

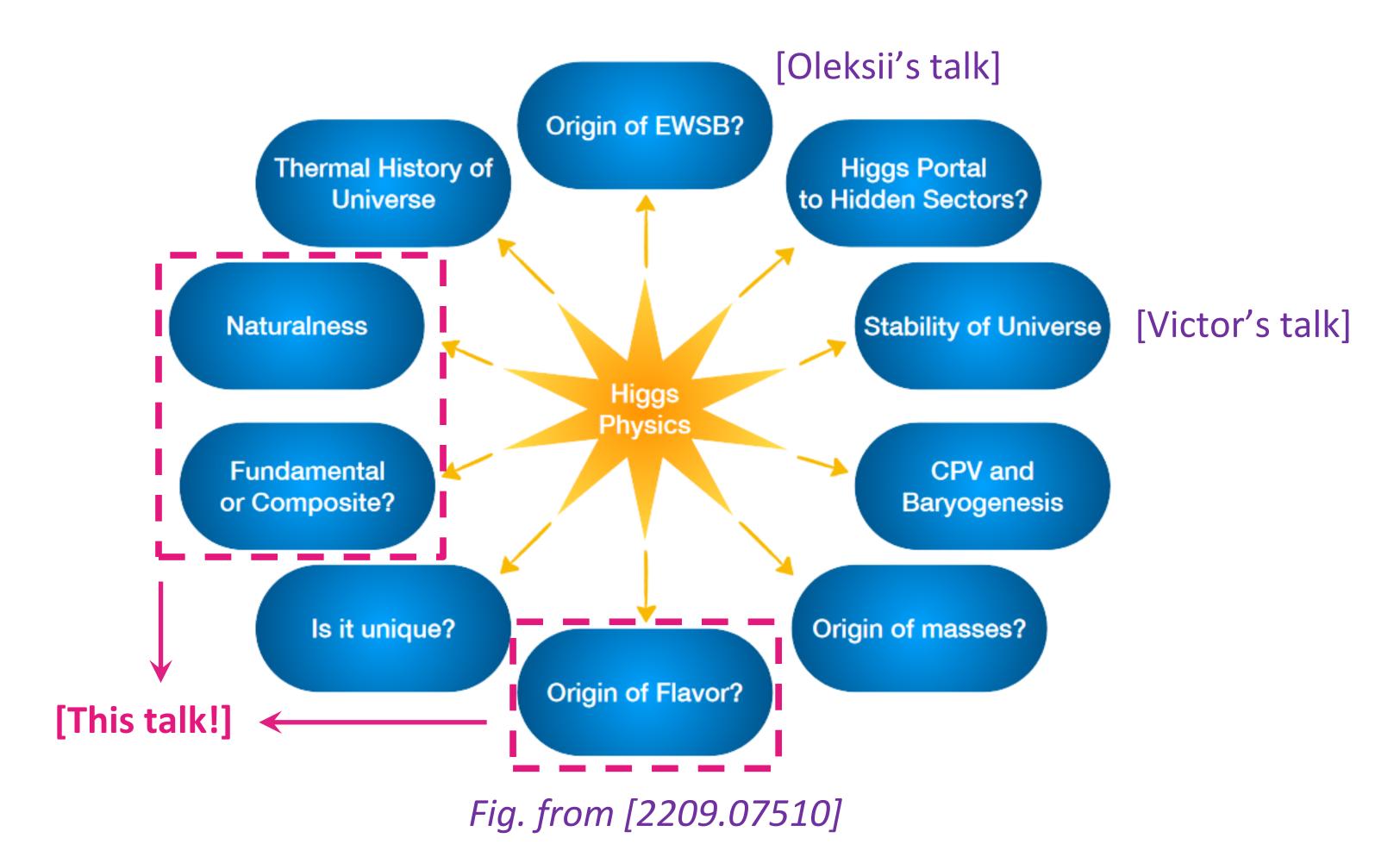
Flavour Deconstructing the Composite Higgs*

16.07.2025, Orsay & Paris

Marko Pesut
University of Zürich

Motivation

- Higgs is « new » physics! -> First (seemingly) elementary scalar in the SM
- The Higgs is at the *heart* of many SM mysteries: flavour, vacuum stability, naturalness,...



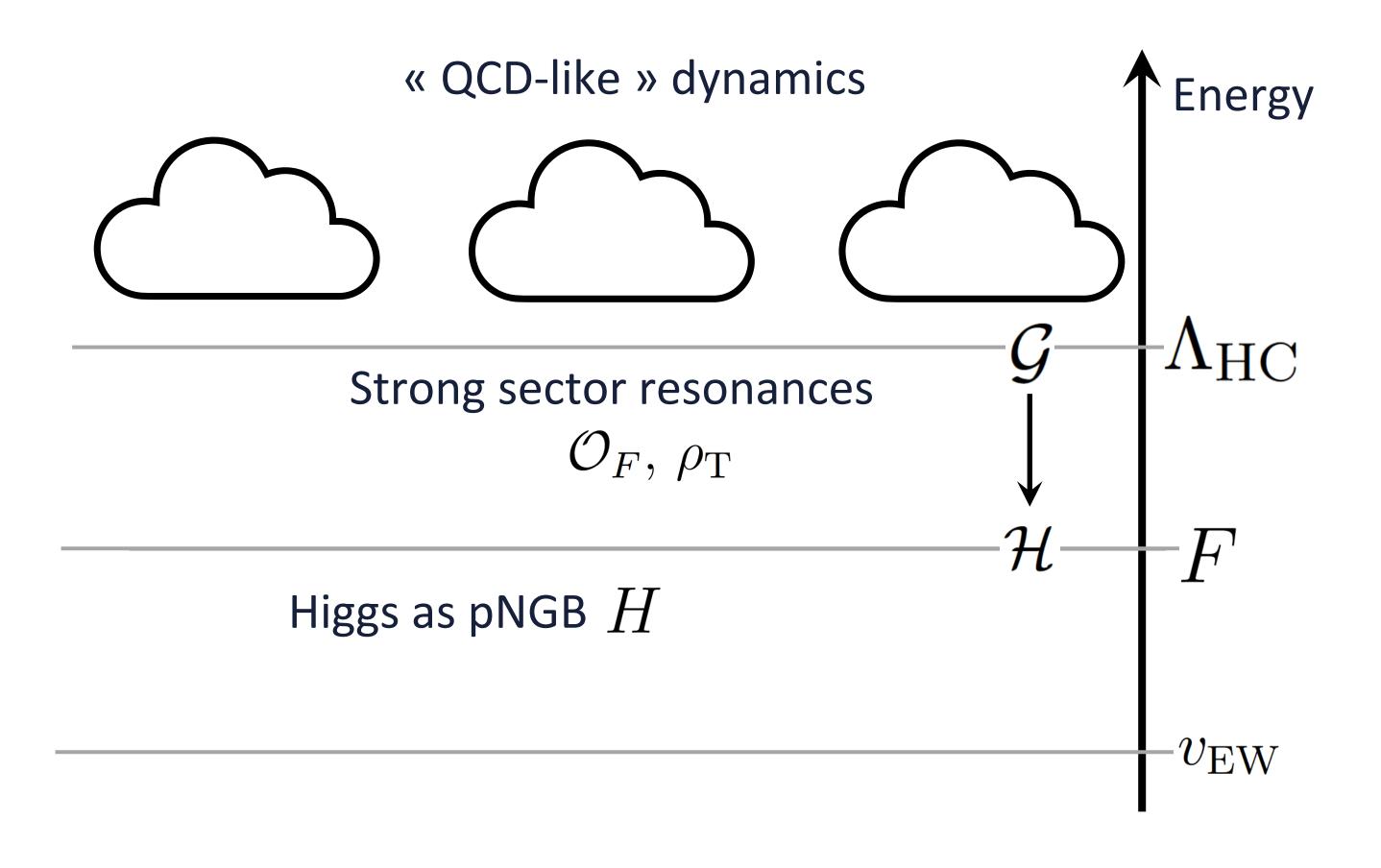
The Hierarchy Problem

Any heavy NP will destabilize the Higgs mass

$$m_H^2 \sim \Lambda_{
m NP}^2$$
 vs $m_H = 125 \, {
m GeV}$

Protection mechanism (e.g. SUSY, Composite Higgs) as low scale as possible

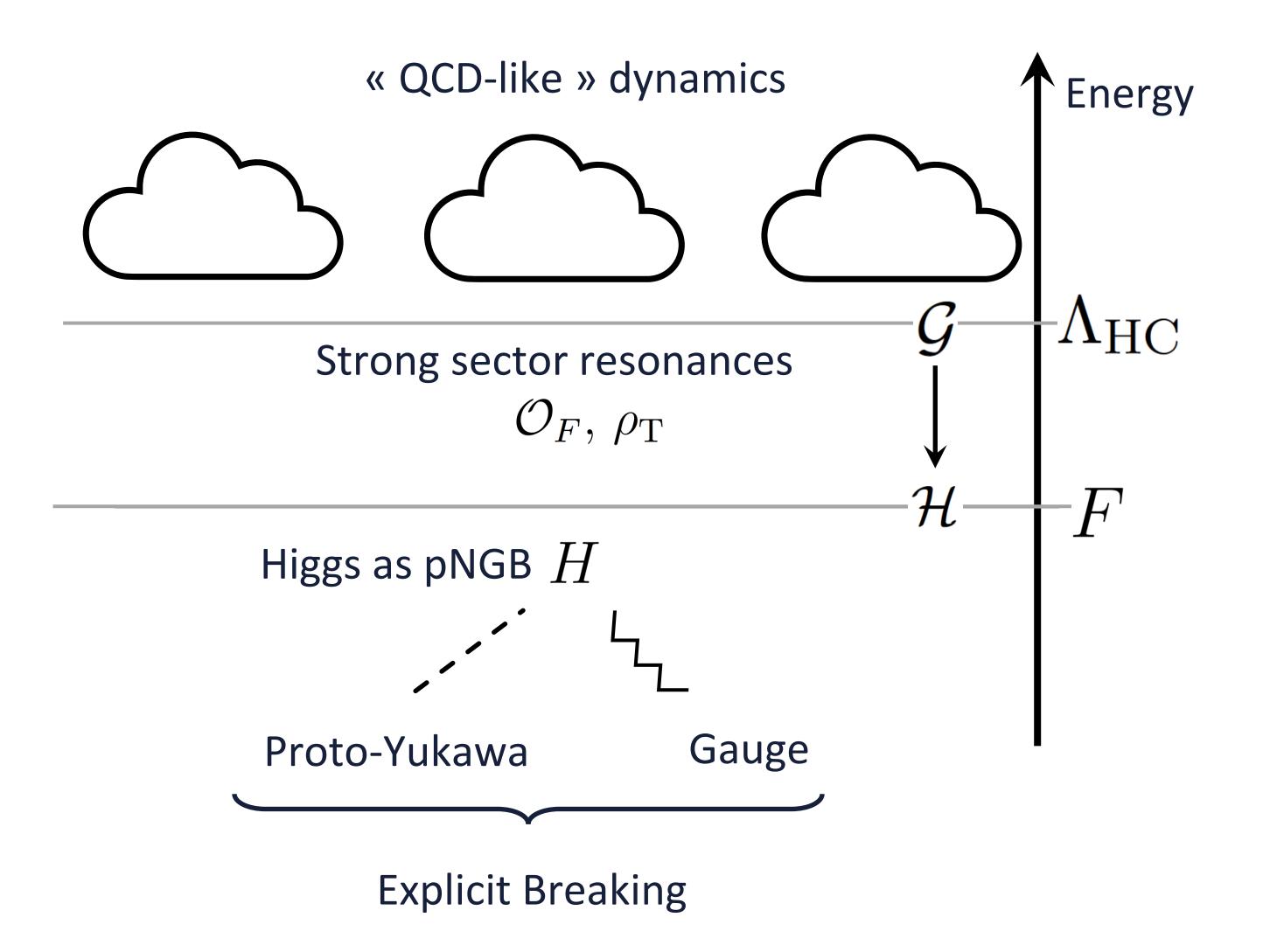
Higgs Compositeness



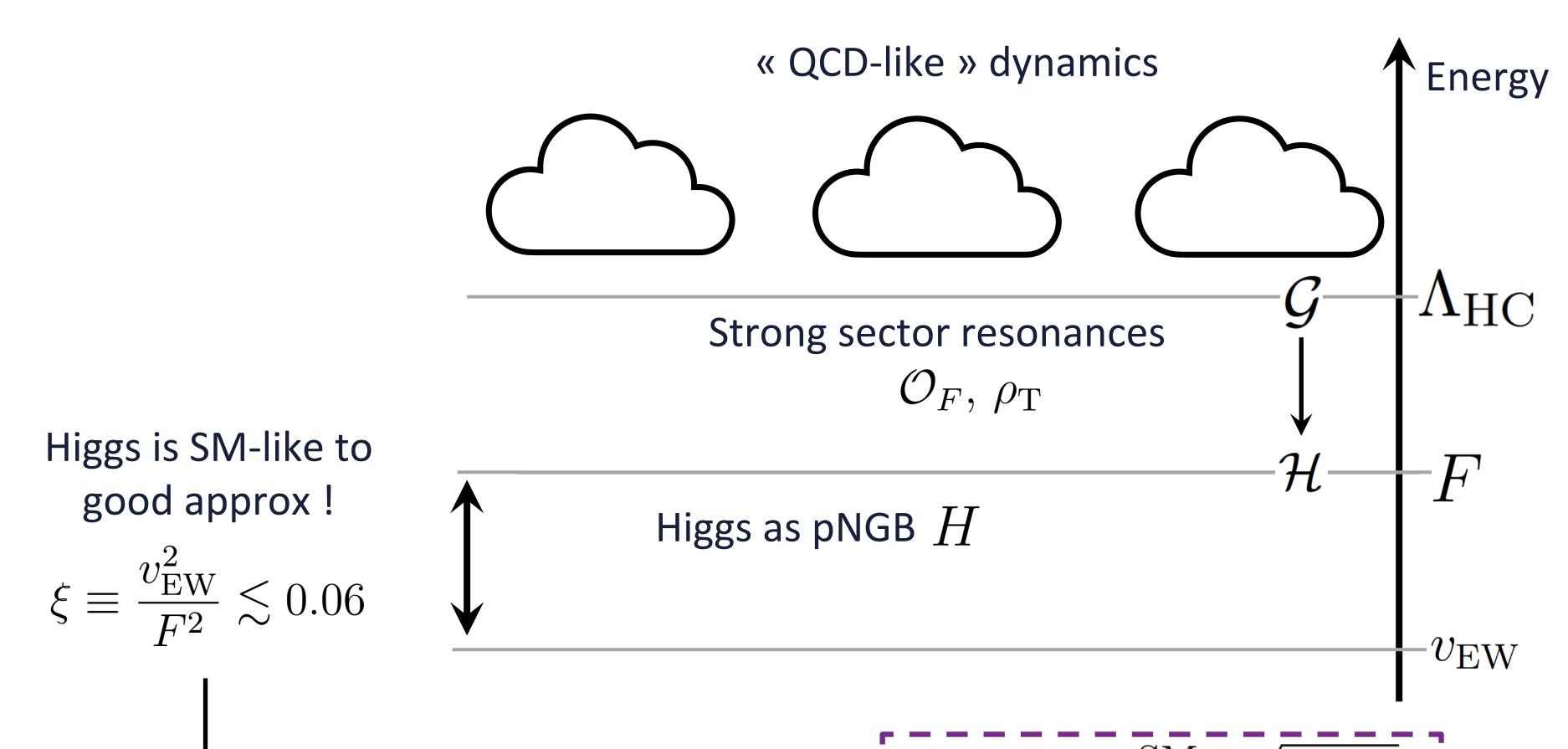
Compositeness scale cuts off quantum corrections to the Higgs potential (like pions in QCD!)

Higgs Compositeness

..



Higgs Compositeness



Compositeness corrects SM predictions

$$g_{VVh}=g_{VVh}^{
m SM}\sqrt{1-\xi}$$
 Measuring Higgs couplings is important to probe CHM! $g_{VVhh}=g_{VVhh}^{
m SM}\left(1-2\xi
ight)$ [many exp. talks @HH2025]

Measuring Higgs couplings is important to probe CHM!

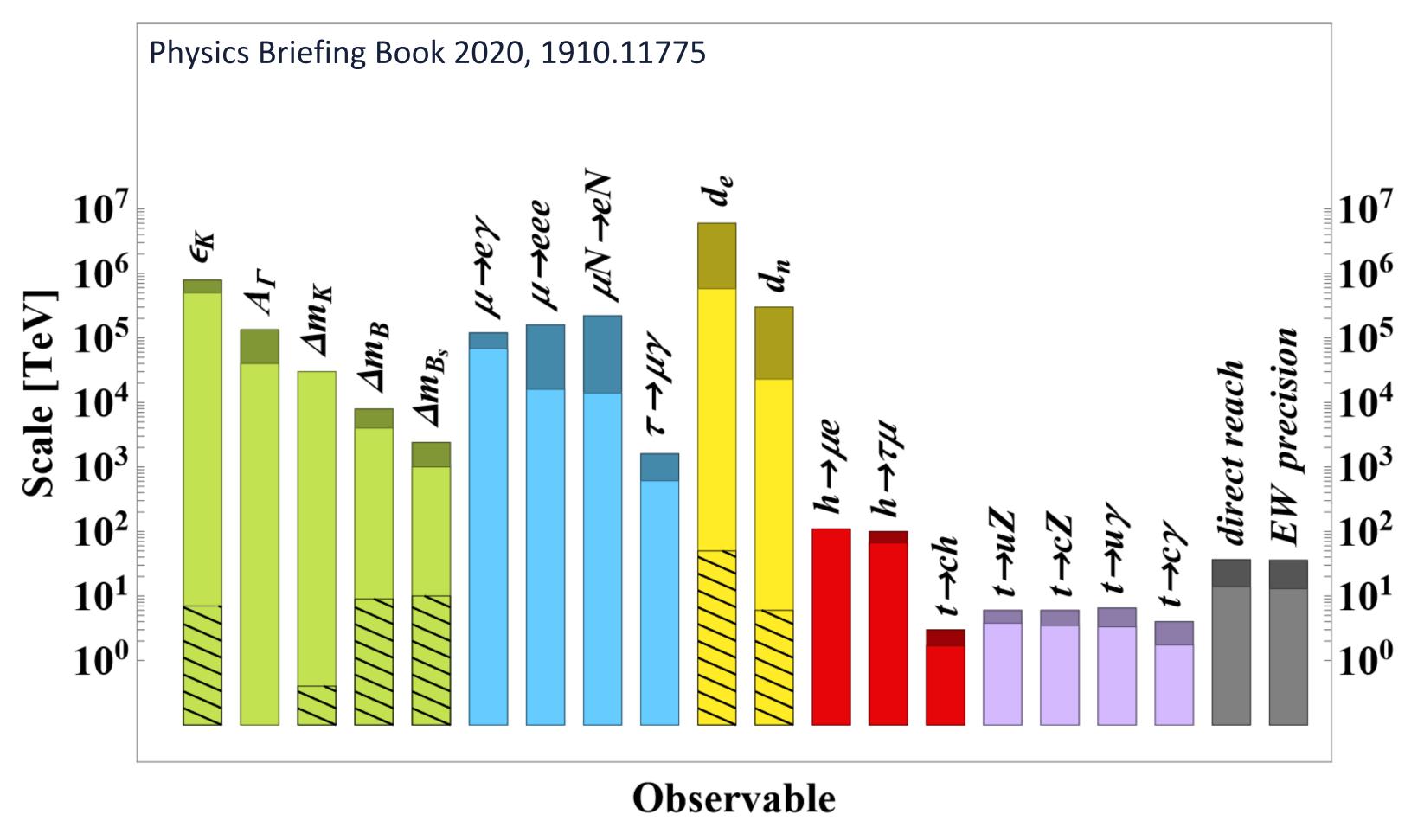
And flavour?

Natural Higgs -> low scale NP ... what about flavour?

And flavour?

Natural Higgs -> low scale NP ... what about flavour?

While the hierarchy problem points to scale $M \sim \text{TeV}$, flavour points to much *higher scales*!



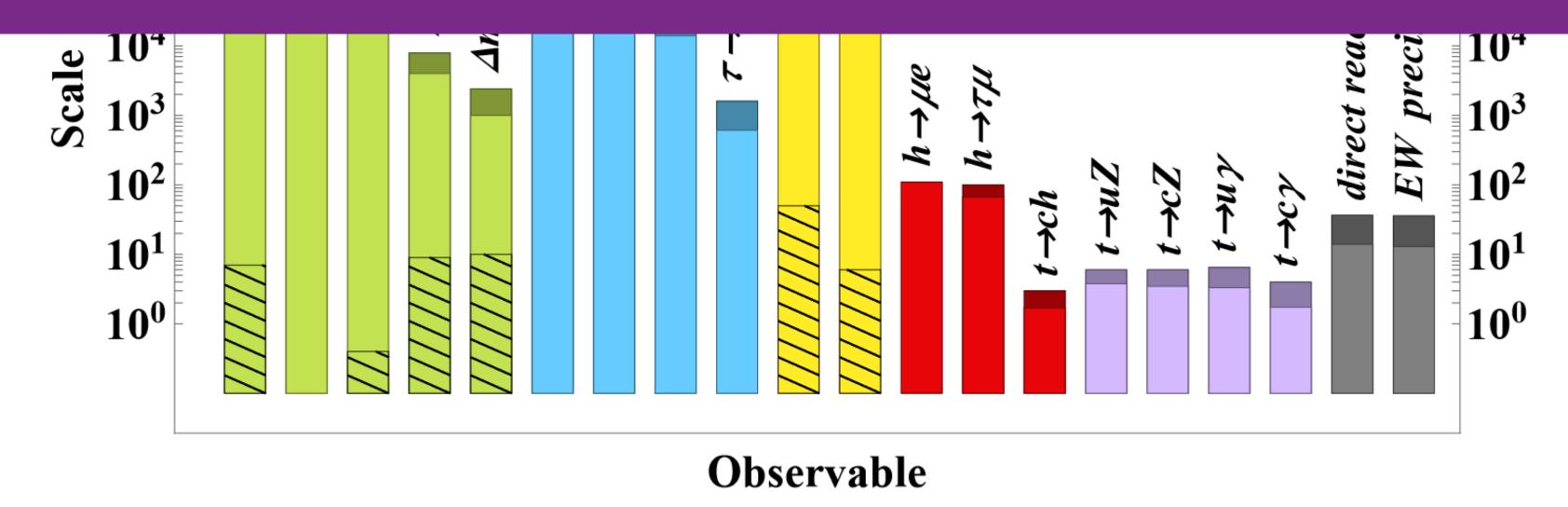
And flavour?

Natural Higgs -> low scale NP ... what about flavour?

While the hierarchy problem points to scale $M \sim \text{TeV}$, flavour points to much *higher scales*!

Physics Briefing Book 2020, 1910.11775

Any solution to the hierarchy problem requires a non-generic flavour structure \rightarrow flavour symmetries



Flavour Non-Universality

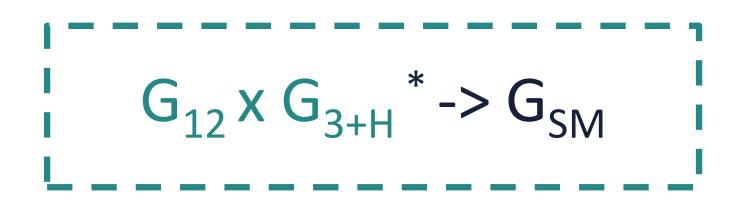
Lessons from SM & EXP:

- Exact $U(3)^5$ flavour symmetry in the gauge and fermion sectors of the SM
- Peculiar breaking $U(3)^5 o U(2)^n$ with only $y_t \sim \mathcal{O}(1) o Y_u \sim \left(<0.01 0.04 \right)$
- $\hfill oxedsymbol{\mapsto}$ No large breaking of $\,U(2)\,$ @TeV & stringent flavour bounds on light families

Flavour Non-Universality

Lessons from SM & EXP:

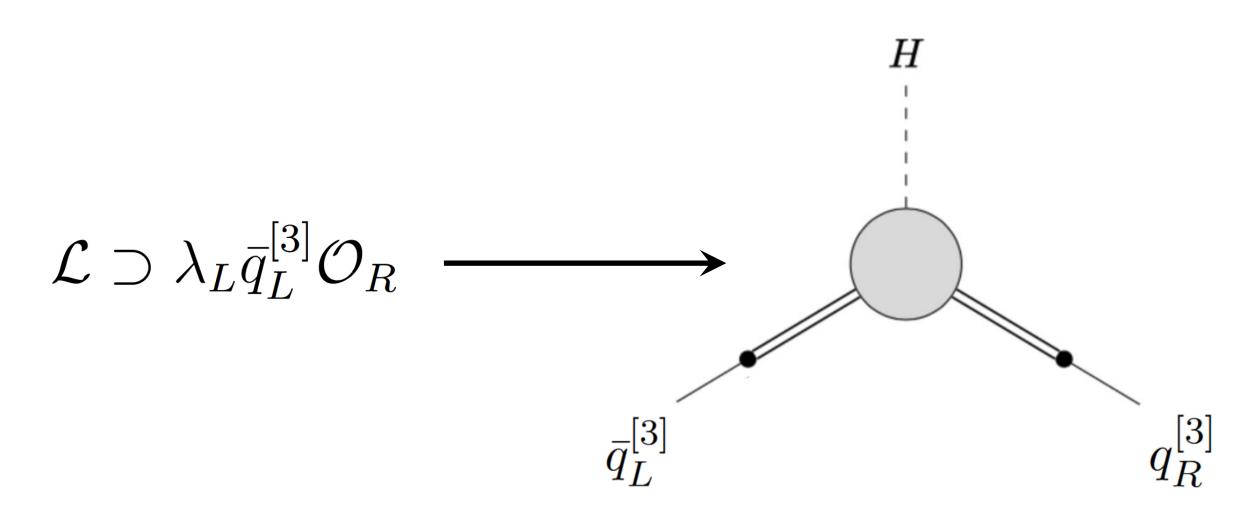
- Exact $U(3)^5$ flavour symmetry in the gauge and fermion sectors of the SM
- Peculiar breaking $U(3)^5 o U(2)^n$ with only $y_t \sim \mathcal{O}(1) o Y_u \sim \left(<0.01 0.04 \right)$
- lacksquare No large breaking of $\,U(2)\,$ @TeV & stringent flavour bounds on light families

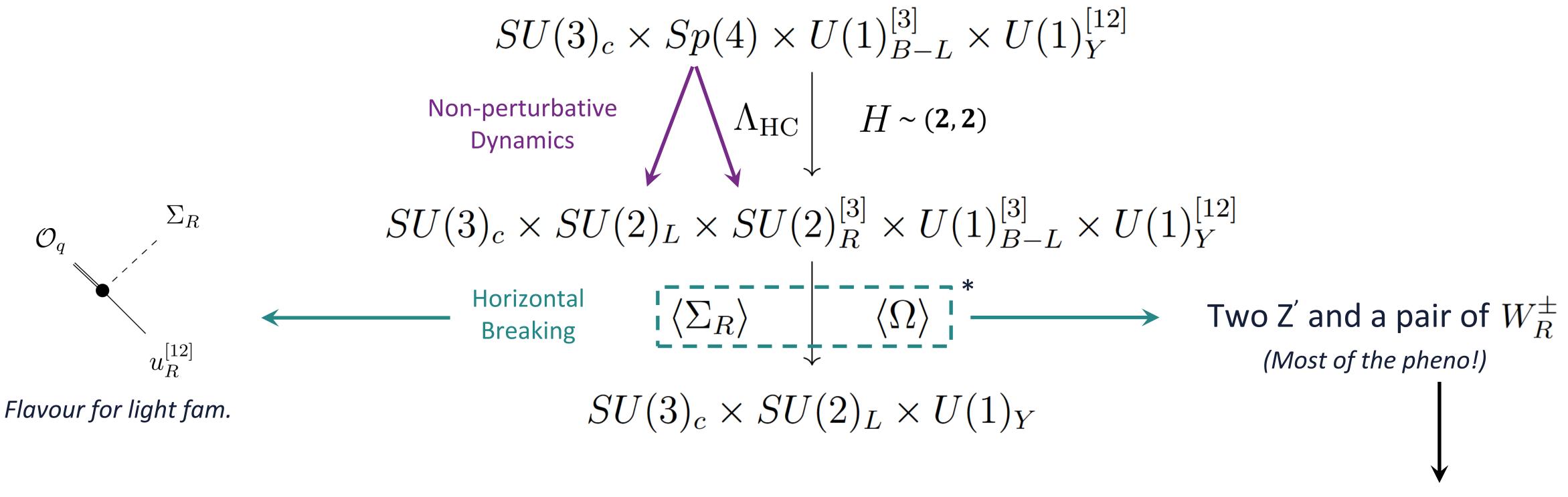


Flavour symmetries *encoded* in the gauge!

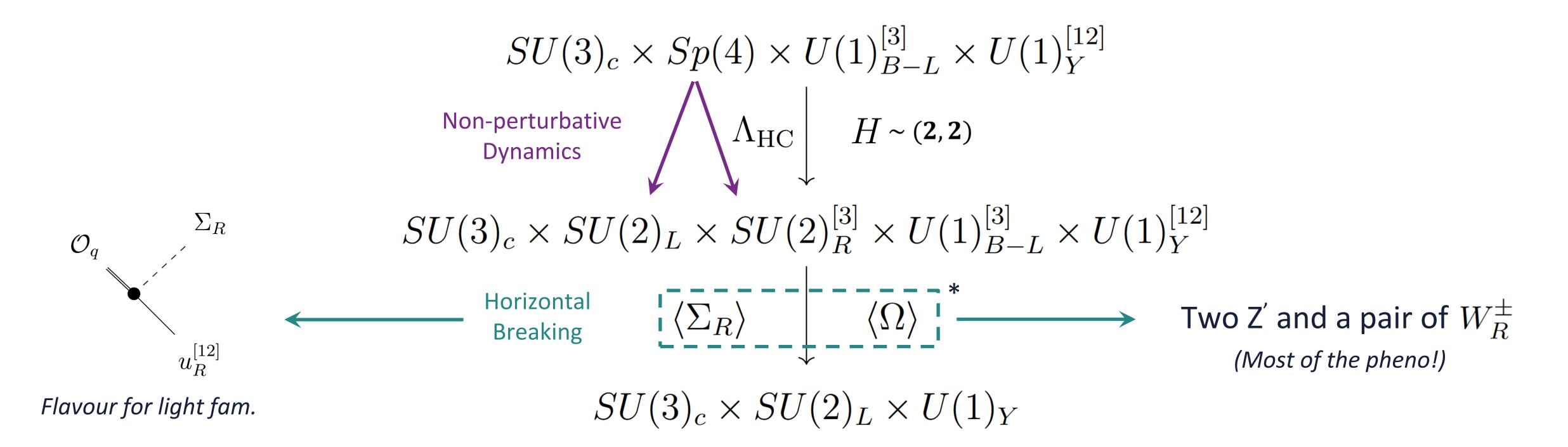
^{*}Different options to Flavour deconstruct: Davighi & Isidori [2303.01520]

Third-family Partial Compositeness:





- $B \to X_s \gamma$
- Bound on Z-pole obs.
- Bounds on Z masses from FCNC
- LHC bound from Drell-Yan data



Parameter space motivated by naturalness:

•
$$g_{R,3} \approx O(1) >> g_{Y,12}$$

• $M_{W_R}^2 \sim g_{R,3}^2 v_\Sigma^2 \lesssim M_\rho^2$

^{*} elementary scalars here, w.i.p. to embed them as composite states

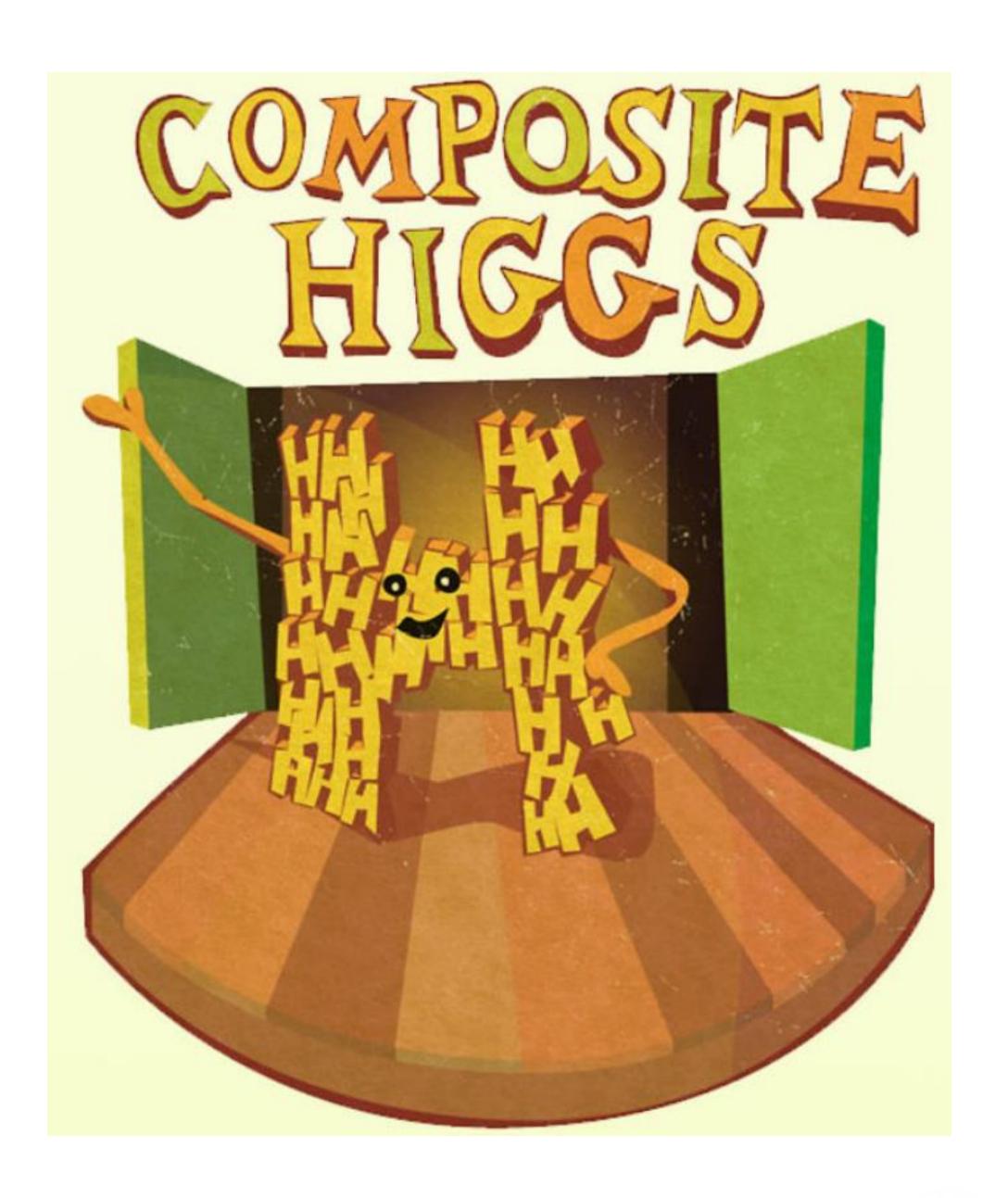
Typical scenario

- \succ Large 3rd gen. RH gauge coupling: $g_{R,3}=O(1)$
- \succ Light Top partner $M_T pprox 2 \; {
 m TeV} \;$ and $M_
 ho pprox 10 \; {
 m TeV}$
- \succ Scale of flavour deconstruction $~v_{\Sigma}pprox3~{
 m TeV}$

 $\longrightarrow \text{ Minimize the tuning in the potential} \\ \longrightarrow O(1\%) \text{ corrections to Higgs couplings}$

→ Pheno. viable TeV-scale model to stabilize the Higgs and address the flavour puzzle + provide testable signatures at current and near future colliders!

Thank You!

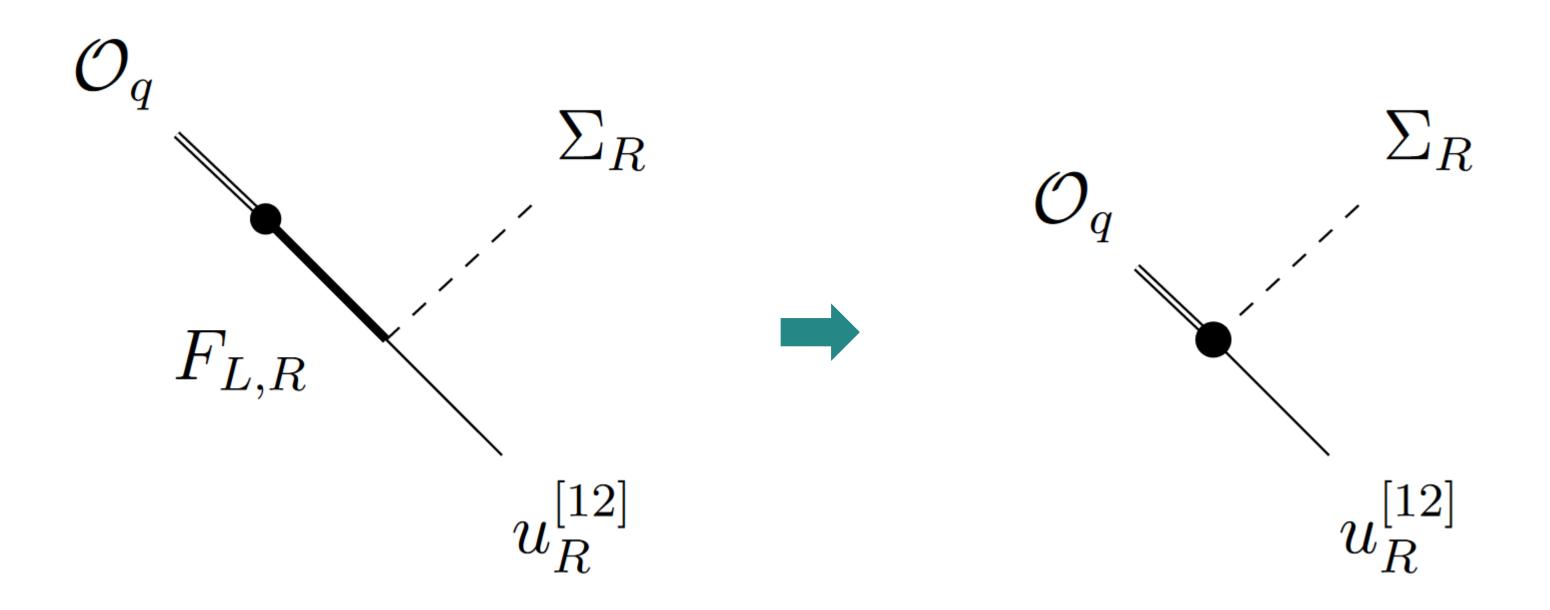


Backup Slides

Flavour Deconstructing the Composite Higgs

$$SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$$
 Horizontal Breaking
$$\boxed{\langle \Sigma_R \rangle} \boxed{\langle \Omega \rangle} \boxed{}$$

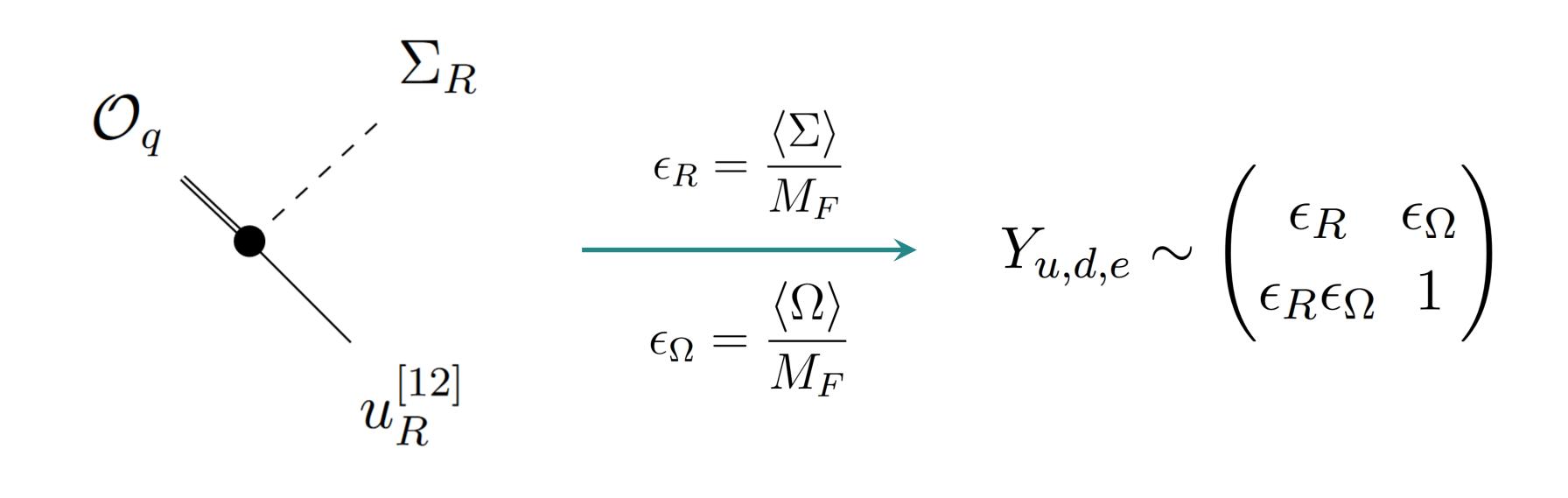
$$SU(3)_c \times SU(2)_L \times U(1)_Y$$



Flavour Deconstructing the Composite Higgs

$$SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$$
 Horizontal Breaking
$$\boxed{\langle \Sigma_R \rangle} \boxed{\langle \Omega \rangle} \boxed{}$$

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$



Flavour Deconstructing the Composite Higgs

$$Y_{u,d,e} \sim \begin{pmatrix} \epsilon_R & \epsilon_{\Omega} \\ \epsilon_R \epsilon_{\Omega} & 1 \end{pmatrix}$$

$$\epsilon_{\Omega} = O(|V_{cb}|) = O(10^{-1})$$

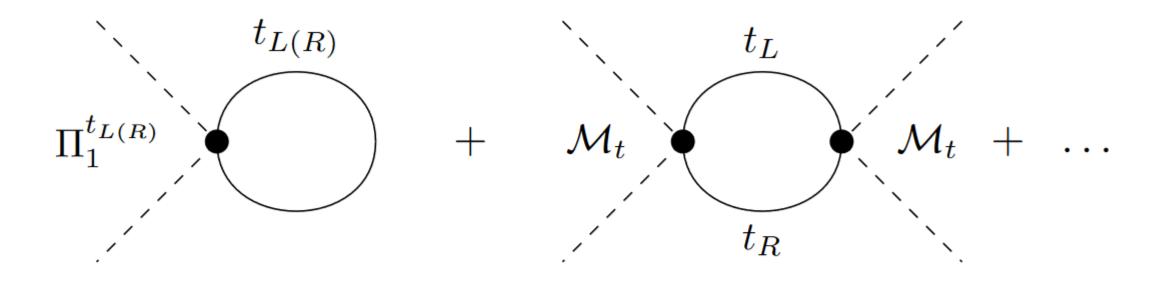
$$\epsilon_{R} = O(m_{c}/m_{t}) = O(10^{-2})$$

The deconstruction scale is anchored by its impact on the Higgs potential

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$



$$\mathcal{L}_{\text{eff}} \supset \overline{q}_L \not\!\!p \left[\Pi_0^{q_L}(p^2) \mathbb{1} + \Pi_1^{t_L}(p^2) u_L^{\dagger} \Delta_+ u_L \right] q_L$$
$$+ \left\{ \overline{q}_L \left[\mathcal{M}_t(p^2) u_L^{\dagger} \Delta_+ u_R \right] q_R + \text{h.c.} \right\}$$

$$\Pi_1^{t_L}(0) = \frac{F^2}{M_T^2} \left(\lambda_L^t\right)^2 \kappa_L^t$$
$$|\mathcal{M}_t(0)| = y_t \sqrt{2}F$$

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$

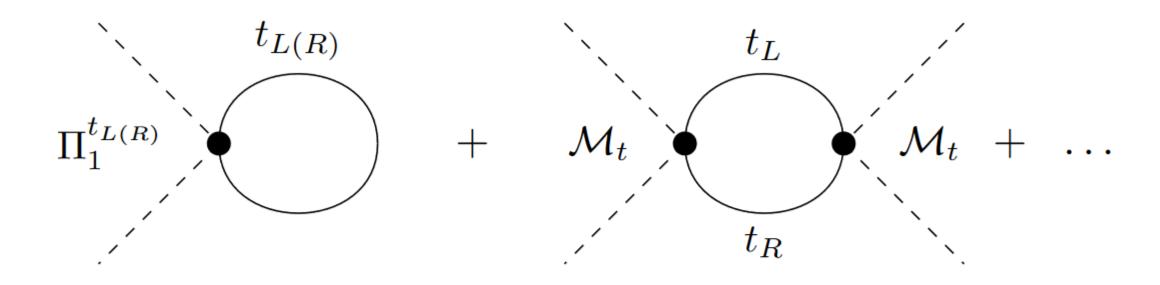
$$t_{L(R)}$$
 $+$ \mathcal{M}_t \mathcal{M}_t $+$ \dots

$$\Delta V(h)_f = -2N_c \int \frac{d^4 p_E}{(2\pi)^4} \left\{ \log \left[1 + \frac{\Pi_1^{t_L}}{\Pi_0^{q_L}} \sin^2 \left(\frac{h}{2F} \right) \right] + \log \left[1 + \frac{|\mathcal{M}_t|^2 \sin^2 \left(\frac{h}{2F} \right) \cos^2 \left(\frac{h}{2F} \right)}{p_E^2 \left(\Pi_0^{q_L} + \Pi_1^{q_L} \sin^2 \left(\frac{h}{2F} \right) \right) \left(\Pi_0^{q_R} - \Pi_1^{q_R} \sin^2 \left(\frac{h}{2F} \right) \right)} \right] \right\}$$

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$



Coleman-Weinberg —— potential

$$\Delta V(h)_f = -2N_c \int \frac{d^4 p_E}{(2\pi)^4} \left\{ \log \left[1 + \frac{\Pi_1^{t_L}}{\Pi_0^{q_L}} \sin^2 \left(\frac{h}{2F} \right) \right] \right\}$$

$$\mathcal{M}_t(q^2) = \mathcal{M}_t(0) \times \frac{M_T^2}{M_T^2 - q^2}$$

$$\frac{\Pi_1^{t_L}(q^2)}{\Pi_1^{t_L}(0)} \frac{\Pi_0^{q_L}(0)}{\Pi_0^{q_L}(q^2)} = \frac{M_T^2}{M_T^2 - q^2} \frac{M_f^2}{M_f^2 - q^2}$$

$$\mathcal{M}_t(q^2) = \mathcal{M}_t(0) \times \frac{M_T^2}{M_T^2 - q^2} + \log \left[1 + \frac{|\mathcal{M}_t|^2 \sin^2\left(\frac{h}{2F}\right) \cos^2\left(\frac{h}{2F}\right)}{p_E^2 \left(\Pi_0^{q_L} + \Pi_1^{q_L} \sin^2\left(\frac{h}{2F}\right)\right) \left(\Pi_0^{q_R} - \Pi_1^{q_R} \sin^2\left(\frac{h}{2F}\right)\right)} \right] \right\}$$

Explicit expression in terms of model parameters

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

$$rac{c_2}{F^4} = rac{N_c y_t^2}{4\pi^2} rac{M_T^2}{F^2} + ext{Gauge contributions} \ ext{(suppressed)} \ ext{Top partner} \longrightarrow M_T pprox 2.5 F$$

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Fermionic resonances

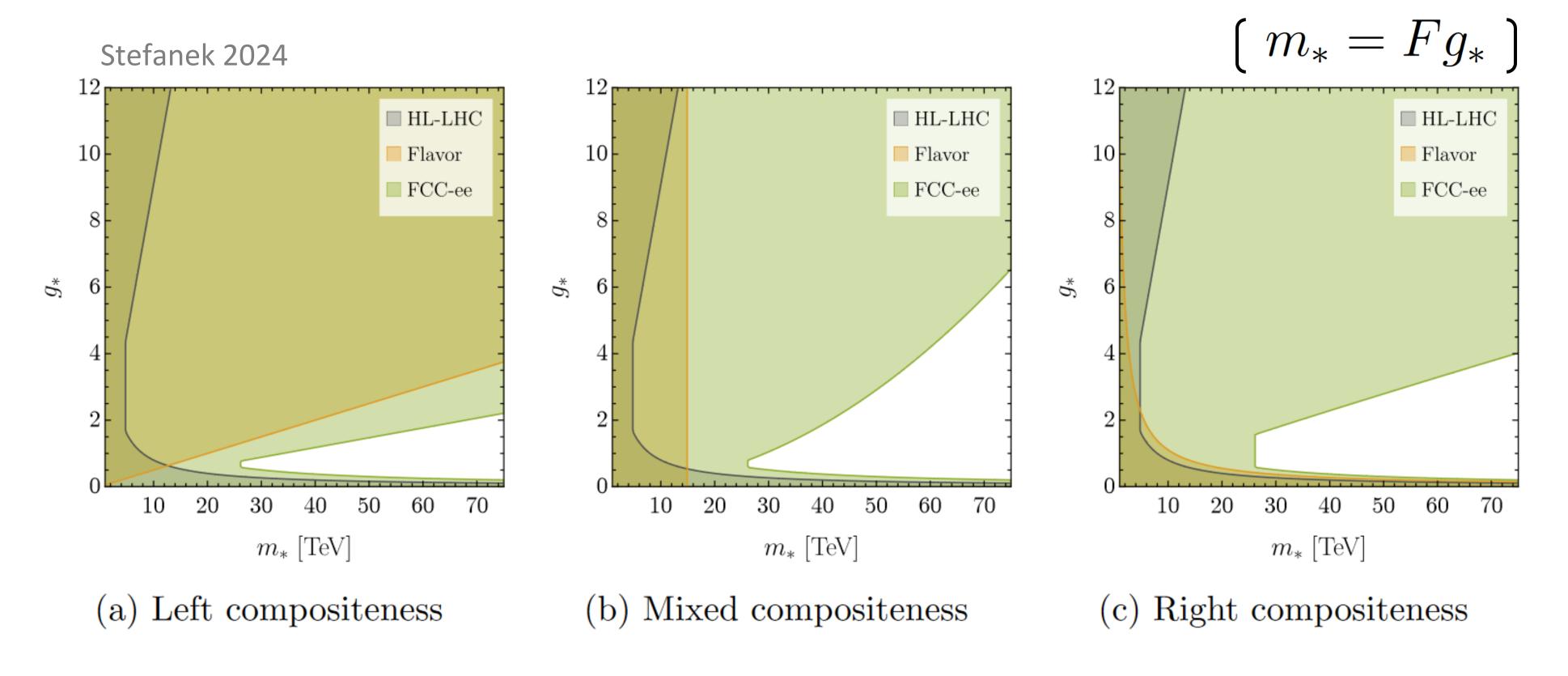
Top partner

Gauge contributions

$$\frac{c_1}{F^4} = \frac{N_c}{8\pi^2} \left[\left(\lambda_R^t \right)^2 \kappa_R^t - \left(\lambda_L^t \right)^2 \kappa_L^t \right] \frac{M_f^2}{F^2} + \frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2} \stackrel{\checkmark}{\longrightarrow} \frac{9g_R^2}{32\pi^2} \left(1 - \frac{g_R^2 v_\Sigma^2}{2M_\rho^2} \right) \frac{M_\rho^2}{F^2} + \mathcal{O}\left(g_L g_R, g_L^2 \right)$$

- Increase size of gauge contribution $\longrightarrow g_{R,3} = O(1) \gg g_{R,12} \approx g_Y^{\rm SM}$ (Natural in flavour non-universal scenario !)
- Avoid suppression / sign flip $\longrightarrow M_{W_R}^2 = \frac{1}{4} g_R^2 v_\Sigma^2 < \frac{1}{2} M_\rho^2$

Composite Higgs @ HL-LHC and FCC-ee



- With improved precision: RG-running into EWPO become crucial
 - Composite Higgs will be put under a microscope @ FCC-ee!

$$m_* \gtrsim 25 \text{ TeV}$$

Flavour Non-Universal Composite Higgs

Ingredients:

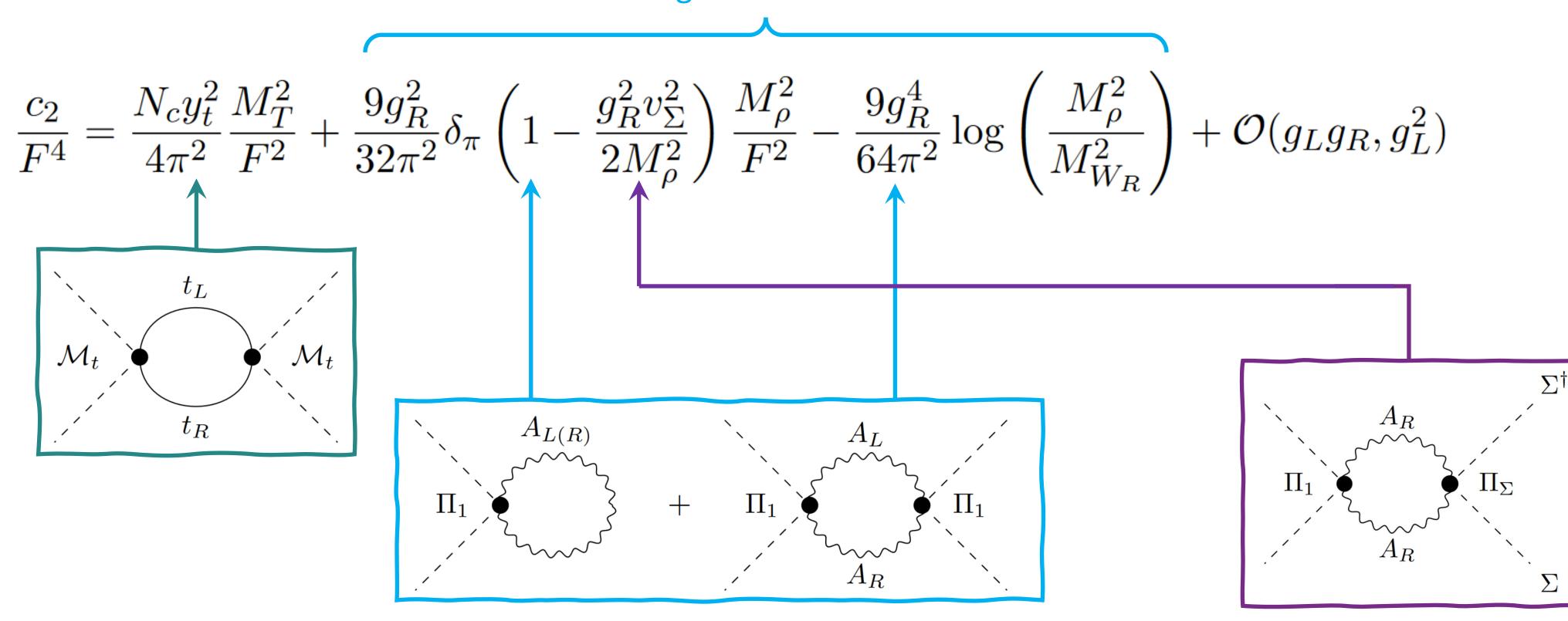
• Spontaneously broken strong sector: $\mathcal{G}\equiv Sp(4) \xrightarrow{\Lambda_{\mathrm{HC}}} SU(2)_L imes SU(2)_R^{[3]}\equiv \mathcal{H}$

• Field Content:

Elementary fields		$U(1)_{B-L}^{[3]}$	$U(1)_{Y}^{[12]}$	$SU(2)_L$	$SU(2)_R^{[3]}$
chiral	$q_L^{[12]}$	0	1/6	2	1
light quarks	$\left \begin{array}{c}u_R^{[12]}\end{array}\right $	0	2/3	1	1
	$\mid d_R^{[12]} \mid$	0	-1/3	1	1
chiral	$\mid q_L^{[3]} \mid$	1/6	0	2	1
3 rd gen. quarks	$q_R^{[3]}$	1/6	0	1	2
vector-like	F_L^q	1/6	0	2	1
quarks	F_R^q	0	1/6	1	2
scalar	Σ_R	0	1/2	1	2
link fields	Ω_q	-1/6	1/6	1	1
	Ω_ℓ	1/2	-1/2	1	1

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Gauge contributions



$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Gauge contributions

$$\frac{c_2}{F^4} = \underbrace{\frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2}}_{\text{Light Top partner}} + \underbrace{\frac{9g_R^2}{32\pi^2} \delta_\pi \left(1 - \frac{g_R^2 v_\Sigma^2}{2M_\rho^2}\right) \frac{M_\rho^2}{F^2}}_{\text{Negligible for } g_R} - \underbrace{\frac{9g_R^4}{64\pi^2} \log \left(\frac{M_\rho^2}{M_{W_R}^2}\right)}_{\text{Negligible for } g_R} + \mathcal{O}(g_L g_R, g_L^2)$$

Flavour and Higgs Compositeness

Strong resonances

How do we couple fermions to the Higgs?

OG approach in strongly-coupled EWSB models:

in strongly-coupled EWSB models:
$$\mathcal{L}\supset\frac{\lambda_b}{\Lambda_{\mathrm{UV}}^{d-1}}\bar{q}_L\mathcal{O}_Sb_R \longrightarrow y_{t,b}\simeq\lambda_{t,b}\left(\frac{F}{\Lambda_{\mathrm{UV}}}\right)^{d-1}$$
 Scalar Op. Strong interactions are resolved strong sector -> Flavour

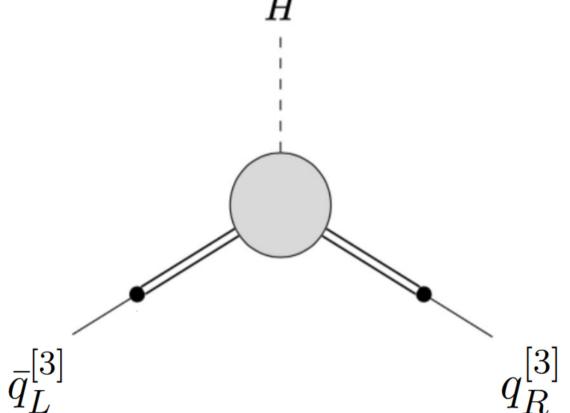
- \blacktriangleright Difficult to have $y_t \sim \mathcal{O}(1)$ and Λ_{UV} high enough to avoid extra flavour-violation
- \triangleright Reintroduces the Hierarchy problem for \mathcal{O}_S^2
- \triangleright Enforce hierarchy of $\lambda_{t,b}$ in the UV because only one scalar op \mathcal{O}_{S}

Partial Compositeness

How do we couple fermions to the Higgs?

Partial Compositeness:

$$\mathcal{L} \supset \lambda_L \bar{q}_L \mathcal{O}_R \longrightarrow |y_q| = \lambda_L^q \lambda_R^{q*} \kappa_{LR}^q \frac{F}{\sqrt{2}M_q}$$

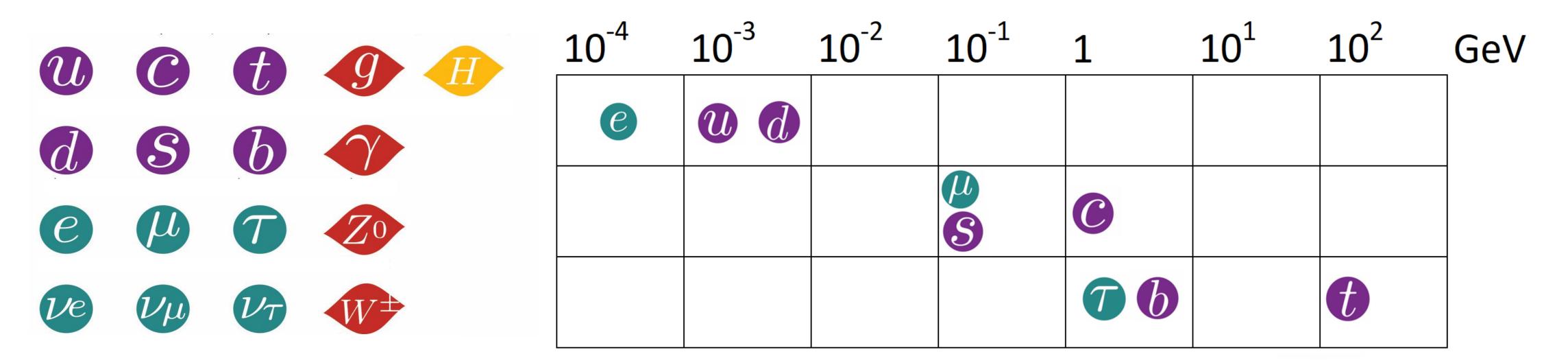


ightharpoonup Fermionic Ops -> No risk of reintroducing a hierarchy problem for \mathcal{O}_F^2

Composite partner

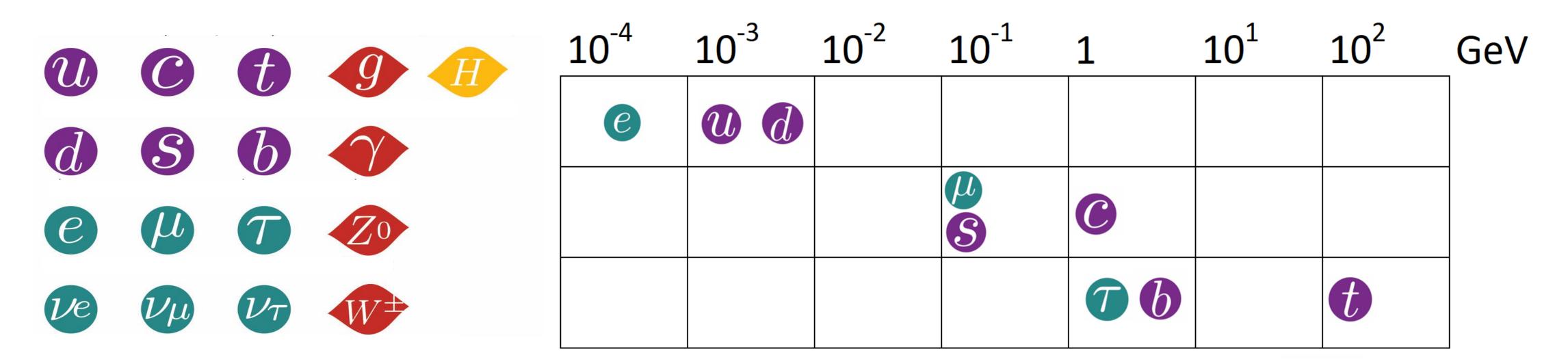
> Partners for each fermions -> can reproduce Yukawa pattern

Flavour Puzzle



[See Gino's & Barbieri's talk]

Flavour Puzzle



[See Gino's & Barbieri's talk]

$$\mathcal{L}^{d\leq 4} = \mathcal{L}_{ ext{gauge}} + \mathcal{L}_{ ext{Higgs}}$$

$$Y_u \sim \left(\begin{array}{c|c} < 0.01 & 0.04 \\ \hline 1 \end{array}\right) \Rightarrow U(2)^n$$
 approx. flavour symmetries

In the basis where Y_d is diagonal

Barbieri et al. 2011, Isidori & Straub 2012, Kagan et al. 2009, Blankenburg et al. 2012

Partial Compositeness

How do we couple fermions to the Higgs?

Partial Compositeness:

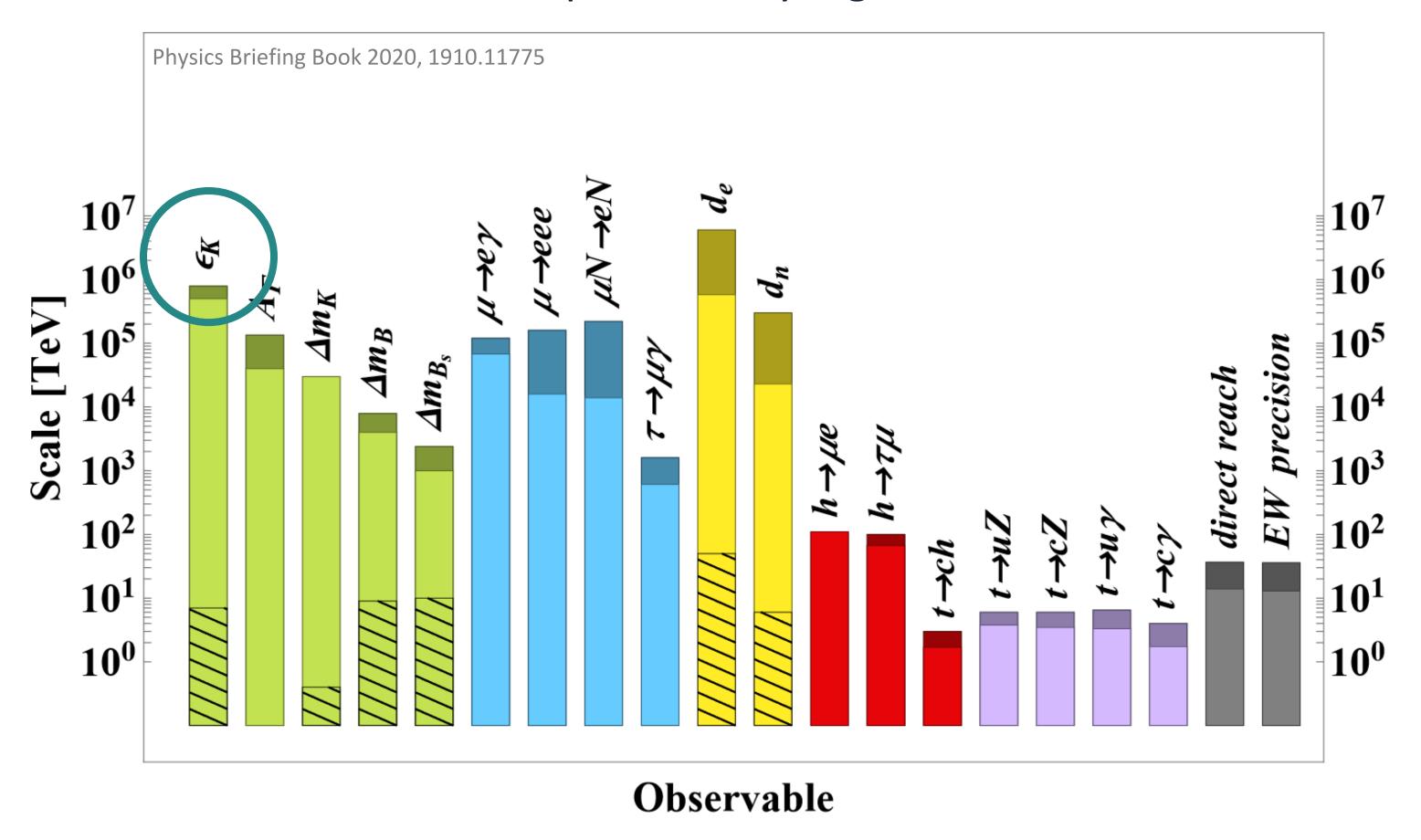
$$\mathcal{L} \supset \lambda_L \bar{q}_L \mathcal{O}_R \longrightarrow |y_q| = \lambda_L^q \lambda_R^{q*} \kappa_{LR}^q \frac{F}{\sqrt{2}M_q}$$

Composite partner

- ightharpoonup Fermionic Ops -> No risk of reintroducing a hierarchy problem for \mathcal{O}_F^2
- > Partners for each fermions -> can reproduce Yukawa pattern

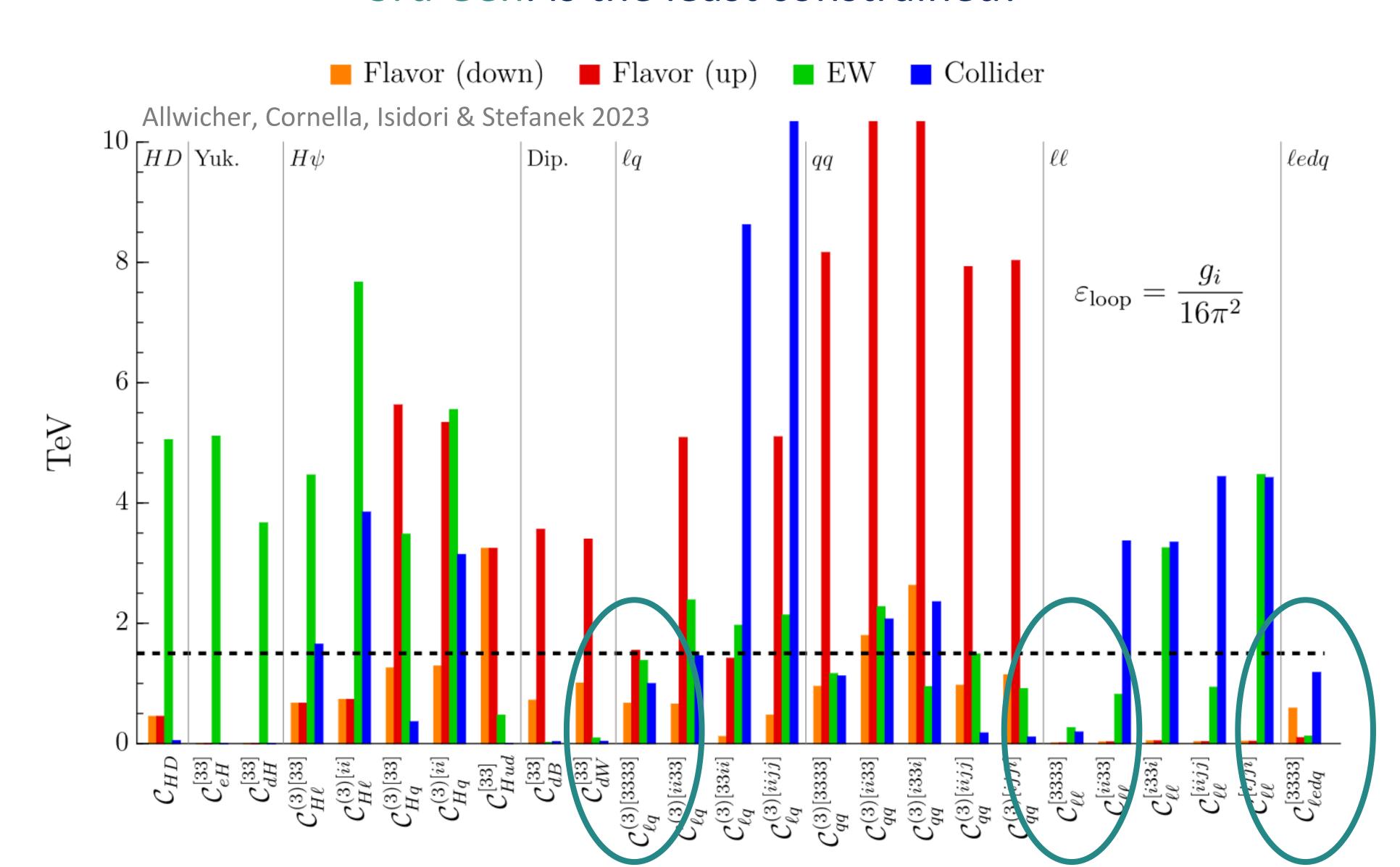
Experimental Constraints on NP Scale

- > No clear direct signals of NP -> Mass gap is a « fact » of life
- > Proton decay, neutrino masses, EDMs, ... -> NP scale could be very high
 - > Flavour probes very high scale too!

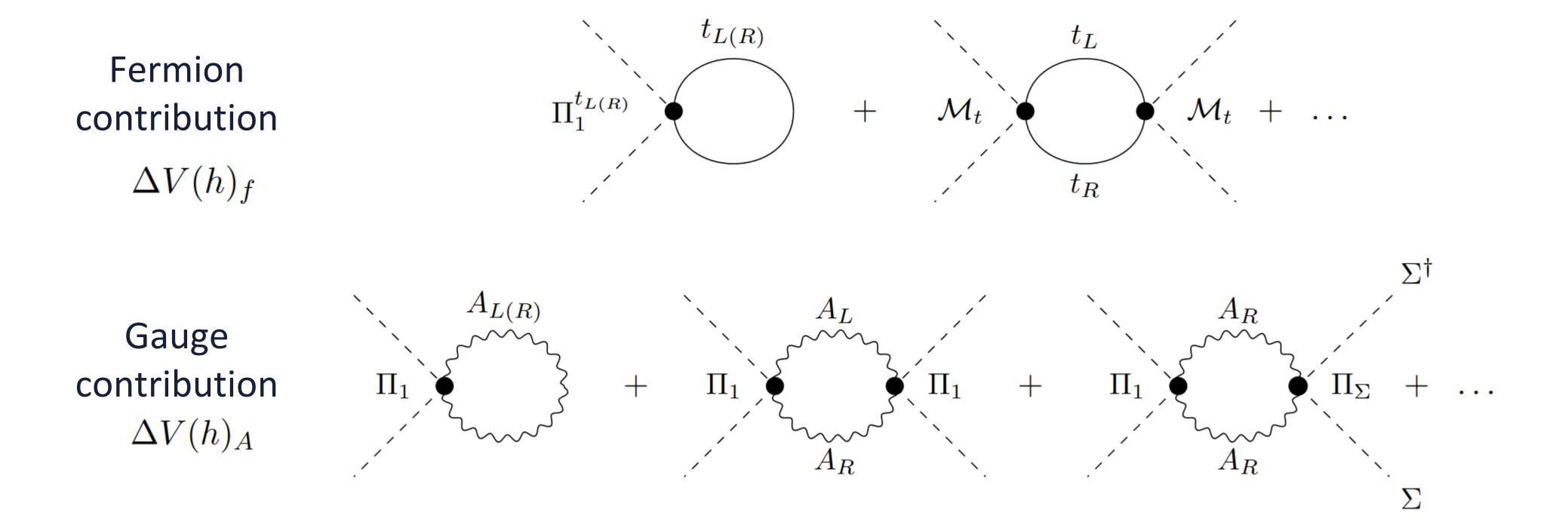


Back to Flavour

3rd Gen. is the least constrained!



$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$



$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

$$\left. \frac{c_1}{F^4} \right|_{\mathrm{phys.}} = \frac{m_h^2}{F^2} \lesssim 0.06$$
 (from Exp.)

$$\left. \frac{c_2}{F^4} \right|_{
m phys.} = \frac{2m_h^2}{v^2} pprox \frac{1}{2}$$
 Natural

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

$$rac{c_2}{F^4} = rac{N_c y_t^2}{4\pi^2} rac{M_T^2}{F^2} + ext{Gauge contributions} \ ext{(suppressed)} \ ext{Top partner} \longrightarrow M_T pprox 2.5 F$$

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Fermionic resonances

Top partner

Gauge contributions

$$\frac{c_1}{F^4} = \frac{N_c}{8\pi^2} \left[\left(\lambda_R^t \right)^2 \kappa_R^t - \left(\lambda_L^t \right)^2 \kappa_L^t \right] \frac{M_f^2}{F^2} + \frac{N_c y_t^2}{4\pi^2} \frac{M_T^2}{F^2} \stackrel{\checkmark}{\longrightarrow} \frac{9g_R^2}{32\pi^2} \left(1 - \frac{g_R^2 v_\Sigma^2}{2M_\rho^2} \right) \frac{M_\rho^2}{F^2} + \mathcal{O}\left(g_L g_R, g_L^2 \right)$$

- Increase size of gauge contribution $\longrightarrow g_{R,3} = O(1) \gg g_{R,12} \approx g_Y^{\rm SM}$ (Natural in flavour non-universal scenario !)
- Avoid suppression / sign flip $\longrightarrow M_{W_R}^2 = \frac{1}{4} g_R^2 v_\Sigma^2 < \frac{1}{2} M_\rho^2$

Phenomenological Constraints

- Constraints related to strong dynamics
 - Modification of VVh- and VVhh-couplings

$$F \gtrsim 500 \, \mathrm{GeV}$$

Top partners and heavy resonances searches

$$M_T \gtrsim 1.5 \text{ TeV} \longrightarrow F \gtrsim 600 \text{ GeV}$$

 $M_\rho \gtrsim 5 \text{ TeV}$

EWPO (S and T parameters)

$$g_{L,R}^2 \frac{v^2}{M_\rho^2} \lesssim 10^{-3}$$

Constraints related to flavoured gauge bosons

•
$$B o X_s \gamma$$

• Bound on Z-pole obs. $\bigg\} \ v_\Sigma \gtrsim 3 \,\, {
m TeV}$

• Bounds on Z' masses from FCNC (B_s -mixing)

$$v_\Omega \gtrsim 2.7~{
m TeV}$$
 (up- vs down-alignment)

LHC bound from Drell-Yan data

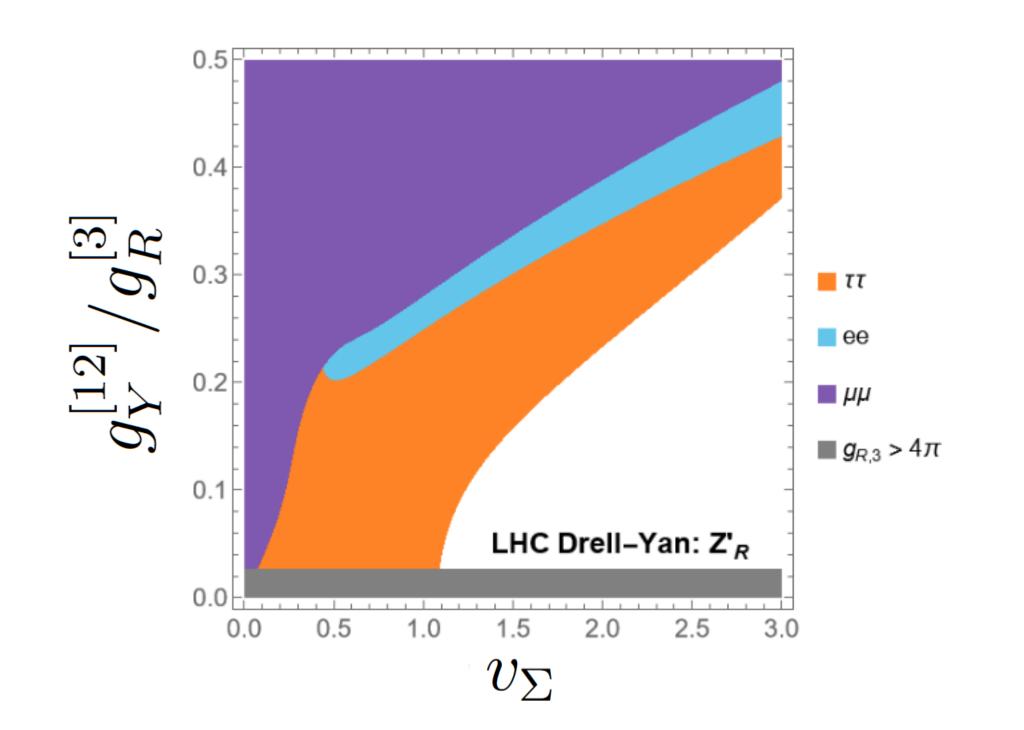
$$v_{\Sigma} \gtrsim 2.0 \text{ TeV}$$

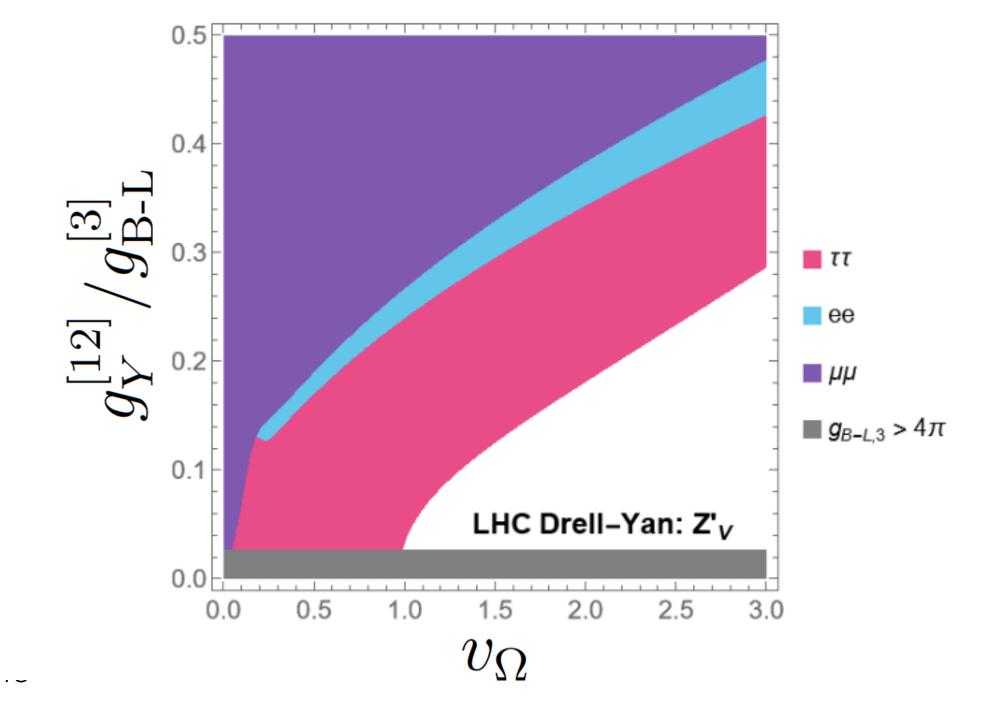
Phenomenological Constraints

Typical scenario

- \succ Large 3rd gen. RH gauge coupling: $g_{R,3}=O(1)$
- \succ Light Top partner $M_Tpprox 2~{
 m TeV}$ and $M_
 hopprox 10~{
 m TeV}$
- \succ Flavour deconstruction breaking $v_{\Sigma}pprox3~{
 m TeV}$

All constraints are satisfied and $\delta_{\rm EW}\lesssim 10^{-3}$ $\longrightarrow 3\%$ tuning in the potential $\longrightarrow O(1\%)$ corrections to Higgs couplings





Allwicher et al. 2022

Conclusion

Null results @LHC put pressure on *natural* solutions to the hierarchy problem...

Naturalness has played a crucial role in NP searches in the past ...

Bounds on flavour violation suggest either a high NP scale or non-generic flavour of BSM

Approx. U(2)-preserving + 3^{rd} gen. NP compatible with TeV scale

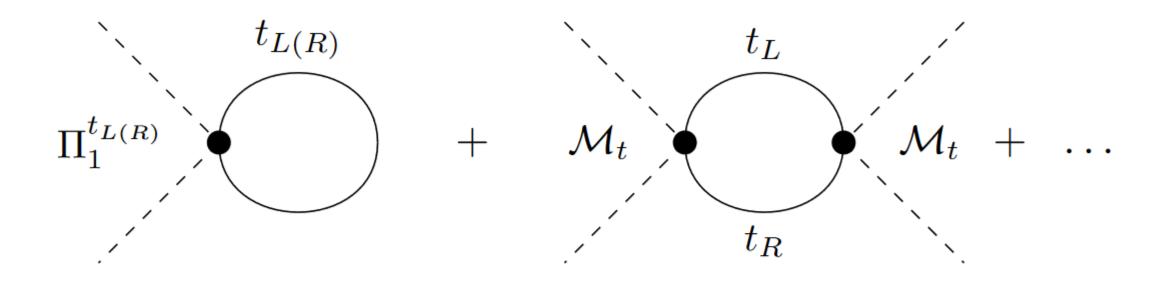
> Flavour non-universal NP @TeV compatible with exp. bounds & accessible at current and near future exp.

> Well-motivated *model* for addressing *simultaneously* Higgs & flavour

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$



$$\mathcal{L}_{\text{eff}} \supset \overline{q}_L \not\!\!p \left[\Pi_0^{q_L}(p^2) \mathbb{1} + \Pi_1^{t_L}(p^2) u_L^{\dagger} \Delta_+ u_L \right] q_L$$
$$+ \left\{ \overline{q}_L \left[\mathcal{M}_t(p^2) u_L^{\dagger} \Delta_+ u_R \right] q_R + \text{h.c.} \right\}$$

$$\Pi_1^{t_L}(0) = \frac{F^2}{M_T^2} \left(\lambda_L^t\right)^2 \kappa_L^t$$
$$|\mathcal{M}_t(0)| = y_t \sqrt{2}F$$

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$

$$t_{L(R)}$$
 $+$ \mathcal{M}_t \mathcal{M}_t $+$ \dots

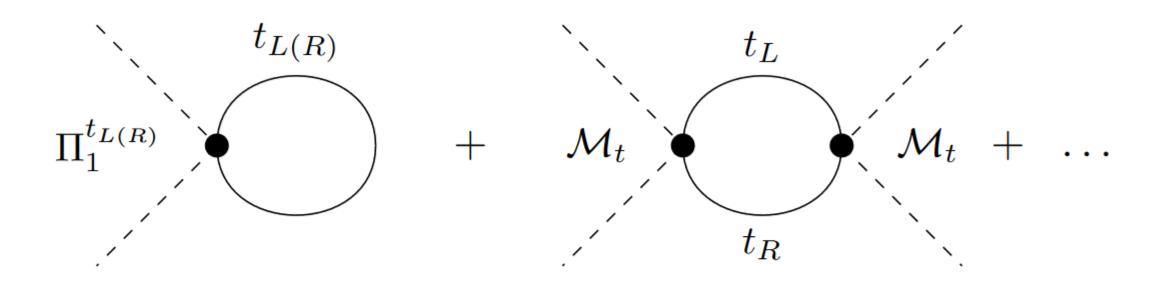
Coleman-Weinberg ————
potential

$$\Delta V(h)_f = -2N_c \int \frac{d^4 p_E}{(2\pi)^4} \left\{ \log \left[1 + \frac{\Pi_1^{t_L}}{\Pi_0^{q_L}} \sin^2 \left(\frac{h}{2F} \right) \right] + \log \left[1 + \frac{|\mathcal{M}_t|^2 \sin^2 \left(\frac{h}{2F} \right) \cos^2 \left(\frac{h}{2F} \right)}{p_E^2 \left(\Pi_0^{q_L} + \Pi_1^{q_L} \sin^2 \left(\frac{h}{2F} \right) \right) \left(\Pi_0^{q_R} - \Pi_1^{q_R} \sin^2 \left(\frac{h}{2F} \right) \right)} \right] \right\}$$

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$



$$\Delta V(h)_f = -2N_c \int \frac{d^4 p_E}{(2\pi)^4} \left\{ \log \left[1 + \frac{\Pi_1^{t_L}}{\Pi_0^{q_L}} \sin^2 \left(\frac{h}{2F} \right) \right] \right\}$$

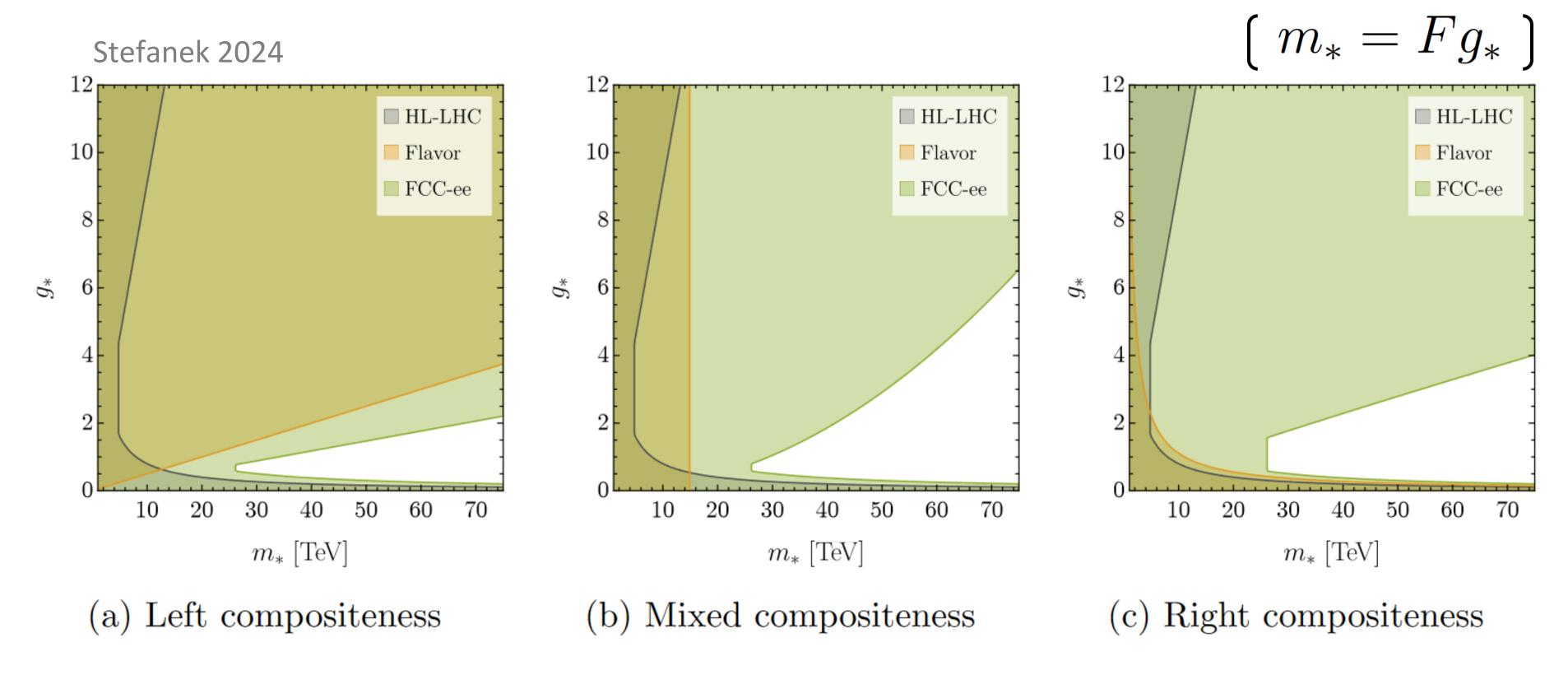
$$\mathcal{M}_t(q^2) = \mathcal{M}_t(0) \times \frac{M_T^2}{M_T^2 - q^2}$$

$$\frac{\Pi_1^{t_L}(q^2)}{\Pi_1^{t_L}(0)} \frac{\Pi_0^{q_L}(0)}{\Pi_0^{q_L}(q^2)} = \frac{M_T^2}{M_T^2 - q^2} \frac{M_f^2}{M_f^2 - q^2}$$

$$\mathcal{M}_t(q^2) = \mathcal{M}_t(0) \times \frac{M_T^2}{M_T^2 - q^2} + \log \left[1 + \frac{|\mathcal{M}_t|^2 \sin^2\left(\frac{h}{2F}\right) \cos^2\left(\frac{h}{2F}\right)}{p_E^2 \left(\Pi_0^{q_L} + \Pi_1^{q_L} \sin^2\left(\frac{h}{2F}\right)\right) \left(\Pi_0^{q_R} - \Pi_1^{q_R} \sin^2\left(\frac{h}{2F}\right)\right)} \right] \right\}$$

Explicit expression in terms of model parameters

Composite Higgs @ HL-LHC and FCC-ee

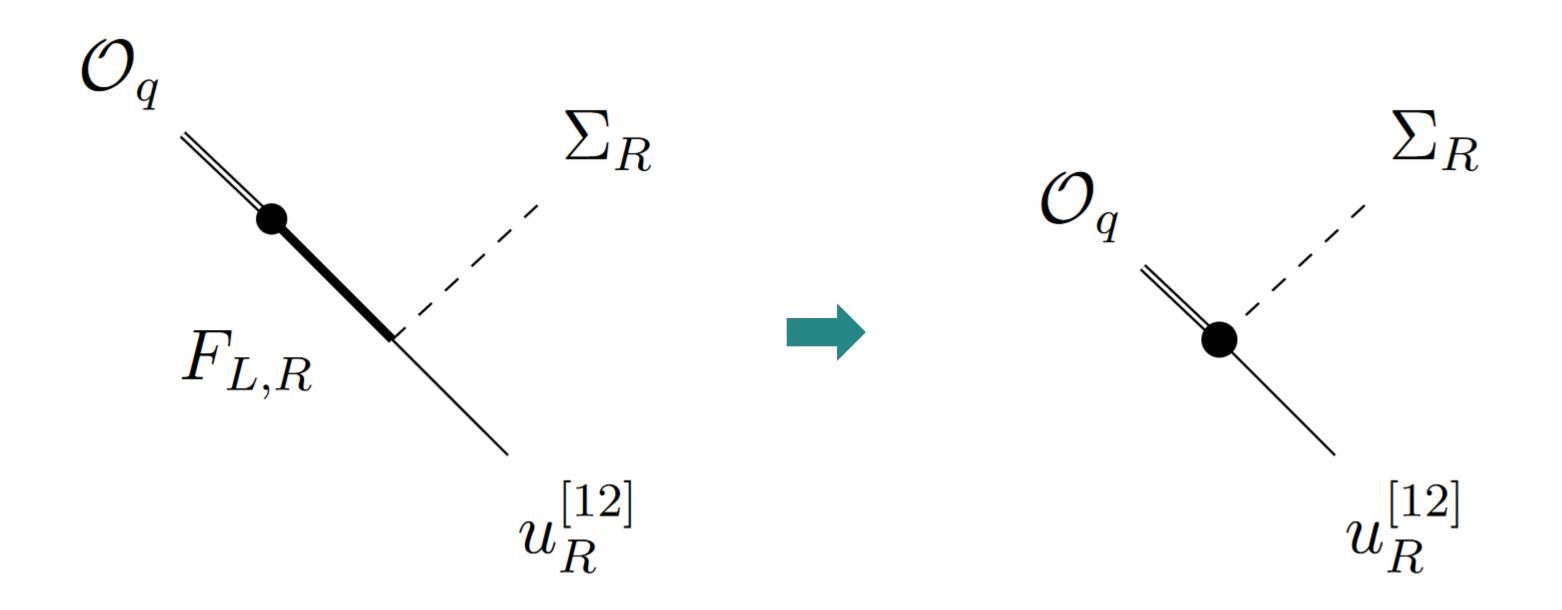


- With improved precision: RG-running into EWPO become crucial
 - Composite Higgs will be put under a microscope @ FCC-ee!

$$m_* \gtrsim 25 \text{ TeV}$$

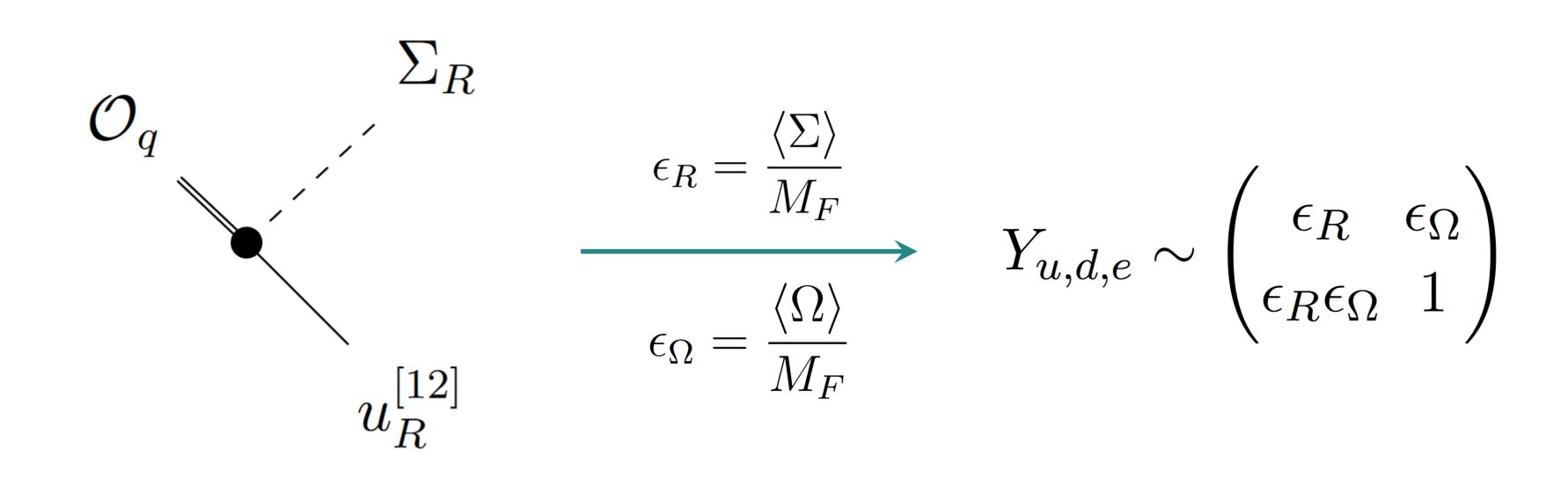
$$SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$$
 Horizontal Breaking
$$\boxed{\langle \Sigma_R \rangle} \boxed{\langle \Omega \rangle}$$

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$



$$SU(3)_c \times SU(2)_L \times SU(2)_R^{[3]} \times U(1)_{B-L}^{[3]} \times U(1)_Y^{[12]}$$
 Horizontal Breaking
$$\boxed{\langle \Sigma_R \rangle} \boxed{\langle \Omega \rangle}$$

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$



$$Y_{u,d,e} \sim \begin{pmatrix} \epsilon_R & \epsilon_{\Omega} \\ \epsilon_R \epsilon_{\Omega} & 1 \end{pmatrix}$$

$$\epsilon_{\Omega} = O(|V_{cb}|) = O(10^{-1})$$

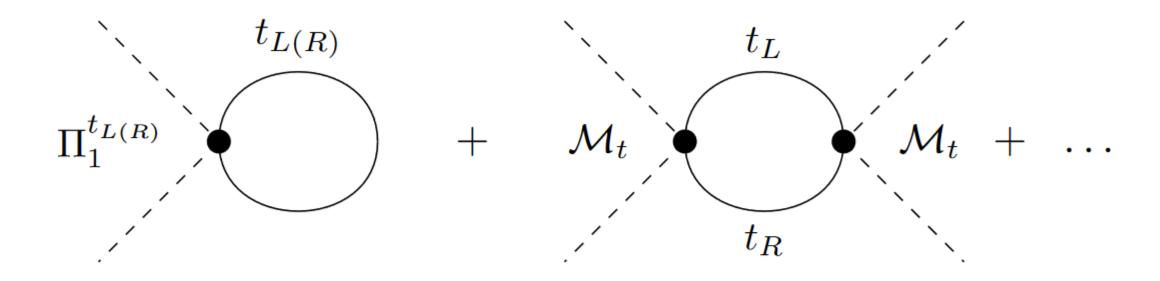
$$\epsilon_{R} = O(m_c/m_t) = O(10^{-2})$$

The deconstruction scale is *anchored* by its impact on the Higgs potential

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$



$$\mathcal{L}_{\text{eff}} \supset \overline{q}_L \not\!\!p \left[\Pi_0^{q_L}(p^2) \mathbb{1} + \Pi_1^{t_L}(p^2) u_L^{\dagger} \Delta_+ u_L \right] q_L$$
$$+ \left\{ \overline{q}_L \left[\mathcal{M}_t(p^2) u_L^{\dagger} \Delta_+ u_R \right] q_R + \text{h.c.} \right\}$$

$$\Pi_1^{t_L}(0) = \frac{F^2}{M_T^2} \left(\lambda_L^t\right)^2 \kappa_L^t$$
$$|\mathcal{M}_t(0)| = y_t \sqrt{2}F$$

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$

$$T_1^{t_{L(R)}}$$
 + M_t M_t + ...

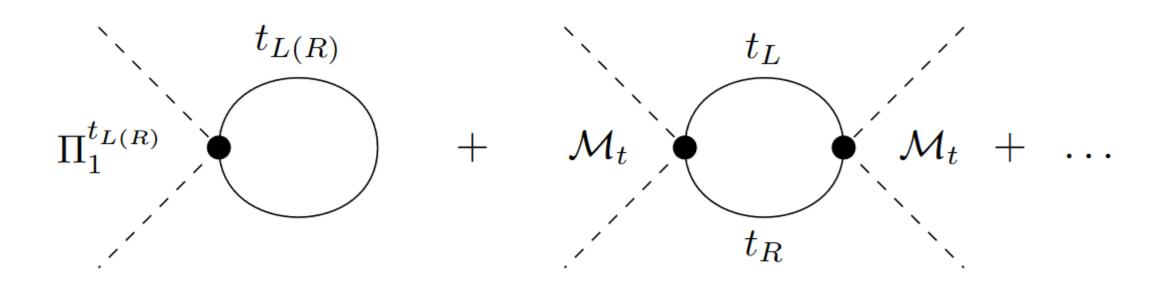
Coleman-Weinberg ———
potential

$$\Delta V(h)_f = -2N_c \int \frac{d^4 p_E}{(2\pi)^4} \left\{ \log \left[1 + \frac{\Pi_1^{t_L}}{\Pi_0^{q_L}} \sin^2 \left(\frac{h}{2F} \right) \right] + \log \left[1 + \frac{|\mathcal{M}_t|^2 \sin^2 \left(\frac{h}{2F} \right) \cos^2 \left(\frac{h}{2F} \right)}{p_E^2 \left(\Pi_0^{q_L} + \Pi_1^{q_L} \sin^2 \left(\frac{h}{2F} \right) \right) \left(\Pi_0^{q_R} - \Pi_1^{q_R} \sin^2 \left(\frac{h}{2F} \right) \right)} \right] \right\}$$

Higgs potential induced at 1-loop

Fermion contribution

$$\Delta V(h)_f$$



$$\Delta V(h)_f = -2N_c \int \frac{d^4 p_E}{(2\pi)^4} \left\{ \log \left[1 + \frac{\Pi_1^{t_L}}{\Pi_0^{q_L}} \sin^2 \left(\frac{h}{2F} \right) \right] \right\}$$

$$\mathcal{M}_t(q^2) = \mathcal{M}_t(0) imes \frac{M_T^2}{M_T^2 - q^2}$$

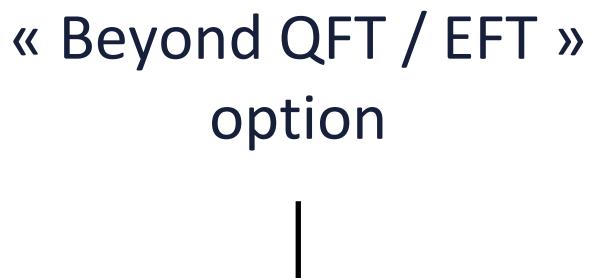
$$\frac{\Pi_1^{t_L}(q^2)}{\Pi_1^{t_L}(0)} \frac{\Pi_0^{q_L}(0)}{\Pi_0^{q_L}(q^2)} = \frac{M_T^2}{M_T^2 - q^2} \frac{M_f^2}{M_f^2 - q^2}$$

$$\mathcal{M}_t(q^2) = \mathcal{M}_t(0) \times \frac{M_T^2}{M_T^2 - q^2} + \log \left[1 + \frac{|\mathcal{M}_t|^2 \sin^2\left(\frac{h}{2F}\right) \cos^2\left(\frac{h}{2F}\right)}{p_E^2 \left(\Pi_0^{q_L} + \Pi_1^{q_L} \sin^2\left(\frac{h}{2F}\right)\right) \left(\Pi_0^{q_R} - \Pi_1^{q_R} \sin^2\left(\frac{h}{2F}\right)\right)} \right] \right\}$$

Explicit expression in terms of model parameters

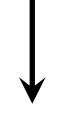
The Hierarchy Problem

What possible theoretical frameworks can address the Hierarchy problem?



SUSY

Higgs Compositeness



Solution:

« Elsewhere »

Elementary scalars are protected by symmetry

No elementary scalars

Multiverse / Anthropics Cosmological evolution (Failure of EFT)

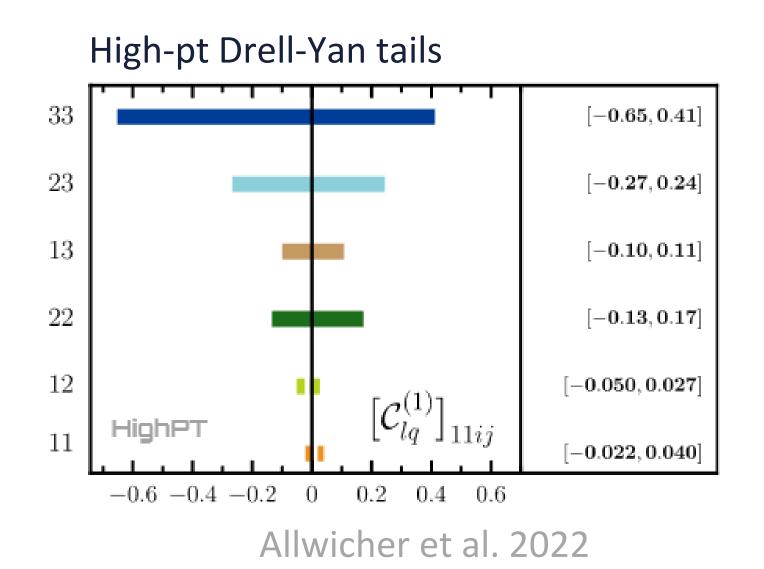
Higgs emerges as a composite pseudo-Goldstone boson of S.S.B

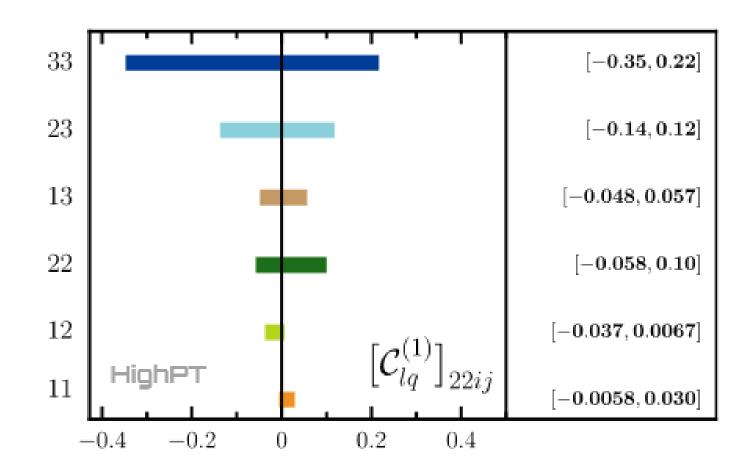
Agrawal et al., 1997 Kawai & Okada, 2011 Giudice et al. 2021 Kephart & Päs 2024, ...

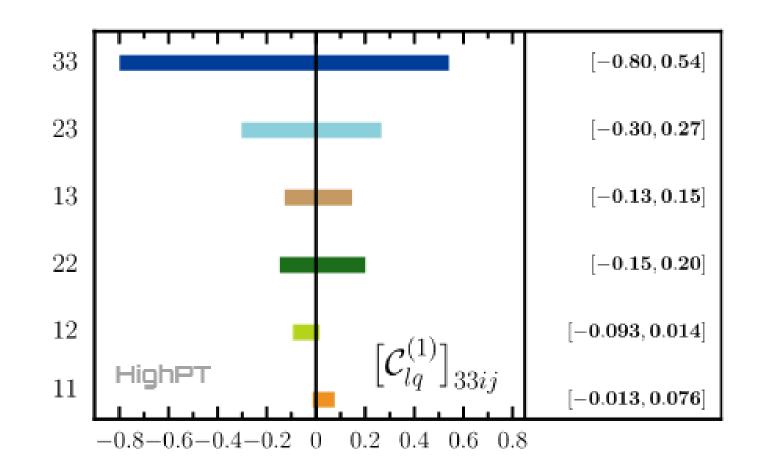
Dugan et al. 1985, Agashe, Contino & Pomarol 2005,...

Back to Flavour

3rd Gen. is the least constrained

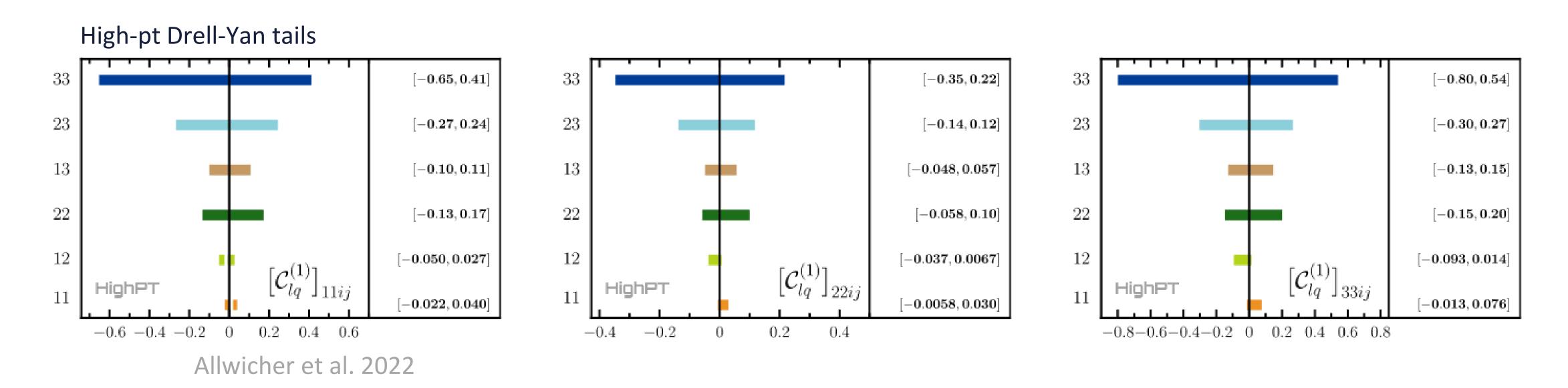






Back to Flavour

3rd Gen. is the least constrained



Experiments have imposed strong bounds on flavour universal NP

Flavour non-universal NP @TeV-scale, mainly coupled to 3rd gen.

Flavour Non-Universal Composite Higgs

Ingredients:

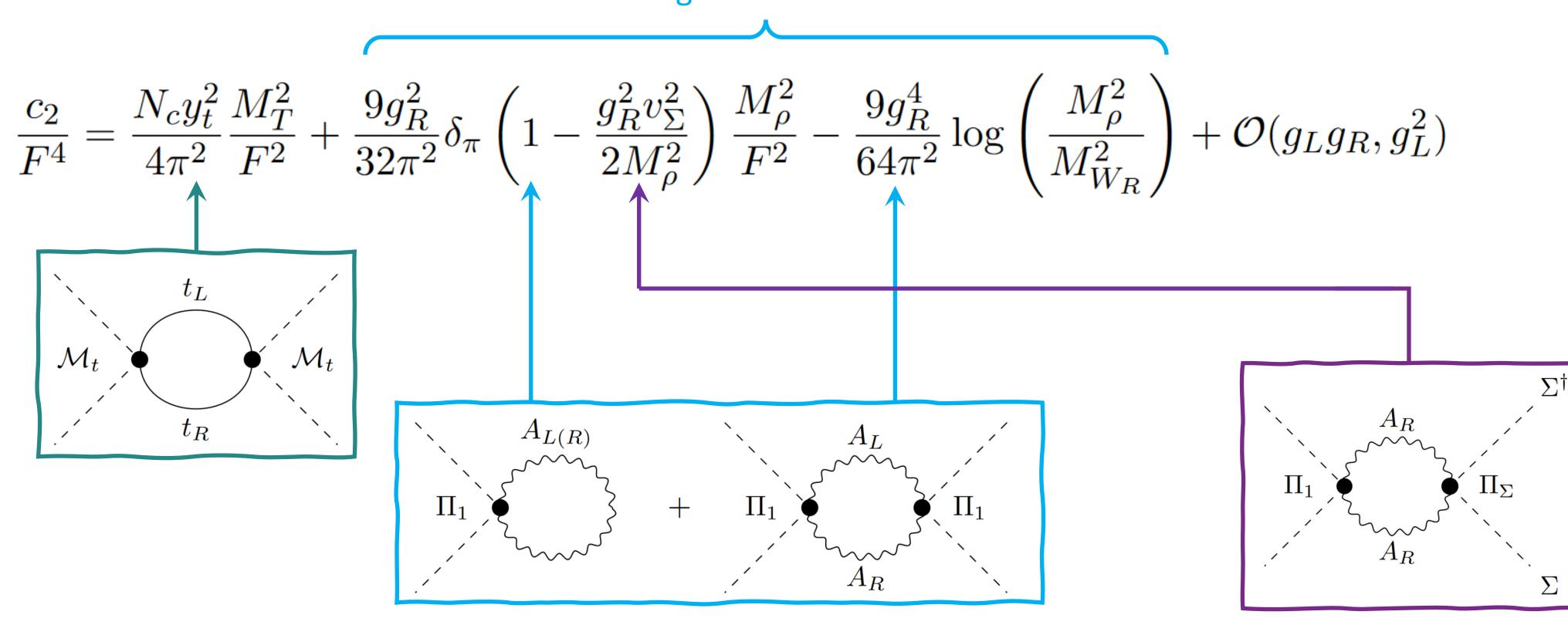
• Spontaneously broken strong sector: $\mathcal{G}\equiv Sp(4)\xrightarrow{\Lambda_{\mathrm{HC}}} SU(2)_L imes SU(2)_R^{[3]}\equiv \mathcal{H}$

• Field Content:

Elementary fields		$U(1)_{B-L}^{[3]}$	$U(1)_{Y}^{[12]}$	$SU(2)_L$	$SU(2)_R^{[3]}$
chiral	$q_L^{[12]}$	0	1/6	2	1
light quarks	$\left \begin{array}{c}u_R^{[12]}\end{array}\right $	0	2/3	1	1
	$\mid d_R^{[12]} \mid$	0	-1/3	1	1
chiral	$\mid q_L^{[3]} \mid$	1/6	0	2	1
3 rd gen. quarks	$q_R^{[3]}$	1/6	0	1	2
vector-like	F_L^q	1/6	0	2	1
quarks	F_R^q	0	1/6	1	2
scalar	Σ_R	0	1/2	1	2
link fields	Ω_q	-1/6	1/6	1	1
	Ω_ℓ	1/2	-1/2	1	1

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2\left(\frac{h}{2F}\right) + c_2 \sin^4\left(\frac{h}{2F}\right)$$

Gauge contributions



Flavour and Higgs Compositeness

Strong resonances

-> Naturalness

How do we couple fermions to the Higgs?

OG approach in strongly-coupled EWSB models:

in strongly-coupled EWSB models:
$$\mathcal{L}\supset\frac{\lambda_b}{\Lambda_{\mathrm{UV}}^{d-1}}\bar{q}_L\mathcal{O}_Sb_R \longrightarrow y_{t,b}\simeq\lambda_{t,b}\left(\frac{F}{\Lambda_{\mathrm{UV}}}\right)^{d-1}$$
 Scalar Op. Strong interactions are resolved strong sector -> Flavour

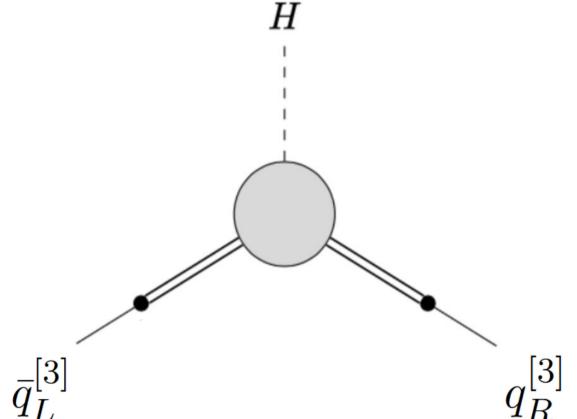
- \blacktriangleright Difficult to have $y_t \sim \mathcal{O}(1)$ and Λ_{UV} high enough to avoid extra flavour-violation
- \triangleright Reintroduces the Hierarchy problem for \mathcal{O}_S^2
- \triangleright Enforce hierarchy of $\lambda_{t,b}$ in the UV because only one scalar op \mathcal{O}_{S}

Partial Compositeness

How do we couple fermions to the Higgs?

Partial Compositeness:

$$\mathcal{L} \supset \lambda_L \bar{q}_L \mathcal{O}_R \longrightarrow |y_q| = \lambda_L^q \lambda_R^{q*} \kappa_{LR}^q \frac{F}{\sqrt{2}M_q}$$

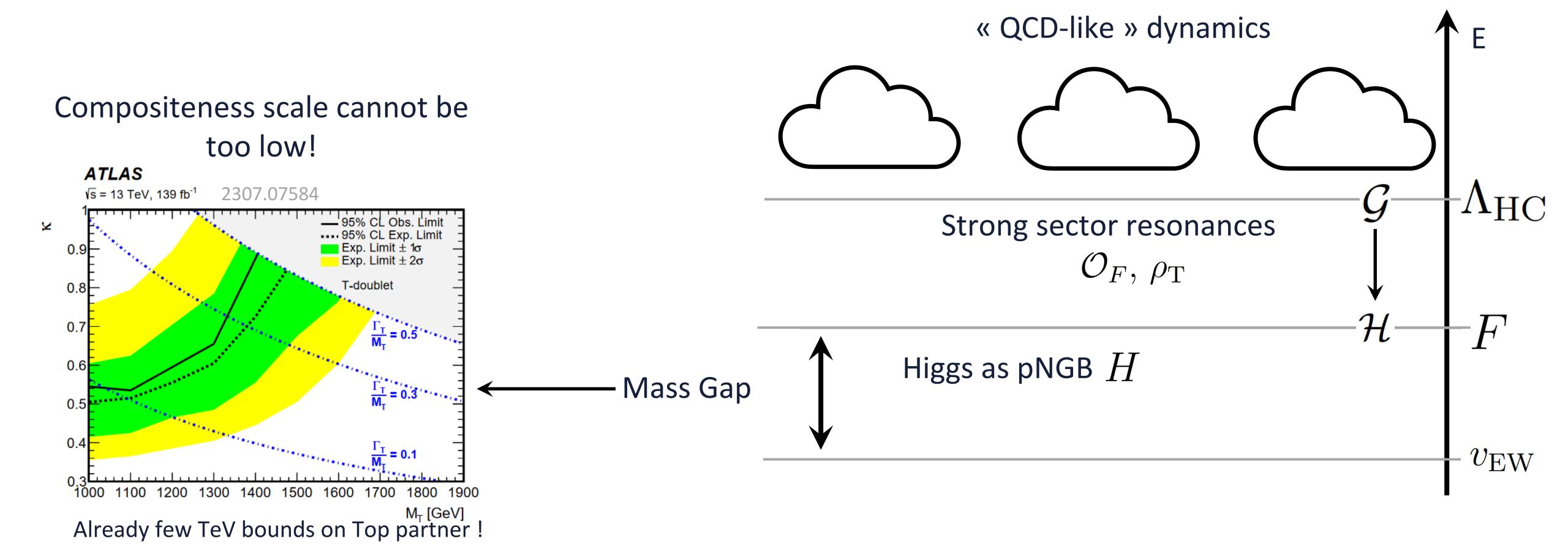


ightharpoonup Fermionic Ops -> No risk of reintroducing a hierarchy problem for \mathcal{O}_F^2

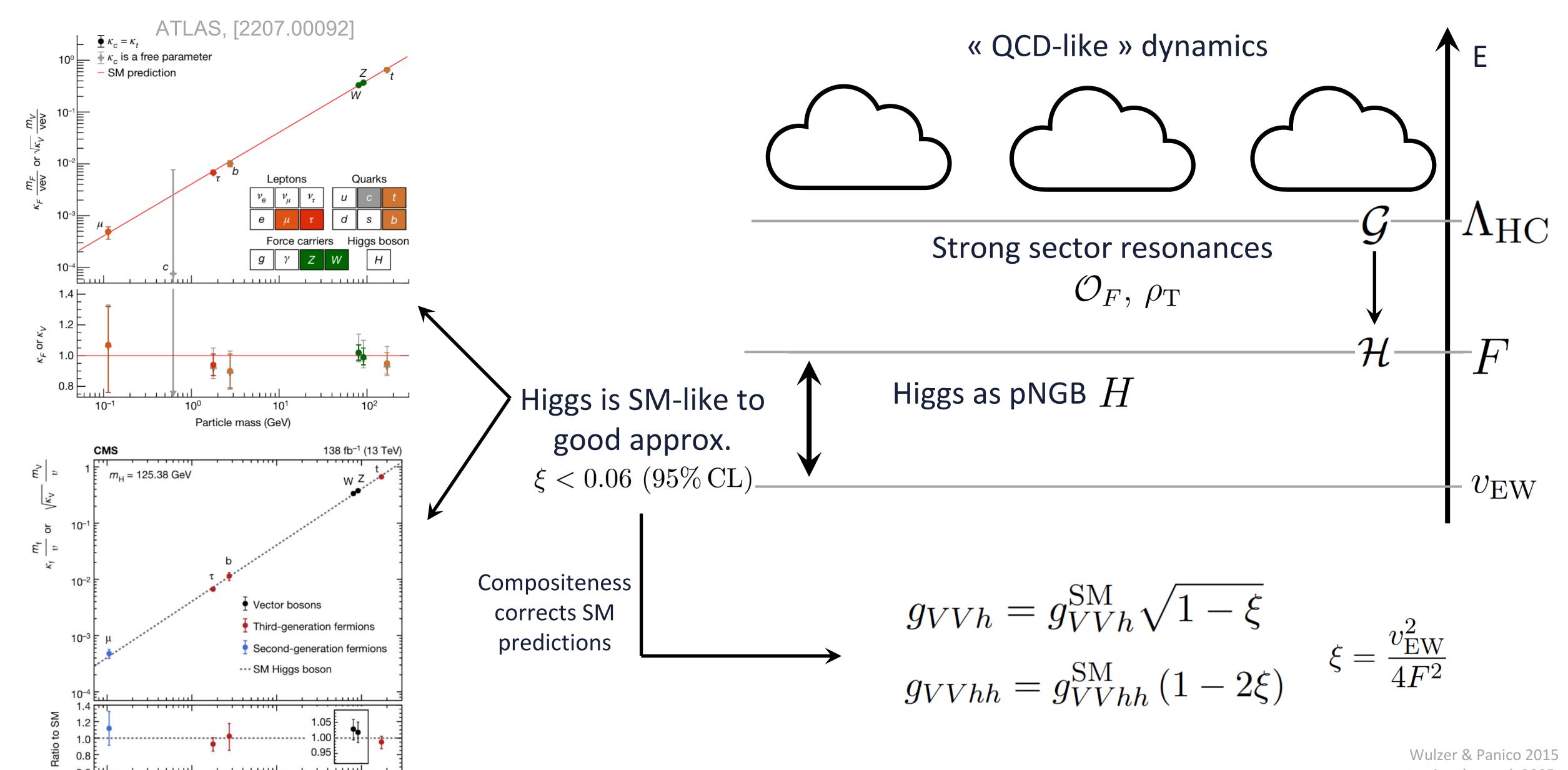
Composite partner

> Partners for each fermions -> can reproduce Yukawa pattern

Higgs Compositeness

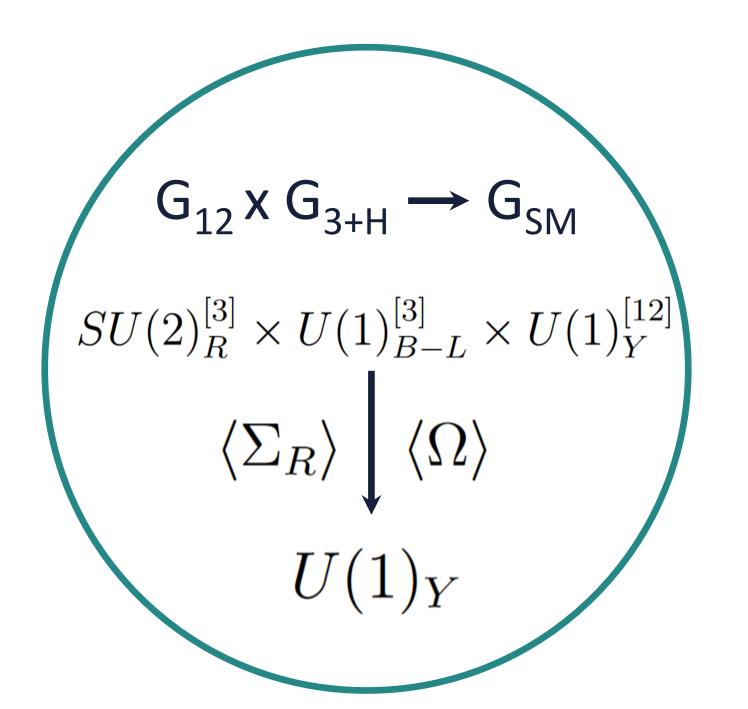


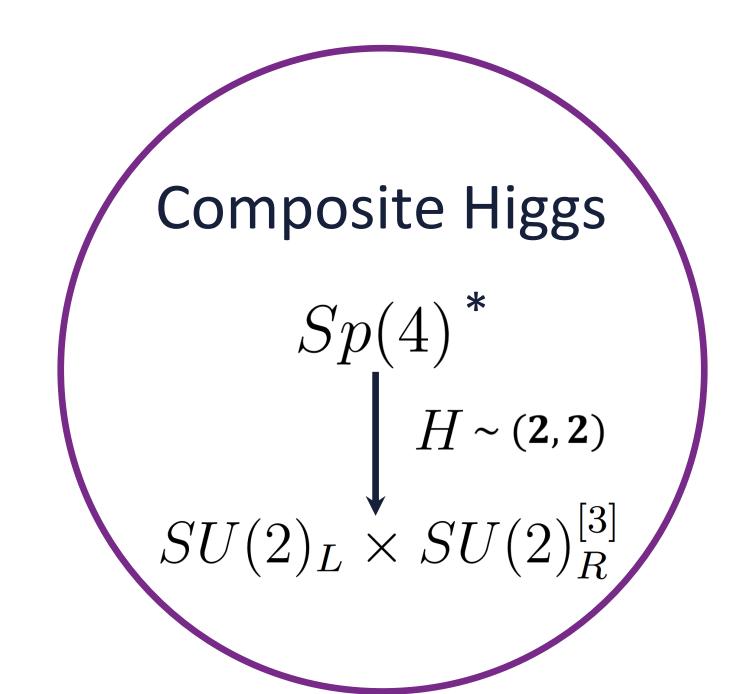
Higgs Compositeness

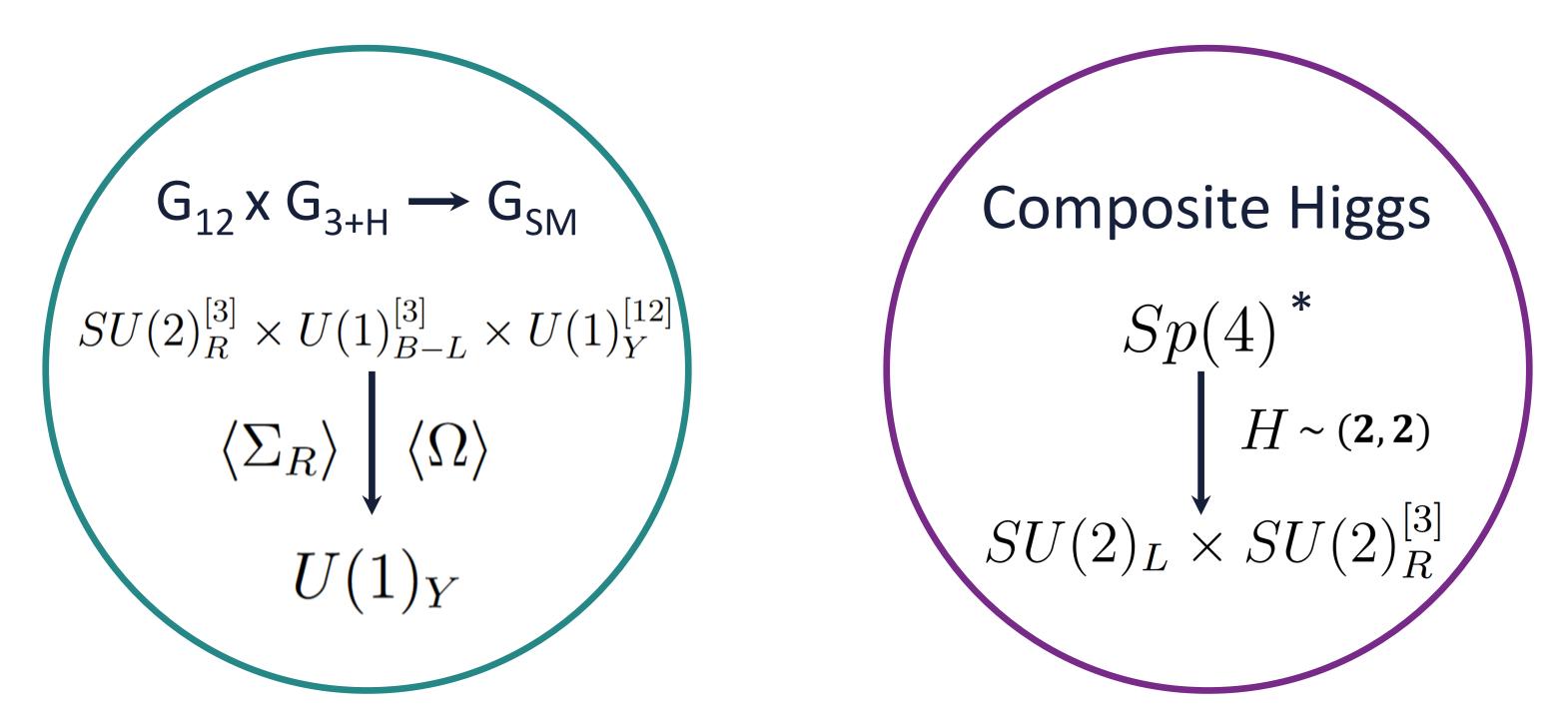


Wulzer & Panico 2015 Agashe et al. 2005,

Particle mass (GeV)







- > Flavour non-universal NP @TeV mainly coupled to 3rd generation
 - $\longrightarrow U(2)^5$ protection
 - Low compositeness scale -> naturalness
 - **Explain SM flavour**

$$Sp(6)_{\text{global}} \longrightarrow SU(2)_L \times SU(2)_R^{[3]} \times SU(2)_R^{[12]}$$

- Composite scalars needed for flavour deconstruction breaking
- > Suppression in light Yukawas from heavy pNGBs -> no VLFs needed