

Search for a standard model-like

Higgs boson in the mass range
between 70 and 110 GeV in the
diphoton final state in proton-proton
collisions with CMS at \(\sigma = 13 \) TeV

Benjamin Massoteau, IP2I – Lyon, Universite Claude Bernard Lyon 1

On Behalf of the CMS Collaboration

<u>Outline</u>

Results based on

Phys. Lett. B 860 (2025) 139067

- Motivation for low mass diphoton resonance searches
- Analysis Strategy
- Signal and Background modeling
- Full Run 2 Results
- Summary

Motivation

<u>Theoretical Motivation</u>: Many BSM models allow the existence of a low mass resonance with m < 125 GeV, lower than the Higgs boson discovered in 2012

Blue : Case I = $\Omega h^2 < 0.1102$

Red : Case II = $0.1102 < \Omega h^2 < 0.1272$

Where Ωh^2 is the relic density

In this model, even after tighter cosmological constraints, a second Higgs boson with 70 GeV<M_{h1}<120 GeV is still allowed in the case of M_{h2}~125 GeV

J. Fan et. al **2014** *Chinese Phys. C* **38** 073101

h₁: lightest NMSSM scalar Higgs boson

h₂: Next to lightest scalar Higgs boson (with a mass around 125 geV)

Analysis Strategy

Full Run2 data

Corresponding luminosity 132 fb-1

Main production modes included in signal model

- ggH, VBF, VH, and ttH
- Relative branching fractions of the different production modes assumed to be the same as in the SM

Extract signal events by fitting to the diphoton invariant mass

- Signal search region: 70-110 GeV
- Background fitting range: 65-120 GeV

Background components

- Irreducible direct γγ production
- Reducible γ+jet,jet+jet, Drell-Yan (DY) Z→ee events

Analysis Strategy

Share many elements from the SM H-> yy Run 2 analysis

- Photon reconstruction and correction
- Vertex ID
- Signal and Background modeling techniques

Dedicated optimizations for low mass H->yy full Run 2

- New dedicated triggers and dedicated pre-selections
 - Stricter isolation and shower shape requirements, allowing photon pt requirements of {30, 18} GeV and little mass requirement
- Reoptimized photon ID
- Diphoton candidate BDT classifier using kinematic variables retrained for low-mass case
- Dedicated VBF event class in 2017 & 2018
- Data reanalyzed with improved calibration for 2016
- Reinforced DY suppression strategy

JINST 16 P05014 (2021)

Analysis Strategy: DY suppression

• Electron-veto without pixel detector hits

 Already used in the analysis of 2016 data combined with 2012 PLB 793 (2019) 320

Additional selections :

- Rejection of photon candidates also reconstructed as electrons
- $\log(\Sigma p_T^2) <= 0.016 * p_T^{\gamma \gamma} + 6.0$: Maximum value of $\log \Sigma p_T^2$

Classification based on diphoton candidate BDT :

- 3 inclusive event classes for 2016
- 3 inclusive event classes + 1 class targeting VBF process for 2017 and 2018

Signal modeling

- A parametric model corresponding to a sum of Gaussians is used to model the signal
- All production modes (ggH, VBF, WH, ZH, ttH) from 70 GeV to 110GeV with a 5 GeV granularity
- Different production modes weighted by SM-like Higgs boson cross sections evaluated at $70 < m_H < 110$

Background modeling

Relic Drell-Yan Z->ee contribution:

 Estimated by fitting doubly-misidentified MC Drell-Yan events with a double-sided Crystal Ball (DCB) function + an exponential

Total background model

- Built from fit to the diphoton mass spectrum (65-120 GeV)
 of data
- Sum of two components using the 'envelope' (discrete profiling) method
 - Continuous analytic functions from four families (Power law, Exponential, Laurent, Bernstein) for the continuum background
 - DCB+exponential (normalization floating) function for Z→ee contribution
- Envelope method chooses function orders and estimates associated systematic uncertainties

Full Run 2 Results: inclusive limit

95% CL upper limits on σ×BR normalized to SM prediction

Absolute 95% CL upper limits on $\sigma \times BR$

Full Run 2 results: inclusive significance

Observed p-values for 2016,2017,2018 and the combination

Modest excess with ~2.9 σ local (1.3 σ global) significance at $m_{\gamma\gamma}$ = 95.4 GeV

m_{vv} distribution with Signal+Background model fit

The mass hypothesis here is $m_H = 95.4 \text{ GeV}$ Each event is weighted by the ratio S/(S+B) for its event class

<u>Summary</u>

Results of search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state at 13 TeV with full Run 2 data has been presented

Published in PLB: Phys. Lett. B 860 (2025) 139067

No evidence for the existence of a new Higgs Boson so far : At 95.4 GeV, for all the classes and combined production modes

- Local excess significance : 2.9σ.
- Global excess significance : 1.3σ

Thanks for your attention!