Pour vous authentifier, privilégiez eduGAIN / To authenticate, prefer eduGAINeu

Séminaires

Spectroscopy of even-even open-shell nuclei via self-consistent Gorkov-Green’s function calculations

par Dr Gianluca Stellin (IJCLab)

Europe/Paris
100/2-A201 - Salle A201 (IJCLab)

100/2-A201 - Salle A201

IJCLab

20
Montrer la salle sur la carte
Description

The fundamentals of the ab-initio Self-Consistent Gorkov Green’s function (SCGGF) [1, 2] approach for the investigation of low-lying energy spectrum of the semi-magic even-even nuclei are presented. In the last decade, the SCGGF method has brought a significant renewal in the realm of ab-initio approaches to nuclear structure, marking a step forward in the knowledge of bulk nuclear properties of even-even nuclei, such as the ones lying along the Ar-Cr [3, 4] isotopic chains. The access to the one-particle propagator has allowed the study of ground and excited states of neighbouring odd-A isotopes [5–7]. Nonetheless, the prediction of excited energy levels and reduced electric and magnetic multipole transition  probabilities calls for the introduction of the polarization
propagator, previously not embedded in the U(1)Z × U(1)N symmetry breaking formalism. In quantum chemistry, present-day approaches for the description of the spectrum of medium-sized organic molecules [8, 9] are based on diagrammatic many-body Green’s function theory applied to the polarization propagator at third order in the algebraic diagrammatic construction (ADC) approach [10–13]. Another return of this is study will be provided by the prediction of new shell closures in neutron-rich even-even nuclei, identified through the local maxima in the energy of the 2+1 state and in the related electric quadrupole transition probability, B(E2, 0+1 → 2+1 ) [14].

[1] L.P. Gorkov, Sov. Phys. JETP 34, 3, 505-508 (1958). 
[2] V. Soma, T. Duguet and C. Barbieri, Phys. Rev. C 84, 064317 (2011).
[3] V. Soma, A. Cipollone, C. Barbieri, P. Navratil and T.  Duguet, Phys. Rev. C 89, 061301(R) (2014).
[4] V. Soma, C. Barbieri, T. Duguet and P. Navratil, Eur. Phys. J. A 57, 135 (2021).
[5] M. Rosenbusch et al., Phys. Rev. Lett. 114, 202501 (2015).
[6] S. Chen et al., Phys. Rev. Lett. 123, 142501 (2019).
[7] Y.L. Sun et al., Phys. Lett. B 802, 135215 (2020).
[8] P.H.P. Harbach, M. Wormit and A. Dreuw, J. Chem. Phys. 141, 064113 (2014).
[9] A. Dreuw and M. Wormit, Comput. Mol. Sci. 5, 82-95 (2015).
[10] J. Schirmer, Phys. Rev. A 26, 2395-2416 (1982).
[11] A.B. Trofimov, G. Stelter and J. Schirmer, J. Chem.  Phys. 111, 9982-9999 (1999).
[12] J. Brand and L.S. Cederbaum, Adv. Quantum Chem. 38, 65-120 (2000).
[13] A.B. Trofimov, G. Stelter and J. Schirmer, J. Chem. Phys. 117, 6402-6409 (2002).
[14] I. Bentley, Y. Colon Rodrıguez, S. Cunningham and A. Aprahamian, Phys. Rev. C 93, 044337 (2016).


 


How to reach the seminar room:

Whereabouts of the laboratory on the Paris-Saclay campus

Bat. 100, general room map

Organisé par

G. Hupin

Participants
54
ID de réunion Zoom
99403008084
Hôte
Guillaume Hupin
URL Zoom