] \rightarrow +PS: [Melia et al.: 1102.4846]. [Melia et al.: 1102.4846]
- (*) Computations in the VBS-approximation *i.e.* t-u interferences and tri-boson contributions neglected
 - Experimental uncertainty ~ few per cent at high-luminosity LHC
 - → We should tick all the boxes by then!
 - → Effect of non-perturbative physics

[Jäger, Karlberg, Scheller; 1812.05118], [Bittrich, Kirchgaeßer, Papaefstathiou, Plätzer, Todt; 2110.01623]

→ NNLO QCD might even be needed...

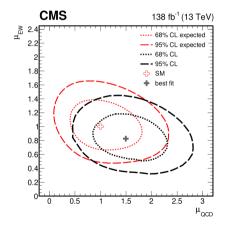

Polarisation studies

Experiment:

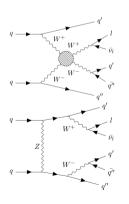

- → Measurements in ss-WW
 - O [CMS; 2009.09429]
 - [ATLAS; 2503.11317]
 - → Compared to [Hoppe, Schönherr, Siegert; 2310.14803]
 - + [Denner, Haitz, Pelliccioli; 2409.03620]

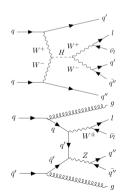
Theory:

- [Denner, Haitz, Pelliccioli; 2409.03620]
 - → NLO QCD+EW for ss-WW
- [Hoppe, Schönherr, Siegert; 2310.14803]
 - ightarrow Approximate NLO QCD+PS in SHERPA
- [Carrivale et al.; 2505.09686] (for diboson)
 - \rightarrow Benchmarking exercise + description of tools + references


→ With this precision programme, we might find new physics! Example of H⁺⁺

Semi-leptonic channels → challenging on both sides


Experiment:


- O [CMS; 2112.05259]
 - $\rightarrow \ell \nu$ 4j channel

Theory:

- O [Denner, Lombardi, Schwan; 2406.12301]
 - → LO with pole approximation

- Many production mechanisms for one signature
 - \rightarrow Make interpretation difficult

- Many production mechanisms for one signature
 - → Make interpretation difficult
- Due to experimental precision, theory predictions should be even better
 - → Make interpretation even more complicated

- Many production mechanisms for one signature
 - → Make interpretation difficult
- Due to experimental precision, theory predictions should be even better
 - → Make interpretation even more complicated
- Challenges at High Luminosity:
 - Better measurements
 - Better theory predictions
 - More complex interpretation

"High-luminosity LHC vicious circle"

[source: bing image creator]

- Many production mechanisms for one signature
 - → Make interpretation difficult
- Due to experimental precision, theory predictions should be even better
 - → Make interpretation even more complicated
- Challenges at High Luminosity:
 - Better measurements
 - Better theory predictions
 - More complex interpretation

One way out:

Different meas. in different fiducial regions!

→ Some steps in this direction, STXS for multiboson [Andersen, MP et al.; 2406.00708]

"High-luminosity LHC vicious circle"

[source: bing image creator]

Outlook

Exciting physics at the LHC!

 \rightarrow VBS is just one example

- → Explore fundamental aspect of particle physics
- → Precision and new ideas more than ever needed
- → Crosstalk between exp. and th. is even more needed!

Outlook

Exciting physics at the LHC!

 \rightarrow VBS is just one example

- → Explore fundamental aspect of particle physics
- → Precision and new ideas more than ever needed
- → Crosstalk between exp. and th. is even more needed!

Continue to explore even deeper the infinitesimally small!

Outlook

Exciting physics at the LHC!

 \rightarrow VBS is just one example

- → Explore fundamental aspect of particle physics
- → Precision and new ideas more than ever needed
- → Crosstalk between exp. and th. is even more needed!

Continue to explore even deeper the infinitesimally small!

Thank you to

Claude Charlot and Joany Manjarres for their experimental inputs!

Back-up slides

BACK-UP