Search for Higgs boson decays to pseudoscalar resonances in the $\gamma\gamma\tau_{had}\tau_{had}$ final state

Based on JHEP 03 (2025) 190

Gadi Ninio

On behalf of the **ATLAS** collaboration

Higgs Hunting 2025
Paris, France | 16 July 2025

Introduction

First ATLAS analysis looking for exotic Higgs decays in the $\gamma\gamma\tau_{had}\tau_{had}$ final state:

- Benefits strongly from previous $\gamma\gamma$ low mass search (2211.04172)
- Novel boosted tau pairs tagger improves low mass sensitivity (2411.09357)

Motivation:

- The diphoton channel: excellent mass resolution but low S/B
- Requiring an additional ditau reduces significantly the background
- Benefits from larger branching ratio due to the taus

Strategy:

- Describe signal and background diphoton shapes with analytical functions
- Search for event excesses over the $m_{\gamma\gamma}$ spectrum
- In the absence of signal, set limits on $\mathscr{B}\left(H\to aa\to\gamma\gamma\tau\tau\right)$

Detour: boosted ditau object

Boosted tau pairs fail the standard tau reconstruction — a dedicated tagger is used to improve the low-mass reach:

- Reconstruction: R=1.0 anti-kt jet (large-R jet) with $p_T > 50$ GeV, composed of at least two R=0.2 jets (subjets), each containing either one or three tracks
- **Identification**: BDT-based classifier is used to improve rejection against QCD jets, using $t\bar{t}X$ events as signal and all-hadronic $t\bar{t}$ events as background
- **Validation**: T&P analysis using boosted ditau objects from SM process $Z+\gamma$ with $Z\to \tau_{had}\tau_{had}$, to measure ditau **scale factors**, data-to-MC corrections:

	BDT selection	Scale factor
Medium ID	> 0.35	$1.00\pm35\%~{ m (stat)}\pm13\%~{ m (syst)}$
Tight ID	> 0.5	$1.01\pm24\%~(exttt{stat})\pm12\%~(exttt{syst})$

Selections

Triggers: lowest unprescaled diphoton triggers $p_T^{\gamma} > 20-22$ GeV

Photon selections:

Selection	Requirement		
Preselection	2 loose photons		
Kinematics	$ E_T^{\gamma} > 22 \text{ GeV}, \eta^{\gamma} < 2.37$		
Identification	Tight ID		
Isolation	Loose ISO ($\Delta R_{iso} = 0.2$)		

Ditau selections:

Selection	Boosted ditau object	Resolved tau	
Preselection	1 boosted ditau	2 tau candidates	
Kinematics	$p_T^{LRJ} > 50 \text{ GeV}, 2 \text{ subjets},$ 1 3 tracks per subjet	$p_T^{\tau} > 20 \text{ GeV}, \eta^{\tau} < 2.5, $ $1 3 \text{ tracks} $	
Chargeness	OS	OS	
Identification	Medium ID (BDT > 0.35)	LooseRNN ID	

Event selections:

- 2 photons and either 1 boosted ditau or 2 resolved taus
- To ensure orthogonality with the lep-had channel, electrons and muon are vetoed in the analysis

Ditau topology (resolved vs. boosted) varies significantly with the mass of the resonance:

Signal modeling

- **Signal samples** are generated in ggF using Powheg for the a-boson masses between 10 and 60 GeV in 5 GeV steps
- Signal shape obtained from simulated samples
 - Parametrization obtained using a Double-sided Crystal Ball (DSCB)
 - Parameters interpolated with linear trends

• Acceptance x efficiency decreases towards higher masses because of the boosted topology required on diphoton

Background processes

Final state affected by non-resonant background from:

Irreducible: real photon and tau pairs in final state

- $\gamma\gamma Z(\tau\tau)$: non-resonant $\gamma\gamma$ with an additional Z decaying to a tau pair
- Non-resonant γγττ: negligible contribution

Negligible contributions due to small cross sections!

Reducible

Fake ditau (jets misidentified as tau pairs):

- $\chi \chi$: $\gamma \gamma$ +jets from prompt photons (shape from MC)
- χj : γ +jet events, where one jet is misidentified as a photon (data-driven)
- jj: dijet events, where both jets are misidentified as photons (data-driven)

Real ditau:

- $Z(\tau\tau)$ +jets: Z decaying to a tau pair and jets misidentified as photons
 - Negligible contribution after full selection

Background processes

Final state affected by non-resonant background from:

Given that ditau candidates are almost exclusively fakes, the irreducible and reducible sources depend solely on the performance of photon identification.

Re-categorization:

Irreducible source: γγ component

• Reducible source: $\gamma j + jj$ components

Non-

addi

cont

Negligit cross s

Strategy:

- Estimate the fraction of the $\gamma\gamma$ component ($\gamma\gamma$ purity)
- Build the full background template (reducible + irreducible)
- Fit to analytical function

Negligible contribution after full selection

airs):

m MC)

d as a

ified as

Background decomposition

- Standard background estimation strategy with two photons in the final state: 2x2D method using photon ID and ISO variables for each photon
- Assuming that diphoton purity is agnostic whether there is a true/fake ditau, inverted ditau selections (BDT < -0.2) are used
- Integrated observed purity ($\gamma\gamma$ fraction of data):

$$P_{\gamma\gamma}^{2x2D} = 0.61 \pm 0.01$$
 (stat.) ± 0.04 (syst.)

• In line with previous diphoton analysis covering the same invariant mass range (~64%)

Fitting function

• The full background template is composed of the irreducible component from MC and the reducible component from data: $f_B = P_{\gamma\gamma}^{2x2D} \ f_{irreducible} + (1 - P_{\gamma\gamma}^{2x2D}) \ f_{reducible}$

• The background template is modeled with a Fermi-Dirac (sigmoid function) and an exponent:

$$f_{FD-Exp}(m_{\gamma\gamma}; \vec{\theta}) \propto \frac{1}{1 + e^{-\left(m_{\gamma\gamma} - \delta_{FD}\right)/\tau_{FD}}} \times \frac{e^{-\lambda_{Exp} m_{\gamma\gamma}}}{\text{Describes the emoctal second of the second of the second of the emoctal second of the emocial second$$

Describes the turn-on

Describes the smoothly continuous region

Fitting range: [6,68] GeV, search range: [10,60] GeV

Systematic uncertainties

- Analysis sensitivity is largely statistically limited
- Largest systematic comes from the boosted ditau reconstruction at low masses
 - Will be improved in future analysis
- Theory uncertainties (PDF and QCD scale related) are largest contribution at high masses

Source	Uncertainty		
$\operatorname{In}\mathcal{B}(H\to aa\to\gamma\gamma\tau\tau$) [%]		
	$m_a = 10 \text{ GeV}$	$m_a = 50 \text{ GeV}$	
Boosted di-τ object	63	0.8	
Theory	9.9	27	
Pile-up reweighting	4	4.5	
Resolved τ reconstruction, identification and energy scale	0.3	4.0	
Photon energy resolution	3.0		
Photon identification efficiency	2	2.9	
Signal shape modelling	2	2.5	
Photon isolation efficiency	2	2.4	
Photon trigger efficiency	1	.1	
Photon energy scale	<	1.0	
Luminosity	C	0.8	
Trigger on closely spaced photons	0.8	< 0.1	
In background modell	ing		
Spurious signal	$< 0.08 \sigma_{\mathrm{stat}}$	$< 0.01 \sigma_{ m stat}$	
Spurious signar	0.16 events	0.06 events	

Results

Unbinned background-only fit performed

• Fit range: [6, 68] GeV, 129 events

No deviations with respect to background-only hypothesis

- Search range: [10,60] GeV (at least 5σ from the fit edges)
- Largest deviations observed at 39 and 48 GeV, corresponding to a ~2σ local significance

Upper limits computed on the branching ratio $\mathcal{B}(H \to aa \to \gamma\gamma\tau\tau)$

Observed upper limits range from 0.2% to 2%

Summary

Search for Higgs boson decays to pseudoscalar resonances in the $\gamma\gamma\tau_{had}\tau_{had}$ final state

- Relies on the excellent resolution of boosted diphotons and novel low- p_T boosted ditau reconstruction techniques
- No significant deviations w.r.t SM backgrounds Upper limit at 95% CL on $\mathscr{B}\left(H\to aa\to\gamma\gamma\tau\tau\right)$ observed around 0.7% for masses between 10 and 60 GeV
- Result in the bulk of other exotic decay upper limits
- Sensitivity limited by statistics
- Largest systematic uncertainty from boosted ditau tagger for masses below 25 GeV

Thank you!

Backup

Analysis strategy

Complicated reconstruction of complete final state:

- ullet Ditau mass resolution worsened due to E_T^{miss}
- Search for diphoton resonances with a reconstructed tau pair

Main factors limiting the lowest attainable mass:

- Diphoton trigger thresholds at ~20 GeV
- Isolation cone ($\Delta R_{\gamma\gamma} = 0.2$)

$$m_{\gamma\gamma} \approx \Delta R_{\gamma\gamma} \sqrt{p_T^{\gamma_1} p_T^{\gamma_2}}$$

Boosted diphoton selection: smoothens out diphoton background shape

• Diphoton system required to have large transverse momentum $p_T^{\gamma\gamma}$ (almost natural since recoils against a ditau)

Procedure:

- Describe signal and background diphoton shapes with analytical functions
- Search for event excesses over the $m_{\gamma\gamma}$ spectrum
- In the absence of signal, set limits on $\mathscr{B}\left(H\to aa\to\gamma\gamma\tau\tau\right)$

Triggers

Lowest unprescaled diphoton triggers are chosen to attain the lowest invariant mass possible.

Diphoton triggers have evolved during Run2 to cope with increasing luminosity and rates.

• From 2017, isolation at trigger level is applied on both photon candidates

Year	2015	2016 up to D3	2016 from D3	2017 & 2018
L1 item	L1_2EM10VH	L1_2EM15VH	L1_2EM15VH	L1_2EM15VHI
HLT item	$2g20_tight$	$2g20_tight$	$2g22_tight$	$2g20_tight_icalovloose$
$\underline{\text{luminosity } [fb^{-1}]}$	3.2	33	.4	44.0+58.8

Events recorded with prescaled triggers used for background shape estimation.

- Very limited statistics due to large prescalings on the L1 item
- Only loose identification required

Year	2015	2016	2017	2018
HLT item	2g20_loose	2g20_loose	2g20_loose	2g20_loose
$\overline{\text{luminosity } [fb^{-1}]}$	0.32	3.30	1.56	1.08

Object selections

Ditau topology (resolved vs. boosted) varies significantly with the mass of the resonance:

Ditau selections:

	Selection	Boosted ditau	Resolved ditau
	Preselection	1 boosted ditau with 2 subjets	2 tau candidates
l I	Kinematics	1 3 tracks per subjet	$p_T > 20 \text{ GeV}, \eta < 2.5, 1 3 \text{ tracks} $
•	Chargeness	OS	OS
	Identification	BDT > 0.35	LooseRNN ID

Photon selections:

Selection	Requirement	
Preselection	2 loose photons, with $ \eta^{\gamma} < 2.37$	
Trigger	Any unprescaled diphoton trigger	
Identification	Tight ID	
Isolation	FixedCutLoose ($\Delta R_{iso} = 0.2$)	
Additional	$p_T^{\gamma\gamma} > 50 \text{ GeV}$	

To ensure orthogonality with the lep-had channel, electrons and muon are vetoed in the analysis.

Object overlap removal:

- Select photon if $\Delta R \left(\gamma, \tau \tau \right) < 0.5$
- Select resolved ditau if ΔR (boosted $\tau\tau$, resolved $\tau\tau$) < 1.0 due to much larger systematics from the boosted tagger

Event selections

In the **signal region**, largest decrease in efficiency comes from ditau reconstruction (down to less than 0.1%).

Control regions can be built by varying either the photonID or the ditau BDT/tauID and chargeness $(Q = q_1 \times q_2)$:

Photon selections-based regions

	water the time to the same the same	in Aller de la companya de la compan	Simplified the State of the Sta	who have in a house the state him a single house
3	Object / Selection	Preselection	CR	SR
9	γ $E_T > 22 \; \mathrm{GeV}$		Loose'X-not-tight ID	Tight ID
Y	ET > 22 GeV	(X=4 for nominal)	Loose Iso	
	2/2/	$\gamma\gamma$ $p_T^{\gamma\gamma} > 50 \text{ GeV}$	Loose prescaled diphoton triggers	Standard diphoton triggers
	у у		Loose prescaled diphoton triggers	Trigger matched

Object / Selection	Preselection	CR	VR	SR
	$p_T^{\tau} > 20 \text{ GeV}$			Q = -1
Resolved $\tau\tau$	$ \eta^{ au} < 2.5$	$Q eq -1 \mid\mid ! exttt{LooseID}_{ au_1} \mid\mid ! exttt{LooseID}_{ au_2}$		$\texttt{LooseID}_{\tau_1}$
	1 3 prong			$\texttt{LooseID}_{\tau_2}$
Boosted $ au au$	$N_{subjets} \geq 2$	$Q \neq -1$	$Q \neq -1$	Q = -1
Doosted 11	1 3 prong per subjet	-0.5 < BDT < -0.3	-0.3 < BDT < -0.2	BDT > 0.35
au au		1 boosted 1 resolved $\tau\tau$	1 boosted $\tau\tau$	1 boosted 1 resolved $\tau\tau$

Ditau selections-based regions

Any combination of photon and ditau selections results in a new data-driven CR (as long as the signal leakage is small), particularly: LPX $\gamma\gamma$ +CR $\tau\tau$ (X=2,3,4,5), SR $\gamma\gamma$ +CR $\tau\tau$, SR $\gamma\gamma$ +VR $\tau\tau$.

Signal modeling

Signal shape obtained from simulated samples

- Signal parametrization obtained using a Double-sided Crystal Ball (DSCB)
- Width dominated by detector resolution

DSCB parameters interpolated with linear trends for complete signal model for masses between 10 and 60 GeV.

19

Signal selection efficiency

• Limit for $\mathcal{B}(H \to aa \to \gamma\gamma\tau\tau)$ requires the total signal selection efficiency (acceptance x efficiency) ε_a :

$$\sigma_{gg \to H} \cdot \mathcal{B}(H \to aa \to \gamma \gamma \tau \tau) = \frac{N_{sig}^{reco}}{\varepsilon_a \cdot \mathcal{L}_{int}},$$

$$\varepsilon_a \equiv \frac{N_{selected}}{N_{total}} = \varepsilon_{filters} \times \frac{N_{selected}}{N_{generated}}$$

- Total signal efficiency using signal MC samples, accounting for the filter efficiencies as well
- Values span from ~0.01% to ~0.02%
- Efficiency decreases towards higher masses because of the boosted topology required on diphoton
- Shape related to interplay between resolved and boosted regimes of the ditau reconstruction

Background decomposition

Standard background estimation strategy with two photons in the final state: 2x2D method (two-dimensional ABCD) using photon ID and ISO variables for each photon

- Assuming that diphoton purity is agnostic whether there is a true/fake ditau, inverted ditau selections are used
- Inverted ditau selections: BDT < -0.2 and $Q \neq -1$ for boosted ditau; one of the taus fail the LooseRNN ID or $Q \neq -1$ for resolved ditau ($Q = q_{\tau_1} \times q_{\tau_2}$)

Prescaled diphoton triggers are used (no ID nor isolation selections at trigger level)

Large binning (10–12 GeV) to avoid unblinding

Total observed purity ($\gamma\gamma$ fraction of data):

$$P_{\gamma\gamma}^{2x2D} = 0.61 \pm 0.01$$
 (stat.) ± 0.04 (syst.)

In line with previous diphoton analysis covering the same invariant mass range (~64%)

Background template sources

The full background shape is modeled by fitting an analytical function to a template composed by both reducible and irreducible sources:

- Irreducible ($\gamma\gamma$): SR photons from prompt diphoton production MC Standard triggers, tight ID and loose ISO photons
- Reducible ($\gamma j + j j$): CR photons from data Loose prescaled triggers, loose ID photons

Combine both components using the integrated diphoton purity obtained with the 2x2D method:

$$f_B = P_{\gamma\gamma}^{2x2D} f_{irreducible} + (1 - P_{\gamma\gamma}^{2x2D}) f_{reducible}$$

- The degree of ditau identification is uncorrelated with the quality of the photon pair selection
 - → CR ditau selections are used due to stat

Background fit bias (spurious signal)

A bad description of the background shape can potentially absorb/induce signals.

- Estimated from S+B fits to background-only templates: S different than zero is the fit bias
- The fit bias is estimated for all the background template variations
- Eventually, the corresponding systematic uncertainty is obtained from the envelope of the observed spurious signal computed in the aforementioned background template variations
- Another criteria to choose the background function, on top of the flexibility of the function and the quality of the obtained fits

