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Remarks
Breakthrough innovations in methods bringing striking improvements in physics results

Shown today:
• Tagging/ID (specially b/c/s, tau, boosted topologies, but could be generalised to further objects/properties)
• Anomaly detection methods
• Simulation-based inference methods

Many others in use/development:
• Dedicated reconstruction of collimated objects with ML (photons, electrons,…)
• Dedicated pT/mass regressions, kinematic fits
• Data/MC correction methods (chained quantile-regression, normalising flows)
• Background modelling (generative networks, generator tuning,…)
• Systematic uncertainty aware deep learning methods

These new methods are often:
• Based on advanced machine learning, computationally expensive, needing high MC statistics
• Coming with big challenges and a long time of development

• many of the methods being developed in collaborations are not yet in use in physics analyses
• would call for early developments for phase II detectors

• Many are backward compatible: calling for reanalysis of past data when the improvement is sizable i.e. 
bringing more than X% of sensitivity. What would be your X?
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Flavour-taggingHeavy-flavour tagging throughout the years

Heavy-flavour tagging performance 
greatly benefits from new developments 
in ML architectures

CMS (similar for ATLAS)

FTAG-2023-01 CMS-DP-2024-066

Courtesy Angela Maria Burger and Angela Zaza @ Higgs Pair
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Jet tagging in CMS

 Higgs Hunting 2025 - New analysis methods in CMS

Major improvements in jet tagging performance leveraging 
new developments in AI community 

‣ ParticleNet based on Dynamic Graph Convolutional 
Neural Networks 
‣ Particle Transformer based on Transformer

AK4 and AK8 jet identification techniques have evolved in 
parallel following shared trend of moving towards a more 
unified strategy:

‣ Multi-task: jet identification, mass or   regression, jet 
resolution regression 

‣ Multi-class: e.g.  and s-quark AK4 ID

pT

τh

CMS-DP-2024-066

b

b̄
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Flavour-tagging/tau-ID
Besides improved b versus light-jet 
discrimination, many innovations:

• Multi-task algorithms: 
• mass/pT/resolution regressions
• tau-h and c-quark tagging capabilities
• Impacting importantly triggers as well 

• Boosted jet tagging/double b-tagging: 
• tagging for large radius jets, 
• specialised low pT double b-tagging
• “Jet-less” Flavour Tagging: very low pT 

B-tagging outside jets

• Improved tau ID/reco techniques:
• Improved TauID (deepTau, RNN)
• mu-tau removal for merged” τhad-τμ
• double hadronic-tau tagging 

[  A. Sciandra | Analysis Methods for ATLAS | Higgs Hunting | July 17, 2025 ]

GN2X H(bb/cc) at High Momentum
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between the two is used to define the signal e!ciency. This approach does not utilise any correlations
between subjets and corresponds to tagging them independently.

Figure 1: GN2X discriminant, 𝐿Hbb with 𝑀top = 0.25 and 𝑀Hcc = 0.02 for the four jet classes. Working points are
derived by by imposing a requirement on the discriminant distribution of the 𝑁 (𝑂𝑂̄) jets to give the desired signal
e!ciency. The distribution is shown for the SM evaluation samples.

5.1 𝜴(𝜶𝜶̄) performance

The 𝑁 (𝑂𝑂̄)-tagging performance of the tagger can be quantified by its power to reject 𝑁 (𝑃𝑃), top, and
mult"et backgrounds for a given 𝑁 (𝑂𝑂̄)-tagging e!ciency.

Figure 2 shows the background rejection as a function of the 𝑁 (𝑂𝑂̄) signal e!ciency in the signal e!ciency
range used for most physics analyses. The rejection is evaluated at a set number of points and can change
rapidly at high e!ciencies, which causes the observed sharp behaviour. GN2X demonstrates a significant
improvement in both the top and mult"et background rejection, significantly outperforming both baselines
across the relevant signal e!ciency range. At a 50% 𝑁 (𝑂𝑂̄) signal e!ciency GN2X provides a factor
of 1.6 increase in the top jet rejection and a factor of 2.5 increase in the mult"et rejection. GN2X also
outperforms the 2-tag VR subjets baseline across all e!ciencies.

The 2-tag VR subjets baseline only outperforms 𝐿Xbb at low 𝑁 (𝑂𝑂̄) e!ciencies, which shows the benefits
of using the correlations between subjets. Furthermore, 𝐿Xbb uses up to three VR subjets which improves
its e!ciency for cases where the 𝑂-hadrons are not contained in the leading two subjets. In this comparison
𝐿Xbb was trained with DL1r discriminants [43] whereas the 2-tag VR subjets baseline benefits from the
state-of-the-art GN2 tagger which has superior 𝑃-jet rejection.

The top and mult"et rejection factors are also shown as a a function of the jet 𝑄T in Figure 3 at a 50%
𝑁 (𝑂𝑂̄) e!ciency where it can be seen that GN2X outperforms the baseline taggers across the entire
𝑄T spectrum. The top jet rejection is improved by a factor of 1.4 over the 𝐿Xbb tagger at 250 GeV and this
increases to a factor of 2.2 increase in rejection at 1.5 TeV. The mult"et rejection is improved by more
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than a factor of two across the entire 𝐿T spectrum. In Figure 4, the 𝑀 (𝑁𝑁̄) signal e!ciency against jet
𝐿T is shown for the same 50% working point. It shows a remarkably stable e!ciency as a function of
the jet 𝐿T, in contrast to what is observed with the baseline taggers. While the 𝑂Xbb e!ciency drops
from the expected 50% e!ciency at 250 GeV to approximately 35% at 1.5 TeV, GN2X is able to retain an
approximately constant e!ciency over the entire 𝐿T range.

Figure 2: Top and mult"et rejections as a function of the 𝑀 (𝑁𝑁̄) e!ciency for jets with 𝐿T > 250 GeV and mass
50 GeV < 𝑃J < 200 GeV. Performance of the GN2X algorithm is compared to the 𝑂Xbb and VR subjets baselines.
Statistical uncertainty bands (calculated with a binomial model) are denoted. The distribution is shown for the SM
evaluation samples.
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• GN2X is a transformer based X->bb tagger 
exploiting full info from UFO constituents in large-R jet


•  Trained on mass-decorrelated samples to discriminate 

boosted H→bb, H→cc, hadronic top & QCD jets

ATL-PHYS-
PUB-2023-021

• At 60[50]% H→bb[cc] efficiency >2[3-5] better 

top, QCD [and H→bb] rejection wrt standard 

tagging


• Will boost high-pT measurements/searches 
for H→bb & HH→4b (e.g. VBF HH→4b & κ2V)  

Maria Mazza (FSU) 11

Search for tt̄H(cc̄)

 Higgs Hunting 2025 - New analysis methods in CMS

ParticleNet for jet flavor identification

Higher  p(b and c) vs. p(u, d, 
s, and g)
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Two discriminants are constructed from the ParticleNet 
output:

 and  are used to define 11 mutually exclusive 
tagging categories.
pBvsC pB+C

~x2 background rejection 
improvement over early 
Run 2 DeepJet at the same 
signal jet efficiency.

pB+C = pb + pbb + pc + pcc

pb + pbb + pc + pcc + puds + pg

pBvsC = pb + pbb

pb + pbb + pc + pcc

PAS-HIG-24-018 (2025)

[  A. Sciandra | Analysis Methods for ATLAS | Higgs Hunting | July 17, 2025 ]

GN2Xττ for Merged τhadτhad at High Momentum
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Table 4: Number of jets used for the training after pre-processing

Event class Jet statistics (millions)

H(⌧⌧) 5
H(bb̄) 14.5
H(cc̄) 14.5
Multijet 22
Top 8

H(cc̄), top, and multijet) incorrectly identified as H(⌧⌧) jets over the total number of background-jets, the
background rejection is the inverse of the mis-tagging rate. The classification probabilities pH⌧⌧, pHbb,
pHcc, ptop, pQCD indicate the likelihood of a jet of being from H(⌧⌧), H(bb̄), H(cc̄), top, or multijet. These
probabilities are combined into a discriminant score DGN2X

H⌧⌧ defined as:

DGN2X
H⌧⌧ = ln

0
BBBBBB@

pH⌧⌧

fHbb · pHbb + fHcc · pHcc + ftop · ptop +
⇣
1 � fHbb � fHcc � ftop

⌘
· pQCD

1
CCCCCCA , (1)

where fHbb, fHcc and ftop are three free parameters that determine the relative weights of pHbb, pHcc and
ptop respectively to pQCD. These parameters control the trade-o↵ amongst H(bb̄), H(cc̄), top and multijet
rejections. For the following performance studies, fHbb = 0.02, fHcc = 0.02 and ftop = 0.15 were used.
These parameter values were obtained by performing a scanning procedure for each value, selecting those
that provide a good balance between rejecting our prioritised background processes: top and multijet.
Jets are considered tagged if they have a score above a given threshold on the DGN2X

H⌧⌧ discriminant, which
is typically chosen to correspond to a specific target e�ciency for the H(⌧⌧) signal. Figure 2 shows the
normalised distribution of the discriminant score for jets from H(⌧⌧), H(bb̄), H(cc̄), top, and multijet.

Figure 2: GN2X discriminant, DGN2X
H⌧⌧ with fHbb = 0.02, fHcc = 0.02 and ftop = 0.15 for the five jet classes. The

statistical uncertainty is denoted as shade. The distribution is shown for the flat-mass evaluation samples.

The H(⌧⌧)-tagging performance of the tagger can be quantified by its power to reject top and multijet
backgrounds for a given H(⌧⌧)-tagging e�ciency. Figure 3 shows the background rejection as a function
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• Extension of GN2X to tag H(bb), H(cc) & 

H(ττ) 
• Covers τhadτhad use-case, with large BR


• Discriminant shows significant top & MJ 
rejection within 250 GeV < pT < 1.5 TeV & 

50 GeV < mJ < 200 GeV

• rej~104 for ε=98%

• rej~105 for ε=93%


• Provides us with unprecedented 
identification of merged X->τhadτhad 

topologies 


• Expect significant improvements in 
sensitivity of τhadτhad channels to high 
Higgs pTH measurements/new 
resonant mass searches

of the H(⌧⌧) signal e�ciency, in the signal e�ciency range above 90 %. The rejection is evaluated at a set
number of points and can change rapidly at high e�ciencies, which causes the observed sharp behaviour.
The rejection at the 98% H(⌧⌧) e�ciency working point is about a factor of 104 against both top and
multijet background, and at 93% H(⌧⌧) e�ciency working point it reaches 105. The contributions from
H(bb̄) and H(cc̄) are significantly smaller than those from top and multijets backgrounds, so the focus
remains on the latter. Nonetheless, some studies also evaluate H(bb̄) and H(cc̄) as background processes.
At the 98% H(⌧⌧) e�ciency working point, the rejection power is 105 for H(bb̄) and 2.0⇥104 for H(cc̄).

Figure 3: Top and multijet rejections as a function of the H(⌧⌧) e�ciency for jets with pT > 250 GeV and mass 50 GeV
< mJ < 200 GeV. The statistical uncertainties of the rejection factors are calculated using binomial uncertainties and
are indicated as coloured bands. The distribution is shown for the flat-mass evaluation samples.

The top and multijet rejection factors are also shown as a function of the jet pT in Figure 4 at a 98 % H(⌧⌧)
e�ciency. An increasing trend is observed in the top rejection plot at high-pT, which can be explained by
the fact that, as pT increases, a larger fraction of the top decay products become fully contained within the
large-R jet, resulting in improved rejection.

In Figure 5, the H(⌧⌧) signal e�ciency against jet pT is shown for the same 98 % working point. It shows
a stable e�ciency as a function of the jet pT, it is able to retain an approximately constant e�ciency over
the entire pT range.

A cross-check training with similar configuration but dropping the H(⌧⌧) node was performed. It yielded
compatible H(bb̄)/H(cc̄)-tagging performance, which shows this new version of tagger can be used as
H(bb̄) and H(cc̄) tagger as well.

5.2 Mass dependence of the tagger

For any physics analysis using the proposed tagger, it is important to avoid mass sculpting—an artificial
peak in the background mass distribution near the signal mass, caused by correlations introduced by the
tagger. Such sculpting leads to more signal-like background and reduces the e↵ectiveness of background
rejection, so we aim to minimise the correlation between tagger scores and the large-R jet mass. We
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6Unprecedented identification
 of merged X->τhτh

~ 2 x better bkg rejection for 
same H→bb efficiency 

~ x 2 background rejection 
improvement over end Run 2 algo
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Flavour-tagging/tau-ID
Major impact on very many analyses

• All Higgs analyses including b jets:
• ttH in all channels, especially bb and cc
Example: most stringent limit on Kc (CMS)
• HH in bbyy, bbtautau, bbbb, bbWW.
Example: most stringent single channel limit 
on HH production from bbyy including 
reanalysis of run2 (ATLAS) - 20% from b-
tagging at same luminosity
• VH/VBF in bb and cc 

• Several BSM searches driving/benefiting from 
new techniques:

Examples: a->bb searches, a -> τhad-τμ

• Some improvements not yet is use in analyses
• Gains sometimes equivalent to a sizable lumi 

increase calling for Run 2 re-analyses

Besides improved b versus light-jet 
discrimination, many innovations:

• Multi-task algorithms: 
• mass/pT/resolution regressions
• tau-h and c-quark tagging capabilities
• Impacting importantly triggers as well 

• Boosted jet tagging/double b-tagging: 
• tagging for large radius jets, 
• specialised low pT double b-tagging
• “Jet-less” Flavour Tagging: very low pT 

B-tagging outside jets

• Improved tau ID/reco techniques:
• Improved TauID (deepTau, RNN)
• mu-tau removal for merged” τhad-τμ
• double hadronic-tau tagging 
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Simulation-based inference methods
Complete information exploited with simulation-based inference 
methods:
• Train a ML model to learn the likelihood ratio from simulation
• Handle many observables without loss of information
• Scalability to high-dimensional parameter space

Courtesy Aishik Ghosh @ CERN Seminar
A new paradigm: Neural simulation-based inference (NSBI)
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The normalisations of the ,/ , / + jets and non-resonant-✓✓ backgrounds are also obtained from
the simultaneous fit, using the dedicated control regions described in Section 6. Similarly to the
@@̄ ! // background, events from the ,/ process are treated separately for each jet multiplicity. Five
additional free parameters, `3✓ , `1 9

3✓ , `
2 9
3✓ , `/ 9 , and `4`, are therefore introduced in the likelihood model

specifically for the 2✓2a channel and for its combination with the 4✓ channel.

The likelihood function for the combination of both channels is built as a product of the likelihoods of
the individual channels. Theoretical and experimental uncertainties with common sources are treated
as correlated between the two channels. The NLO EW uncertainty is uncorrelated between the two
channels, due to the different schemes used to derive the uncertainties. The hypothesis of systematic
uncertainty correlation between the 4✓ and 2✓2a channels is tested for the dominant sources of uncertainties,
including the PS uncertainties that use models with different complexity in the two channels, and the NLO
EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.

The <4✓ distribution for the 4✓ channel and the <//

T distribution for the 2✓2a channel are shown in Figure 5
after the full fit to data with `off-shell = 1. The total systematic uncertainty from the sources described in
Section 7 are shown in the figure. The distributions of the NN observables used in the 4✓ channel are
shown in Figure 3.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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Summarisation	
to	histogram

High-dim	data

High-dim	data
 is now arbitrary parameter of interest(s)μ

Cranmer et al: arXiv:1506.02169

Hypothesis μ1

Neural	Network

A new paradigm: Neural simulation-based inference (NSBI)
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EW uncertainty. The difference in the result when using different correlation hypotheses is found to be
negligible.
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Figure 5: Comparisons between data and the SM prediction for the (a) <4✓ and (b) <//

T distributions in the inclusive
off-shell signal regions in the // ! 4✓ and // ! 2✓2a channels, respectively. The scenario with the off-shell
signal strength equal to one is considered in the fit. The hatched area represents the total systematic uncertainty. The
last bin in both figures contains the overflow.

The expected numbers of events in the SRs after the maximum-likelihood fit to the data performed in
all SRs and CRs, together with the corresponding observed yields, are shown in Tables 2 and 3 for the
// ! 4✓ and // ! 2✓2a channels, respectively. The fitted background normalisation factors together
with their total uncertainties are summarized in Table 4.

To obtain the results for a given parameter of interest, profile likelihood ratios (denoted by _) are computed
for different values of each parameter. The �2 ln_ curve as a function of `off-shell is presented in Figure 6(a).
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Summarisation	
to	histogram

High-dim	data

High-dim	data
 is now arbitrary parameter of interest(s)μ

Cranmer et al: arXiv:1506.02169

Hypothesis μ1

Hypothesis μ1

Neural	Network

Train on simulations, apply on data

(a) (b)

Figure 11: (a) Values of the test statistic 𝐿𝐿o!-shell assuming a single parameter of interest 𝑀o!-shell obtained with an
Asimov dataset (expected, dashed blue) and with data (observed, solid black) in the 𝑁

→
↑ 𝑂𝑂 ↑ 4𝑃 decay channel.

The values from the histogram-based analysis [17] are added in dash-dotted lines for comparison. The dotted gray
lines show the 68% and 95% confidence belt, obtained from the Neyman construction. (b) Same values obtained
with data (observed, solid black) and Asimov dataset (expected, dashed blue) compared with the statistics-only case
with all NP fixed at their best-fit values 𝑄̂.

1.2𝑅. The green solid curve shows the shows the expected distribution of 𝐿𝐿o!-shell=0 assuming 𝑀
truth
o!-shell = 0

(no o!-shell Higgs boson hypothesis). The green dotted lines show the 𝑆-value thresholds corresponding
to the one-sided significance of 1𝑅 and 2𝑅 under this hypothesis. The evidence for o!-shell Higgs boson
production has an observed (expected) significance of 2.5𝑅 (1.3𝑅) using only the 𝑁

→
↑ 𝑂𝑂 ↑ 4𝑃 decay

channel. The evidence for o!-shell Higgs boson hypothesis has a larger significance than the one observed
(expected) in the previous histogram-based analysis [17] of the same dataset, which had a value of 0.8𝑅
(0.5𝑅).

Figure 13(a) shows the distribution of the probability density ratio 𝑆(𝑇 |𝑀o!-shell = 0, 𝑄̂)/𝑆(𝑇 |𝑀o!-shell = 1, 𝑄̂),
which is a optimal observable for 𝑀o!-shell = 0. The lower panel shows a comparison with the distribution
from the best-fit hypothesis depicting the data behavior that leads to the observed exclusion of the no
o!-shell Higgs boson hypothesis. The di!erence between the observed and expected values of 𝐿𝐿o!-shell=0
indicates that there are regions of phase-space where the data are more interference-like than signal-like,
as can be seen by the rightmost bins in Figure 13(a) where the observed deficit of events is larger than
expect. Given the small significance of the di!erence between expected and observed values of 𝐿𝐿o!-shell=0,
it is di"cult to isolate a specific region of phase-space with this behavior.

Figure 13(b) shows the distribution of the quadruplet mass 𝑈4𝑀 and, in the lower panel, the comparison
with the best-fit hypothesis. This indicates that the quadruplet mass information alone would not be enough
to obtain evidence of o!-shell Higgs boson production in this channel and illustrates the importance of the
ME-based analysis performed with the NSBI method. Further descriptions of the optimal observables can
be found in Appendix D.

Two methods are used to estimate the sensitivity of the measurement to di!erent systematic uncertainties.
The two methods di!er in what is varied: either the NPs 𝑄𝑁, or of the AOs 𝑉𝑁 associated with these
NPs [105]. When using the variations of NPs, each parameter 𝑄𝑁 is varied by its uncertainty and the
conditional maximum likelihood estimate ̂̂

𝑀 is re-derived with only that NP fixed. On the other hand, when

25

Off-Shell H->ZZ* (ΓH) ~13% relative improvement in 95% CL 
upper limit on ΓH, compared to standard histogram analysis

Maria Mazza (FSU) 17

 SMEFT interpretationVH(bb̄)

 Higgs Hunting 2025 - New analysis methods in CMS

BIT template
The ratio  will not be the optimal observable for 
another hypothesis .

r(x |τ, τ0)
τ→ 

‣ To retain optimal separation power, a different BIT training 
would be required at each point in WC space

‣ Background peaks at low BIT score  separates background 
from signal 

‣ SMEFT effects peak at high BIT score  correctly identifies 
SMEFT-sensitive events 

≥

≥

Optimal template in 
2-lepton resolved SR 

Optimal template found via Bayesian optimization: find a point  
such that  maximizes the expected sensitivity to the WCs. 

τ*
r(x |τ*, τ0)

JHEP 03 (2025) 114

Binned BIT template used for signal extraction in the SRs, while 
separate CRs are used to constraint backgrounds.

See Suman’s talk for comprehensive EFT results

VHbb EFT 
interpretation: Build 
optimal observables 
with simulation-based 
inference methods

Complex in practice: systematics uncertainties to incorporate to the likelihood (large number of 
networks), several processes and parameters (ensemble of networks, parameterization) 
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Discussion time!
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TriggerHadronic triggers for HH: bbjj trigger for HH→4b

ATLAS
● Delayed stream since 2022.
● Merged back to main stream from 2024.
● 45% improvement w.r.t. Run 2. 

17

CMS:
● High-rate parking strategy since 2023.

○ 60% improvement w.r.t Run 2.
○ 20% improvement from 2022 prompt strategy.

● Loosened thresholds in 2024.
● Dedicated trigger for boosted H(bb)

DP2025009 

HH(4b) trigger efficiency Online bb-tagging efficiency

JINST 20 (2025) P03002

HH(4b) trigger efficiency

Courtesy Liaoshan Shi and Silvio Donato @ HiggsPair
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TriggerHadronic triggers for HH: bbjj trigger for HH→bb𝝉𝝉
ATLAS

● Complementary phase space selected by 
bbjj and tau triggers.

● More than 40% unique efficiency gain 
when combining triggers.

18

CMS
● 25% improvement w.r.t. tau-triggers
● 70% unique efficiency gain when 

combining triggers.

Physics Reports 1115 (2025) 678 JINST 20 (2025) P03002

Courtesy Liaoshan Shi and Silvio Donato @ HiggsPair
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Tau-ID

2025-05-12 HiggsPairs2025 Tau performance at CMS  - K. Androsov

DeepTau v2.1 vs v2.5 - background rejection

❖ Jet mis-id probability reduced by ∼40% 
❖ Electron mis-id probability reduced by ∼20..90% 
❖ Compatible muon mis-id probability

9

CMS-PAS-TAU-24-001

𝜏h against quark 
and gluon jets 𝜏h against electrons 𝜏h against muons

Tau identification - overview

• ·had identification (TauID) algorithm separates truth ·had-vis and misidentified ·had-vis originating from
quark- and gluon-initiated jets

• Current TauID algorithm (ATL-PHYS-PUB-2019-033) is based on a recurrent neural network (RNN)

and replaced previously used BDT-based algorithm

• The signal and background training data sets are “ú æ ·· and dijet, respectively

• The algorithm employs information from reconstructed charged-particle tracks and clusters of energy in

the calorimeter associated to ·had-vis candidates as well as high-level variables

Michaela Mlynarikova 2024 ATLAS-CMS Flavour Tagging Workshop 13 September 2024 9 / 12

ParticleNet and UParT - CMS Jet energy regression

Jet energy 
resolution

s-tagging

c-tagging
𝝉

H
-tagging

𝝉
H

-tagging

CMS_DP2024_064

● PNet and UParT show good 
performance in tau tagging 
and jet energy and 
resolution regression

● UParT → first s-tagging at 
CMS

18

CMS-DP-2024-066

CMS-DP-2024-066

Gains in tauID in both 
experiments with deep 
learning
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Systematics aware deep learning

Example: arXiv:2502.13047v1 [hep-ex]

Improvement by 12% (16%) for ggH (VBF) signal strengths

Demonstration in the ττ decay channel16

Figure 5: Impacts for the 20 nuisance parameters θj with the largest impacts on rs. The gray
lines refer to the CENNT and the colored bars to the SANNT. The impacts can be read from the
x axis. Labels shown on the y axis for each θj are defined in Table 1. The entries are ordered by
decreasing magnitude for SANNT when moving from the top to the bottom of the figure. The
panel on the right shows the relative change of the symmetrized impact when moving from
CENNT to SANNT. A more detailed discussion is given in the text.

electrons; and the efficiency to distinguish τh candidates with (εID
τ (35, 40)) 35 <

p
τh
T < 40 GeV and (εID

τ (40, 500)) 40 < p
τh
T < 500 GeV from quark- or gluon-induced

jets. For εID
τ (40, 500) additional uncorrelated parts for τh decays (εID

τ (3-prong)) with
three charged pions, and (εID

τ (1-prong→)) one charged and additional neutral pions
appear in the list.

• Uncertainties related to the FF-method, viz. in the normalizations of the estimates
of events with zero, one, and two jets corresponding to FF(0-jet), FF(1-jet), and
FF(2-jet), respectively; the nonclosure correction to the estimate of the background
contribution from QCD multijet production as a function of mvis, F

QCD
F (mvis); and

the subtraction of W+jets events as obtained from simulation during the estimation
of the same background contribution, F

QCD
F (W+jets).

• Uncertainties related to simulation, viz. in the reweighting of the sample used for
estimating the background from Z ↑ ωω production, in sideband regions of the data

21

background processes of ΩX are indicated by stacked, differently colored, filled histograms.
The expected ggH and qqH contributions are indicated by the nonstacked, red- and cyan-
colored, open histograms. As for the previous discussion in Section 4, the gray bands in the
lower panels of the figure correspond to the combined statistical and systematic uncertainty in
the background model. The same distributions after SANNT are shown in Fig. 7 (lower). The
change of distributions and more prominently the improved signal separation, with reduced
uncertainty are visible from the comparison of the corresponding distributions, indicating the
success of the training.

Figure 8 shows distributions of →2∆ logL, based on the input distributions as depicted in Fig. 7,
as a function of rs. As in the previous discussion, in Section 4, for the red (blue) curves all (only
the statistical) uncertainties in ∆rs have been taken into account. In the left part of the figure
rinc, for an inclusive measurement of the H production cross section in the H ↑ ττ decay
channel is shown, in the middle and right parts of the figure rggH and rqqH for a combined
differential STXS measurement of these contributions to the signal in two bins, are shown. The
numerical results of the fits are summarized in Table 2.

Figure 8: Negative log of the profile likelihood →2∆ logL as a function of rs, for a differential
STXS cross section measurement of H production in the H ↑ ττ decay channel, taking (red)
all and (blue) only the statistical uncertainties in ∆rs into account. In the left plot rinc for an
inclusive measurement is shown, and in the middle and right plots rggH and rqqH for a com-
bined differential STXS measurement of these two contributions to the signal in two bins are
shown. The results as obtained from CENNT are indicated by the dashed lines, and the median
expected result of an ensemble of 100 repetitions of SANNT varying random initializations are
indicated by the continuous lines. The red and blue shaded bands surrounding the median
expectations indicate 68% confidence intervals (CI) of the ensemble.

As observed previously, the method is unbiased. After SANNT, an improvement of 15% rel-
ative to the result as obtained after CENNT is observed for rinc. For rggH and rqqH, improve-
ments of 12 and 16% are observed, respectively. This constitutes a significant improvement of
the SANNT over the CENNT. It is the first time that a multiclass-classification SANNT has
been successfully demonstrated.

We observe that SANNT leads to an improvement of the statistical component of rqqH, where
the contribution of systematic variations to the overall uncertainty has been small, already from
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Sensitivity

13

V. Cairo slide design

baseline

RNNs
+Sets

Graphs

Trans-
formers

* Note: Some places omitting sub-dominant channels to emphasize ones driving the sensitivity, full results in backup

ATLAS
CMS 4b bb𝝺𝝺 bb𝜏𝜏 Combination

σHH limit [x SM]

Early Run 2

Full Run 2 
(lumi scaling)

Full Run 2

Run 2+3 
(lumi scaling) dashed means by hand scaling

More data helps (as 
expected!!)

Expect to improve by a 
factor of 2x from scaling∈

What about methods 
improvement?  
(A.k.a, b-tagging) 

Most of these analyses improved by a factor of 3!!  
(CMS 4b, bbττ improved by 5x )


