

RF power requirements, coupling calculation, and LLRF

C. Joly on behalf of the PERLE team

Buncher Design Review : RF power requirements

Parameters	Buncher
Frequency [MHz]	801.58
Beta	0.8048
Q0	2.21E4
r/Q [Ω]	166.57
Qext	2.21E4
QL[Required]	1.1àE4
Bandwidth [Hz]	72667
Filling time [µs]	2.53
Eacc [MV/m]	0.608
Lacc [m]	0.126
Nb of cavities	1

- 4.933kW 🔌 **1.6 kW** with new calculation
- Use of cables or rigid coaxial line
 Use of solid state amplifier

Margins

CNrs

UNIVERSITE PARIS-SACLAY

- BW ~ 72kHz & Sensitivity ?KHz/ deg C°
- RF power line attenuation
- Manufacturing (Q0)

FACULTÉ DES SCIENCES

D'ORSAY

Université de Paris

FACULTÉ

D'ORSAY

DES SCIENCES

10,000

It should better to try to limit to 4.5 kW/2 = 2.25 kW in case of reflected power

Global margin : 2.25kW -1.6kW = 650W

Margins due to the Frequency variations

- Steady state : due to T° regulation → sensitivity of the Cavity (50kHz/°C @3GHz → @0.8GHz?)
- Transient state : due to T° increase \rightarrow of the accelerator field to the nominal value (CPLR & cavity T°)
- Beam loading effect ~17kHz @20mA \rightarrow RF power + ~25% \rightarrow 2kW

Depending of T° regulation performance : water cooling is slow RF tuning system : fixed plunger

Margins : with Attenuation of rigid coaxial line of 0.029dB \rightarrow ~20m max (0.58dB) si max value = 2kW for the others margins

Université

DES SCIENCES

universite

- Coupling with waveguide opening and Rf power circuit = Waveguide
- \rightarrow Fixed Qext, no modification with a standard assembly \rightarrow variable stub needed
- Electric coupling via an antenna
- \rightarrow Fixed Qext, no modification possible \rightarrow variable coupler but it's more complex
- \rightarrow Cooling needed \rightarrow complex circuit due to the inner diameter
- Magnetic coupling via an loop
- \rightarrow Fixed coupling but modification possible by orientation modification
- \rightarrow cooling needed \rightarrow can be included into the cavity cooling

Goal : the minimum opening for the coupling \rightarrow Minimum RF power to provide allowing to use RF cable

Université

DES SCIENCES

- Stability in Phase < 1°
- Stability in amplitude < 3%

- -Without LLRF system, no possible adjustments of setpoints-Depending of the water cooling performance-Use of a RF generator synchronized
- A specific RF power measurements needed

-With LLRF system, possible adjustments of setpoints
-Synchronized too
-RF power measurements integrated into the LLRF

